Deep Learning
Recurrent Networks:
Stability analysis and LSTMs

Which open source project?

static int indicate_policy(void)

{

int error;
if (fd == MARN_EPT) {

if (ss->segment < mem_total)
unblock_graph_and_set_blocked();

else
ret = 1:
goto bail;
i

segaddr = in_SB(in.addr);
selector = seg / 16;
setup_works = true;
for (i = @; i < blocks; i++) {
seq = buf[i++];
bpf = bd->bd.next + i * search;

if (fd) {
current = blocked;
X
X
ru->name = "Getjbbregs";

bprm_self clearl(&iv->version);
regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECON

return segtable;

Related math. What is it talking
about?

Proof, Omitted. 4

Lemma 0.1. Let C be a sel of the construction.
Lel C be a gerber covering. Lel F be a quasi-coherent sheaves of O-modules. We
have to show that

Oo, = Ox(L)

Proof. This is an algebraic space with the composition of sheaves F on Xz, we
have

Ox (F) = {morphy xoy (G.F)}
where G defines an isomorphism F — F of O-modules. 0
Lemma 0.2. This is an integer Z is injective.
Proof. See Spaces, Lemma 77, a
Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open

covering. Let U C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal comples.

The following lo the construction of the lemmma follows.
Let X be a scheme. Let X be a scheme covering. Let

b: X 34Y' a3Y3¥ a3V xxY 3 X,
be a morphism of algebraic spaces over § and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.

(2) If X is an affine open covering.

Consider a common structure on X and X the functor Ox(UV) which is locally of
finite type. O

This gince F € F and r € G the diugrmﬂ
5

1

£

™

¥
= ———=

gor,

= ——=n X

Spee(fy) Morgess tlﬂﬂ,\".r‘,gb

15 o limit. Then G is & finite type and assume S is o fat and F oand G is a finite
type f.. This is of Anite tvpe diagrams, and

o the composition of G is a regular sequence,

o Dy s a sheal of rings.

O

FProof. We hove see that X = Spec(H) and F is a finite type representable by
algebraic space. The property F is a finite morphism of algebraic stacks. Then the
colomaology of X is an open neighbourhood of [m|

Proaf. This is clear that @ is a finite presentation, see Lemmas 77,
A redueed above we conclude that I7 s an open covering of C. The funetor F is a
“field

Ox.. = Fr -UOx,...) — O%,0x,(0%,)
is an isomorphism of covering of Qy,. If F is the unique element of F such that X
is an isomorphism.
The property F is a digjoint union of Proposition 77 and we can Altered set of
presentations of a scheme O y-algebra with F are opens of finite type over S.
If F is a scheme theoretic image points. B

If F is a finite direct sum Oy, is & closed immersion, see Lemma 7%, This is a
seqquence of F is a simnilar morphism.

And a Wikipedia page explaining it all

Naturalism and decision for the majority of Arab countries' capitalide was grounded
by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom

of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known

in western [[Scotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of Syrian influence that
was a famous German movement based on a more popular servicious, non-doctrinal

and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],

that is sympathetic to be to the [[Punjab Resolution]]
(PJS)[http://www.humah.yahoo.com/guardian.

ctm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery
was swear to advance to the resources for those Socialism's rule,

was starting to signing a major tripad of aid exile.]]

The unreasonable effectiveness of
recurrent neural networks..

* All previous examples were generated blindly
by a recurrent neural network..

* http://karpathy.github.io/2015/05/21/rnn-
effectiveness/

 Examples of models that analyze (or in this
case, generate) time-series data

Y(t+6)

Story so far *

A

/V——T

Stock]]
vector

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

* [terated structures are good for analyzing time series
data with short-time dependence on the past

— These are “Time delay” neural nets, AKA convnets

Story so far

Y(t)
SEEEE.
- —a—

»
»

»
»

» »
» »

.

A A

X(t)

t=0

Time

Iterated structures are good for analyzing time series data
with short-time dependence on the past

— These are “Time delay” neural nets, AKA convnets
Recurrent structures are good for analyzing time series
data with long-term dependence on the past

— These are recurrent neural networks

Recurrent structures can do what
static structures cannot

10101011110

1

MLP

1 1

1000110010 1100101100

 The addition problem: Add two N-bit numbers to produce a N+1-
bit number
— Inputis binary
— Will require large number of training instances

* Output must be specified for every pair of inputs
* Weights that generalize will make errors

— Network trained for N-bit numbers will not work for N+1 bit numbers

MLPs vs RNNs

1
1

Previous RNN unit | Ca;ry
carry / ,\ ou
1 0

* The addition problem: Add two N-bit numbers to
produce a N+1-bit number

* RNN solution: Very simple, can add two numbers
of any size

* Needs very little training data

MLP: The parity problem

1

1

MLP

|

1000110010

 |sthe number of “ones” even or odd

* Network must be complex to capture all patterns
— XOR network, quite complex
— Fixed input size

* Needs a large amount of training data

RNN: The parity problem

Previous
output 1 1

1

RNN unit

\

0

* Trivial solution
— Requires little training data

* Generalizes to input of any size

11

Story so far

Ydesired(t)

Y(t)

X(t)

t=0

Time

e Recurrent structures can be trained by minimizing
the divergence between the sequence of outputs
and the sequence of desired outputs

— Through gradient descent and backpropagation

12

Types of recursion
NS NN. ;
X(t)

NN

X(t)

* Nothing special about a one step recursion

The behavior of recurrence..

Y(t+5)

'P

T

X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6)

X(t+7)

* Returning to an old model..
Yt)=f(X(t—i),i=1..K)
* When will the output “blow up”?

14

“BIBO” Stability

Y(t+5)

"

A

T

X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

 Time-delay structures have bounded output if
— The function f () has bounded output for bounded input

* Which is true of almost every activation function

— X(t) is bounded

 “Bounded Input Bounded Output” stability
— This is a highly desirable characteristic

Is this BIBO?

Y(t)
SEEEEEE.
- > X X > X X > X > X X

X(t)

t=0

Time

* Will this necessarily be BIBO?

16

Is this BIBO?

Y(t)
S EEEE.
- —a—F

[[
» »

» [
L »

=

A A

X(t)

t=0

Time

* Will this necessarily be BIBO?

— Guaranteed if output and hidden activations are bounded

e But will it saturate (and where)

— What if the activations are linear?

Analyzing recurrence

Y(t)
SEEEEEE.
- > X X > X X > X > X X

X(t)

t=0

Time

e Sufficient to analyze the behavior of the hidden
layer h;, since it carries the relevant information

— Will assume only a single hidden layer for simplicity

18

Analyzing Recursion

. —_—
The streetlight effect is a type of observational bias where people only look for whatever

they are searching by looking where it is easiest

“I'm searching for my keys.”

19

Streetlight effect

Y(t)
S EEEE.
- —a—F

[[
» »

» [
L »

=

A A

X(t)

t=0

Time

* Easier to analyze linear systems

— Will attempt to extrapolate to non-linear systems
subsequently

* All activations are identity functions

— Z = Wphy—q + Wiexy, hy = zy

20

Linear systems

* hy = Whhyg_q + Wexy

— hyg—1 = Wphy_p + Wyexg—4

21

Linear systems

* hy = Whhy—1 + Wyxy
— hyg—1 = Wphy_p + Wyexg—4
* hy = Wihy_y + Wy Woxye_q + Wiy

22

Linear systems

* hy = Whhy—q + Wyxy
— hp_q = Wyhyp_y + Wex,_4
= Withg_y + WyWyex_q + Wyxy
o h=WFTh_ + WW,xo + WETWox, + W2 W, xp + -

23

Linear systems

* hy = Whhy—q + Wyxy

— hyg—1 = Wphy_p + Wyexg—4
o hy = Wihy_y + W, W,x,
© h,=WFrth_| +

_1 + Wyexg
Wi IW,x, + WE2Wexy + -+

Response to an input x0 at time O, when there are no other inputs
and zero initial condition

24

Linear systems

h = Wyhp_q + Wiexy,

— hy—1 = Whhy—y + Wixy—q

hie = Wi hy_p + WpWyxy_1 + Wexy,

he = WP Th_) + WEW, xo + WETWox, + W2 Wx, + -
hy = Hy(h_1) + Hy,(xo) + Hi, (x1) + H (2¢5) + -+

25

Linear systems

hy = Wrhy_q + Wyxy,

— hy—1 = Whhy—y + Wixy—q

hi = Withg_p + WpWyexyg_q + Wyxy,

he = WP Th_) + WEW, xo + WETWox, + W2 Wx, + -
hy = Hy(h_1) + Hy,(xo) + Hi, (x1) + H (2¢5) + -+

— =h_1H,(1_1) + xoH,(1y) + x;Hx (17) + x, H,, (1,) + -+

Where Hy (1;) is the hidden response at time k when the input is
[000 ..10..0] (wherethe 1 occurs in the t-th position) with 0 initial
condition

— The initial condition may be viewed as an inputof h_; att = —1

Linear systems

hy = Whhy_1 + Wexy,

hg—1 = Wihg—o + Wyxp_q

hie = Wi hy_p + WpWyxy_1 + Wexy,

he = WP Th_) + WEW, xo + WETWox, + W2 Wx, + -
hy = Hy(h_1) + Hy,(xo) + Hi, (x1) + H (2¢5) + -+

— =h_{H,(1_1) + xoH(1o) + x1Hx (1) + x5H, (1) + -+

W

For vector systems:
Hi(1_1)h_1 + Hp(1o)xo + H(11)x1 + He(12)x5 + -

[0

uuU ...10..Uj{wneretne L oCccurs In the t-th position) witn U |

condition
— The initial condition may be viewed as an inputof h_; att = —1

itial

Streetlight effect

S EEEEEE

X(t)

EE——

t=0

Time

* Sufficient to analyze the response to a single input
att =0
— Principle of superposition in linear systems:
h, =h_{H,(1_7) +xoH, (1) + x1H,, (1) + x,H, (1,) + -

28

Linear recursions

* Consider simple, scalar, linear recursion (note
change of notation)

—h(t) =wh(t —1) + cx(t)
— ho(t) = wltex(0)

* Response to a single input at 0

h(k)

= N) A 0 9) N

29

Linear recursions: Vector version

e Vector linear recursion (note change of notation)
— h(t) =Wh(t —1) + Cx(t)
— ho(t) = WtCx(0)

* Length of response vector to a single input at 0 is |hy(t)]

e We canwrite W = UAU™?
— Wu; = Aju;
— For any vector x' = Cx we can write
X' =aquy + a,uy, + -+ ayu,
s Wx' = a;liuq + a,Au, + -+ aduy,
« Wtx' = ayAbuy + ayA5u, + -+ a,Abuy,

- tad] — t _
— lim|W*x'| = ajA;uy, where m = argmax 4,

t—o oo j

30

Linear recursions: Vector version

* Vector linear recursion (note change of notation)
— h(t) =Wh(t —1) + Cx(t)
— ho(t) = WtCx(0)

* Length of response vector to a single input at 0 is |hy(t)]

e We can write W = UAU™?
— Wul- = Aiui

For an;/ input, for Iargé t the Iengfh of the hidden vector
will expand or contract according to the t —th power of the
largest eigen value of the hidden-layer weight matrix

WX = A Uy T AU, T T G, Up,

- tad] — t _
— lim|W*x'| = ajA;uy, where m = argmax 4,

t—o oo j

Linear recursions: Vector version

* Vector linear recursion (note change of notation)
— h(t) =Wh(t —1) + Cx(t)
— ho(t) = WtCx(0)
« length of response vector to a single input at 0 is [hg (t)]

For any input, for large t the length of the hidden vector
will expand or contract according to the t —th power of the
largest eigen value of the hidden-layer weight matrix

Unless it has no component along the eigen vector corresponding to the
largest eigen value. In that case it will grow according to the second
largest Eigen value..

And so on..

« Wtx' = ayAbuy + ayA5u, + -+ a,Abuy,

- tad] — t _
— lim|W*x'| = ajA;uy, where m = argmax 4,

t—o oo j

Linear recursions: Vector version

* Vector linear recursion (note change of notation)

N ya Pl PN

If |Amax! > 1 it will blow up, otherwise it will contract

and shrink to O rapidly
* _Length of response vector to a single input at 0is [ho(t)]

For any input, for large t the length of the hidden vector
will expand or contract according to the t —th power of the
largest eigen value of the hidden-layer weight matrix

Unless it has no component along the eigen vector corresponding to the
largest eigen value. In that case it will grow according to the second
largest Eigen value..

And so on..

« Wtx' = ayAbuy + ayA5u, + -+ a,Abuy,

- tad] — t _
— lim|W*x'| = ajA;uy, where m = argmax 4,

t—o oo j

1 ions: Vec! :

What about at middling values of t? It will depend on the
other eigen values

h BN Y ayJ Pl PN

If |Apgy] > 10t wull blow up, otherwise it will contract
and shrink to O rapidly

e _length of response vector to a single input at 0.1s [hg ()]

For any input, for large t the length of the hidden vector
will expand or contract according to the t —th power of the
largest eigen value of the hidden-layer weight matrix

Unless it has no component along the eigen vector corresponding to the
largest eigen value. In that case it will grow according to the second
largest Eigen value..

And so on..

« Wtx' = ayAbuy + ayA5u, + -+ a,Abuy,

— lim |[W'x'| = apmAfuy, where m = argmax A;

t—o oo]

e e

0ODD s
ONbOB AN A0

Linear recursions

e Vector linear recursion
—h(t) =Wh(t —1) + Cx(t)
— ho(t) = Wtex(0)
* Response to asingleinput[1111]atO

SN0 A D0 ND0
0 4 N W A 00 N

35

Linear recursions

e Vector linear recursion
—h(t) =Wh(t —1) + Cx(t)
— ho(t) = Wtex(0)
* Response to asingleinput[1111]atO

SN0 A D0 ND0
0 4 N W A 00 N

L] -1 O =2 L] -1 O =

Complex Eigenvalues

36

Lesson..

* In linear systems, long-term behavior depends
entirely on the eigenvalues of the hidden-layer
weights matrix

— If the largest Eigen value is greater than 1, the system
will “blow up”

Ill

— If it is lesser than 1, the response will “vanish” very
quickly
— Complex Eigen values cause oscillatory response
* Which we may or may not want

* For smooth behavior, must force the weights matrix to have
real Eigen values

— Symmetric weight matrix

How about non-linearities (scalar)
h(t) = f(wh(t —1) + cx(t))

The behavior of scalar non-linearities
Left: Sigmoid, Middle: Tanh, Right: Relu

— Sigmoid: Saturates in a limited number of steps, regardless of w
* To a value dependent only on w (and bias, if any)
* Rate of saturation depends on w

— Tanh: Sensitive to w, but eventually saturates

* “Prefers” weights close to 1.0

— Relu: Sensitive to w, can blow up

o ="
e P © B |
—_— O O.s
o5 — 4
| — R _ D_? .
— O
1
! 4.4 = (o =
oO.s |-

L& B

o= B

LS B

O 1 g

(o]

How about non-linearities (scalar)
h(t) = f(wh(t —1) + cx(t))

* With a negative start
* Left: Sigmoid, Middle: Tanh, Right: Relu
— Sigmoid: Saturates in a limited number of steps, regardless of w

— Tanh: Sensitive to w, but eventually saturates
— Relu: For negative starts, has no response

DVV : 1
- -0O.1 o.8

1 -o.z2

.3

- < b

-0 .5

=Y

—0o.6 HJ

| -o.7

i E
2 Qoha0
0

] -0 .8

Vector Process
h(t) = f(Wh(t—1) + Cx(t))

* Assuming a uniform unit vector initialization

- [1,1,1,..]/VN
— Behavior similar to scalar recursion

* Eigenvalues less than 1.0 retain the most “memory”

sigmoid

Vector Process
h(t) = f(Wh(t—1) + Cx(t))

* Assuming a uniform unit vector initialization

-[-1,-1,-1,..]/VN

— Behavior similar to scalar recursion

1.1

-1 -

O 9

O.8

44400
2oladl

020 00
0 0

< {0

sigmoid

20

o.7 |
o.s
o.5

o.3 |

L ==y

Stability Analysis

* Formal stability analysis considers convergence of “Lyapunov”
functions

— Alternately, Routh’s criterion and/or pole-zero analysis
— Positive definite functions evaluated at h

— Conclusions are similar: only the tanh activation gives us any
reasonable behavior

* And still has very short “memory”
* Lessons:
— Bipolar activations (e.g. tanh) have the best memory behavior
— Still sensitive to Eigenvalues of W
— Best case memory is short
— Exponential memory behavior

* “Forgets” in exponential manner

How about deeper recursion

* Consider simple, scalar, linear recursion

— Adding more “taps” adds more “modes” to
memory in somewhat non-obvious ways

h(t) = O.ISh(t —-1)+ 0.25Ih(t —5) + x(t) |

h(t) = 0.5h(t — 1) + 0.25h(t — 5) + 0.1h(t — 8) + x(t)

Stability Analysis

* Similar analysis of vector functions with non-

linear activations is relatively straightforward

— Linear systems: Routh’s criterion

* And pole-zero analysis (involves tensors)
— On board?

— Non-linear systems: Lyapunov functions

* Conclusions do not change

Story so far

Recurrent networks retain information from the infinite past in principle

* In practice, they tend to blow up or forget

— If the largest Eigen value of the recurrent weights matrix is greater than 1, the
network response may blow up

— If it’s less than one, the response dies down very quickly

The “memory” of the network also depends on the parameters (and
activation) of the hidden units

— Sigmoid activations saturate and the network becomes unable to retain new
information

— RELU activations blow up or vanish rapidly

— Tanh activations are the most effective at storing memory
* Butstill, for not very long

RNNs..

* Excellent models for time-series analysis tasks
— Time-series prediction
— Time-series classification
— Sequence prediction..

— They can even simplify problems that are difficult
for MLPs

 But the memory isn’t all that great..
— Also..

The vanishing gradient problem for
deep networks

e A particular problem with training deep
networks..
— (Any deep network, not just recurrent nets)

— The gradient of the error with respect to weights
is unstable..

47

Some useful preliminary math: The
problem with training deep networks

Input Hidden Output
layer layers layer

* A multilayer perceptron is a nested function

Y =fy (WN—1fN—1(WN—2fN—2(--- WOX)))

» W, is the weights matrix at the k" layer
* The error for X can be written as

Div(X) =D (fN (WN—1fN—1(WN—2fN—2(--- WOX))))

48

Training deep networks

* Vector derivative chain rule: for any f(Wg(X)):

df(Wg(X)) df(Wg(X))dwg(X) dg(X)
dx - dWg(X) dg(X) dX

Poor notation

LetZ = Wg(X)
Vi f =V, f.W.Vxg
* Where
— V,f is the jacobian matrix of f(Z)w.rt Z

* Using the notation V;f instead of /(z) for consistency

49

Training deep networks

* For
Div(X) =D (fN (WN—lfN—l(WN—ZfN—Z(--- WOX))))
* We get:
kaDiv =VD. VfN WN—l' VfN—l' WN—Z ka+1Wk
* Where

— Vs Divis the gradient Div(X) of the error w.r.t the output of the kth layer

of the network
* Needed to compute the gradient of the error w.rt W;,_4

— Vf,, is jacobian of fj () w.r.t. to its current input
— All blue terms are matrices

— All function derivatives are w.r.t. the (entire, affine) argument of the
function

50

Training deep networks

* For
Div(X) =D (fN (WN—1fN—1(WN—sz—2(--- WOX))))
* We get:
kaDiv = VD k
* Where
— V¢, Div is the gradient Div{X) of th output of the

— All blue terms are matrices

Lets consider these Jacobians for an RNN
(or more generally for any network)

The Jacobian of the hidden layers

for an RNN
+ Y [ft1(21) 0 0
y vhy=| | T 0
‘Q |0 0 = fen(zn)]

SRR ACRIO)

* Vf:() is the derivative of the output of the (layer of)
hidden recurrent neurons with respect to their input
— For vector activations: A full matrix

— For scalar activations: A matrix where the diagonal entries are
the derivatives of the activation of the recurrent hidden layer

52

00 = A (0) The Jacobian

+ Y fr1(21) 0 0
y vhGy=| T
‘Q |0 0 = fen(zn)]
X

* The derivative (or subgradient) of the activation function is
always bounded

— The diagonals (or singular values) of the Jacobian are bounded

* There is a limit on how much multiplying a vector by the
Jacobian will scale it

The derivative of the hidden state

activation
ft1(21) 0 0 Zj
rrey=| O fal 0L
0 0 ft,,N(ZN)_ e |

06 r

08 r

1 i i i i -
-3 -2 -1 0 1 2 3

Most common activation functions, such as sigmoid, tanh() and RELU
have derivatives that are always less than 1

The most common activation for the hidden units in an RNN is the tanh()

— The derivative of tanh()is never greater than 1 (and mostly less than 1)

Multiplication by the Jacobian is always a shrinking operation
54

Training deep networks

<
* As we go back in layers, the Jacobians of the

activations constantly shrink the derivative

— After a few layers the derivative of the divergence at
any time is totally “forgotten”

55

What about the weights

v, Div = VD. \7f\7fN_1. ka+@

* |n asingle-layer RNN, the weight matrices are identical

— The conclusion below holds for any deep network, though

* The chain product for Iy, Div will

— Expand VD along directions in which the singular values of
the weight matrices are greater than 1

— Shrink VD in directions where the singular values are less
than 1

— Repeated multiplication by the weights matrix will result in
Exploding or vanishing gradients

56

Exploding/Vanishing gradients

kaDiv — VD VfN WN—l' VfN—l' WN—Z ka+1Wk
* Every blue term is a matrix

* VD is proportional to the actual error

— Particularly for L, and KL divergence

* The chain product for V; Div will

— Expand VD in directions where each stage has singular
values greater than 1

— Shrink VD in directions where each stage has singular
values less than 1

57

Gradient problems in deep networks

- _— } g .’JI

‘::\ : 4.{%'#331.\ output laye
‘%‘ — ;-l!"' A‘;\{h}tﬁ*ﬁ:ﬁ“\ I ayer
: i gl Pl S o ey -

.q?: E‘ﬁ'ﬁ'r’*{: oo é&i}gﬁ';g:ﬁ%. e h‘\h
YRR N

: 3, :

kaDiv = VD. VfN WN—l' VfN—l' WN—Z ka+1Wk

* The gradients in the lower/earlier layers can explode or
vanish

— Resulting in insignificant or unstable gradient descent updates
— Problem gets worse as network depth increases

Vanishing gradient examples..

ELU activation, Batch gradients

Input layer

A

backpropagation

Direction of

Output layer

* 19 layer MNIST model
— Different activations: Exponential linear units, RELU, sigmoid, tanh
— Each layer is 1024 units wide
— Gradients shown at initialization
* Will actually decrease with additional training

* Figure shows log|\7WneumnDiv where W,,.yron is the vector of incoming weights to each neuron

— l.e. the gradient of the loss w.r.t. the entire set of weights to each neuron 59

Vanishing gradient examples..

RELU activation, Batch gradients

Input layer

A

backpropagation

Direction of

Output layer

* 19 layer MNIST model
— Different activations: Exponential linear units, RELU, sigmoid, tanh
— Each layer is 1024 units wide
— Gradients shown at initialization
* Will actually decrease with additional training

* Figure shows log||7WneumnDiv where W,,.yron is the vector of incoming weights to each neuron

— l.e. the gradient of the loss w.r.t. the entire set of weights to each neuron 60

Vanishing gradient examples..

Sigmoid activation, Batch gradients

Input layer

A

backpropagation

Direction of

Output layer

* 19 layer MNIST model
— Different activations: Exponential linear units, RELU, sigmoid, tanh
— Each layer is 1024 units wide
— Gradients shown at initialization
* Will actually decrease with additional training

* Figure shows log|\7WneumnDiv where W,,.yron is the vector of incoming weights to each neuron

— l.e. the gradient of the loss w.r.t. the entire set of weights to each neuron 61

Vanishing gradient examples..

Tanh activation, Batch gradients

Input layer

A

backpropagation

Direction of

Output layer

* 19 layer MNIST model
— Different activations: Exponential linear units, RELU, sigmoid, tanh
— Each layer is 1024 units wide
— Gradients shown at initialization
* Will actually decrease with additional training

* Figure shows log|\7WneumnDiv where W,,.yron is the vector of incoming weights to each neuron

— l.e. the gradient of the loss w.r.t. the entire set of weights to each neuron 62

Vanishing gradient examples..

ELU activation, Individual instances

* 19 layer MNIST model
— Different activations: Exponential linear units, RELU, sigmoid, tanh
— Each layer is 1024 units wide
— Gradients shown at initialization

* Will actually decrease with additional training

* Figure shows log|\7WneumnDiv where W,,.yron is the vector of incoming weights to each neuron

— l.e. the gradient of the loss w.r.t. the entire set of weights to each neuron 63

Vanishing gradients

* ELU activations maintain gradients longest

* Butin all cases gradients effectively vanish
after about 10 layers!

— Your results may vary

* Both batch gradients and gradients for
individual instances disappear

— In reality a tiny number will actually blow up.

Story so far

Recurrent networks retain information from the infinite past in
principle

In practice, they are poor at memorization

— The hidden outputs can blow up, or shrink to zero depending on the
Eigen values of the recurrent weights matrix

— The memory is also a function of the activation of the hidden units

* Tanh activations are the most effective at retaining memory, but even they
don’t hold it very long

Deep networks also suffer from a “vanishing or exploding gradient”
problem

— The gradient of the error at the output gets concentrated into a small
number of parameters in the earlier layers, and goes to zero for others

Recurrent nets are very deep nets

Y(Tﬁ

X(0)

—> o000 —)>

<

kaDiv — VD VfN WN—l' VfN—l' WN—Z ka+1Wk
* The relation between X(0) and Y (T) is one of a very deep

network

— Gradients from errors at t = T will vanish by the time they’re

propagatedtot =0

66

Recall: Vanishing stuff..

f

Y(0)

N

X(0)

Stuff gets forgotten in the forward pass too

I

!

Y(1)

N

X(1)

SRS EREY
EENERRREN

T

Y(2)

f

Y(T — 2)

X(T = 2)

Y(T — 1)

X(T - 1)

B -

T

N

Y(T)

X(T)

— Each weights matrix and activation can shrink components of the input

67

The long-term dependency problem

1

l

PATTERNL [ccoiiriiiieiiieveenieenn,] PATTERN 2

Jane had a quick lunch in the bistro. Then she..

Any other pattern of any length can happen between pattern 1 and
pattern 2

— RNN will “forget” pattern 1 if intermediate stuff is too long
— “Jane” - the next pronoun referring to her will be “she”

Must know to “remember” for extended periods of time and “recall”
when necessary
— Can be performed with a multi-tap recursion, but how many taps?

— Need an alternate way to “remember” stuff -

And now we enter the domain of..

Tales of

" MYSTERY
| ““dMﬂGIC .

69

Exploding/Vanishing gradients

Y =fx (WN—1fN—1(WN—2fN—2(--- WOX)))
kaDiv — VD VfN WN—l' VfN—l' WN—Z ka-l-ka

* The memory retention of the network depends on the
behavior of the underlined terms

— Which in turn depends on the parameters I/ rather than what
it is trying to “remember”

* Can we have a network that just “remembers” arbitrarily
long, to be recalled on demand?

— Not be directly dependent on vagaries of network parameters,

but rather on input-based determination of whether it must be
remembered

70

Exploding/Vanishing gradients
Ve, Div =VD.Vfy. Wy_1.Vfy_1.Wy_g . Vfis 1 Wi
Replace this with something that doesn’t fade or blow up?

Network that “retains” useful memory arbitrarily long, to
be recalled on demand?
— Input-based determination of whether it must be remembered

— Retain memories until a switch based on the input flags them
as ok to forget
* Or remember less

— Memory(k) = C(x). o0y (x).04,_1(x)....01(x)
— V¢ Div = VDCoyCoy_1C ...0%

71

Enter — the constant error carousel

Ct+1 C(t+2 C(t+3
C(t)—»@ ()=® ():® ()=®

»C(t+4)

o(t + 1)[o(t + 2)] o(t + 3)] o(t + 4)]

|
|
|
|
|
|
|
|
t+1 t+2

History is carried through uncompressed

— No weights, no nonlinearities

— Only scaling is through the ¢ “gating” term that captures other

triggers
— E.g. “Have | seen Pattern2”?

Enter — the constant error carousel

h(t) h(t + 1) é(t +2) é(t +3)
‘o C(t + 1) C(t +2) C(t +3) ® e+ 4

o(t+ 1) o(t+ 2) o(t+ 3) o(t+4)

» Time
* Actual non-linear work is done by other portions of the
network

— Neurons that compute the workable state from the memory

Enter — the constant error carousel

h(t) é@:ﬂ) ﬁt”) é(tw)
C(t+1 Ct + 2 C(t +3
C(t) X (t+):X (t+):X (t+) ;C(t+4)

8%
o(t+1) o(t+2) o(t+3) o(t+4)
X(t+1) X(t+2) X(t+3) X(t+4)

» Time

* The gate 6 depends on current input, current
hidden state...

Enter — the constant error carousel

h(t) é@:ﬂ) ﬁt”) §(H3)
C(t+1 Ct + 2 C(t +3
C(t) X (t+):X (t+):X (t+) ;C(t+4)

"X
o(t+1) o(t+2) o(t+3) o(t+4)
Other / /
Wit v+ 1) X(t+2) X(t+3) X(t+4)

» Time

* The gate 6 depends on current input, current
hidden state... and other stuff...

Enter — the constant error carousel

h(t) h(t +1) h(t +2) h(t +3)
C(t+1) C(t+2) C(t +3)
C(t) (X) (X (X (X) LC(t+4)
o(t+1) o(t+2) o(t+3) o(t+4)
Other / /
Wit v+ 1) X(t+2) X(t+3) X(t+4)

» Time

* The gate 6 depends on current input, current hidden
state... and other stuff...

* |Including, obviously, what is currently in raw memory

76

Enter the LSTM

Long Short-Term Memory

Explicitly latch information to prevent decay /
blowup

~ollowing notes borrow liberally from

nttp://colah.github.io/posts/2015-08-
Understanding-LSTMs/

Standard RNN

1 |

&) © &)
Recurrent neurons receive past recurrent outputs and current input as
inputs

Processed through a tanh() activation function

— As mentioned earlier, tanh() is the generally used activation for the hidden
layer

Current recurrent output passed to next higher layer and next time instant

78

Long Short-Term Memory

| ! 1

s N (O N O N
—»— @ > —>

@D
A b A
[ann] [0]

- —»>

\ J J 7\ J

* The a() are multiplicative gates that decide if
something is important or not

* Remember, every line actually represents a vector

79

LSTM: Constant Error Carousel

SR P
I P 7= i
© % ©

 Key component: a remembered cell state

80

LSTM: CEC

C1 Ct

)
@
v

* (; is the linear history carried by the constant-error
carousel

e Carries information through, only affected by a gate
— And addition of history, which too is gated..

LSTM: Gates

—®_

?

O

e Gates are simple sigmoidal units with outputs in
the range (0,1)

* Controls how much of the information is to be let
through

LSTM: Forget gate

fe=0 Wy lhi—1,2¢] + by)

The first gate determines whether to carry over the history or to
forget it

— More precisely, how much of the history to carry over

— Also called the “forget” gate

— Note, we're actually distinguishing between the cell memory € and
the state h that is coming over time! They’re related though

83

LSTM: Input gate

it =0 (Wi-lhi—1,2¢] + b;)
& ét :tanh(Wc-[ht_l,ajt] e bg)

 The second input has two parts

— A perceptron layer that determines if there’s something
new and interesting in the input

— A gate that decides if its worth remembering

LSTM: Memory cell update

ftT %tr-%é Cy = fixCro1 + 1y % C;

 The second input has two parts

— A perceptron layer that determines if there’s something
interesting in the input

— A gate that decides if its worth remembering
— If so its added to the current memory cell

85

LSTM: Output and Output gate

Ot = U(Wo [ht—laxt] + bo)
ht = Ot * tanh (Ct)

 The output of the cell
— Simply compress it with tanh to make it lie between 1 and -1

* Note that this compression no longer affects our ability to carry memory
forward

— Controlled by an output gate

* To decide if the memory contents are worth reporting at this time

LSTM: The “Peephole” Connection

Jt=o0 (Wf°[0t—1,ht—1,$t] =+ bf)
it = 0 (Wi [Cye1,hi—1, 2] + b)
-

Ot = O_(WO'[Ctaht—laxt] + bo)

* The raw memory is informative by itself and can
also be input

— Note, we’re using both C and h

The complete LSTM unit

Ce—1 /@ P » Ct

>
T
fy
Ha
Lo
Q
-
_[E
=
=
Lo
=
=
o~

Xt

* With input, output, and forget gates and the
peephole connection..

Backpropagation rules: Forward

Ce—1 /r;(\ an\ , Ct
pg : '
tanh
fe e Ot
o
o() o() tanh] c()
he—q L — - h;

/

Gates fi =0 (W;-[Ci_1,hi—1,2¢] + by)
 Forward rules: iy = 0 (Wi [Ceet,hu—r1, 4] + b))
O¢ :J(pvo'[ot:}btmlzxi] + bo)

Variables C, = tanh(W¢-[hi—1, 2] + be)
Ct — ft*ctwl + 74 *Ct
hy = oy * tanh (Cy)

Notes on the pseudocode

Class LSTM_cell

We will assume an object-oriented program
Each LSTM unit is assumed to be an “LSTM cell”

There’s a new copy of the LSTM cell at each time, at
each layer

LSTM cells retain local variables that are not relevant to
the computation outside the cell

— These are static and retain their value once computed,
unless overwritten

LSTM cell (single unit)
Definitions

Input:
C : current value of CEC
h : Current hidden state value (“output” of cell)
X: Current input
[W,b]: The set of all model parameters for the cell
These include all weights and biases
Output
C : Next value of CEC
h : Next value of h
In the function: sigmoid(x) = 1/ (l+exp(-x))

H H H H I HHHHHEH

performed component-wise

Static local variables to the cell
static local z¢, z;, 2., 2,, £, 1, o, C;

function [C,h] = LSTM cell.forward(C,h,x,[W,b])
code on next slide

LSTM cell forward

Continuing from previous slide

Note: [W,h] is a set of parameters, whose individual elements are
shown in red within the code. These are passed in

Static local variables which aren’t required outside this cell
static local z,, z;,, z,, z,, £, i, o, C;
function [C,, h,] = LSTM cell.forward(C,h,x, [W,h])
ze, = WelC + Wh + Weex + b
f = sigmoid(z;) # forget gate
z; = W,C+ W;;h + W, x + b;

1

i = sigmoid(z;) # input gate

z. =W C+ W, h + W x + b,
C; = tanh(z_) # Detecting input pattern
C, = foC + ioC;, # “o” is component-wise multiply

z, = W C, + W;h + W, x + b,

o oc ™o

o = sigmoid(z,) # output gate

h

o

ootanh(C) # “o” is component-wise multiply

return C_, h, 92

LSTM network forward

Assuming h(-1,*) is known and C(-1,*)=0
Assuming L hidden-state layers and an output layer
Note: LSTM cell is an indexed class with functions

[W{1l},b{1l}] are the entire set of weights and biases
i for the 1* hidden layer

W, and b, are output layer weights and biases

for t = 0:T-1 # Including both ends of the index
h(t,0) = x(t) # Vectors. Initialize h(0) to input
for 1 = 1:L # hidden layers operate at time t

[C(t,1) ,h(t,1)] = LSTM cell(t,1l) .forward(..
.C(t-1,1),h(t-1,1),h(t,1-1) [W{1l},b{1}])

z,(t) = Wh(t,L) + b,
Y(t) = softmax(z (t))

93

Backpropagation rules: Backward

AZt
C Ct
Ct—l [():(? fi\ L > [():(? f:\ > Ct+1
tanh| | tanh|
ft % 0 _
C; Cy
c()| (o] | tany |lc() n c()f o] | tannl |lc()
ht—l I I — |] t 1]] |] R ht+1
Xt Xt+1

94

Backpropagation rules: Backward

AZt
Ct
Ce—1 [(x) > [Q'(? P > Cti1
| tanh
ft 't
Ct

o] o0 a()] o0 tanh| ||o()

_T[—] hy LT U X
ht—l < ht+1

Xt Xt+1

Ve, Div =V, Div o o o tanh'(.)

95

Backpropagation rules: Backward

AZt
Ct
Ce—1 [(x) > /Q'(? P > Cti1
| tanh
ft 't
Ct

o] o0 a()] o0 tanh| ||o()

_T[—] hy LT U
ht—l > ht+1

Xt Xt+1

Ve, Div =V, Div o (o, o tanh'(.) + tanh(.) o o'(.)Wc,)

96

Backpropagation rules: Backward

> Ct+1

| tanh|

%) T
ft ‘e fre1r (R
Ct
G() G() G() G() tan G()
n 1] hy 1T —J U
t—1
Xt Xt+1

Ve, Div = Vy Div o (0, o tanh'(.) + tanh(.) o o'()W¢,) +
VCt+1Div © ft+1 +

> Niq

97

Backpropagation rules: Backward

> Ct+1

| tanh|

AZt
Ce-1 @ —_—
ft ‘e t+1 (X
.
() 10 0] [0 tan o()

T —1 h¢]]
he_1 l

Xt Xt+1

Ve, Div = Vy Div o (0, o tanh'(.) + tanh(.) o o'()W¢,) +

Veer, Div o (fran + Cpo 0’ (OWey)

> Niq

98

Backpropagation rules: Backward

AZt
Ct
Ce—1 f@ .—/ > Cri1
| | tanh
ft tt
.
c(] 10 h 0 tanh| ||o()
he_q —|— L, [= > Niiq
Xt Xt+1

Ve, Div = Vy Div o (0, o tanh'(.) + tanh(.) o o'(.)W¢,) +
Ve,,,Divo (fra1 + Croa'(YWer + Crpq 0 0' ()W © tanh(.))

99

Backpropagation rules: Backward

|<
C Ce
Ct—l [():(? fi\ 2 > [():(? f:\ > Ct+1
tanh| | tanh|
ft L 0 _
C, C,

c(f [cQ] | tanh |[cO o] loQ] | tan |lo

L] — [U he iy [J R
ht—l > > ht+1

Xt Xt+1

Ve, Div = Vy, Div o (0, o tanh'(.) + tanh(.) o o'()W¢,) +
Ve,,,Div o (fr41 + Ce o o' (IWes + Crpq 0 0" ()W © tanh(.))

VhtDiU = VZtDivVhtZt

100

Backpropagation rules: Backward

C
Ce—1 [(X\/ D > [@ & > Cte1
tanh . | tanh
ft Le 0 lt+~1 Ot+1
C; Cy
() 10 tanh| [|o() ol)| |o() tan c()
i T[] - he T|—J U g
t—1 > > Nt41
Xt Xt+1

Ve, Div = Vy, Div o (0, o tanh'(.) + tanh(.) o o'()W¢,) +
Ve,,,Div o (fr41 + Ce o o' (IWes + Crpq 0 0" ()W © tanh(.))

Vh,Div =V, DivVy z; + V¢, Divo Cioa ()W

101

Backpropagation rules: Backward

C
Ce-1 [(x) P > /® [> Cri1
tanh . | tanh
ft Le 0 lt+~1 Ot+1
Ce Ce
f()_F() tanh| _CIF() h _f) tan _(IS()
ht—l I t: I > ht+1
Xt Xt+1

Ve, Div = Vy, Div o (0, o tanh'(.) + tanh(.) o o'()W¢,) +
Ve,,,Div o (fr41 + Ce o o' (IWes + Crpq 0 0" ()W © tanh(.))

Vn Div =V, DivVy, ze + Ve, Dive (Cpoo' (IWyr+ Cryq 00" (W)

102

Backpropagation rules: Backward

C
Ce-1 [(x) P > /® > Cri1
tanh . | tanh
ft Le 0 lt+~1 Ot+1
Cs o
o()f 1oQ] [tanh |lcO ol) a()
n 1] - hy I] I
t—1 : > Mt11
Xt Xt+1

Ve, Div = Vy, Div o (0, o tanh'(.) + tanh(.) o o'()W¢,) +
Ve,,,Div o (fr41 + Ce o o' (IWes + Crpq 0 0" ()W © tanh(.))

Vn Div =V, DivVy z, + Ve, Divo (Cpo o' (IWpr+ Cryq 00" (W) +

Ve, Div o ipyq o tanh'()Wy,

103

Backpropagation rules: Backward

Zt
Ct

C
Cr—1 f@ P— > /® > Cti1
tanh . | tanh
ft Le 0 lt+~1 Ot+1
Cy C;
(] oQ] | tany |LloQ ol) o])
h 1] UJ he 1] h
t-1 > > Ilt41
Xt Xt+1

Ve, Div = Vy, Div o (0, o tanh'(.) + tanh(.) o o'()W¢,) +
Ve,,,Divo (fr41 + Ce o o' (IWes + Crpq 0 0" ()W © tanh(.))

Vn Div =V, DivVy, z, + Ve, Divo (Cpo o' (IWpr+ Crypq 00" (W) +

Ve,, Div e opyq o tanh'()Wy; + Vp,, Div o tanh(.) o o' (.)Wh,

104

Backpropagation rules: Backward

C
Ct-1 [r;(\ @ d > Cti1
. tanh 0 | tanh|
ft Lt 0 t+1
Cs
50| [o0] (tant] |Lo(0) of)

Not explicitly deriving the der'uva’rlves w.r.t welgh‘rs
Left as an exercise

Ve, Div = Vy Div o (0, o tanh'(.) + tanh(.) o o'(.)W¢,) +
Ve,,,Div o (fr41 + Ce 0 o' (IWer + Crpq 0 0'()We; © tanh(.))

Vn Div =V, DivVy, z, + Ve, Divo (Cpo o' (IWpr+ Crypq 00" (W) +
Ve,, Div e opyq o tanh'()Wy; + Vp,, Div o tanh(.) o o' (.)Wh,

Notes on the backward pseudocode

Class LSTM_cell

* We first provide backward computation within a cell

 For the backward code, we will assume the static variables
computed during the forward are still available

* The following slides first show the forward code for
reference

* Subsequently we will give you the backward, and explicitly
indicate which of the forward equations each backward
equation refers to

— The backward code for a cell is long (but simple) and extends
over multiple slides

LSTM cell forward (for reference)

Continuing from previous slide

Note: [W,h] is a set of parameters, whose individual elements are
shown in red within the code. These are passed in

Static local variables which aren’t required outside this cell
static local z,, z;,, z,, z,, £, i, o, C;
function [C,, h,] = LSTM cell.forward(C,h,x, [W,h])
ze, = WelC + Wh + Weex + b
f = sigmoid(z;) # forget gate
z; = W,C+ W;;h + W, x + b;

1

i = sigmoid(z;) # input gate

z. =W C+ W, h + W x + b,
C; = tanh(z_) # Detecting input pattern
C, = foC + ioC;, # “o” is component-wise multiply

z, = W C, + W;h + W, x + b,

o oc ™o

o = sigmoid(z,) # output gate

h

o

ootanh(C) # “o” is component-wise multiply

return C_, h, 107

LSTM cell backward

Static local variables carried over from forward
static local z¢, z;,, z,, z,, £, 1, o, C;
function [dC,dh,dx,d[W, b]]=LSTM cell.backward(dC,, dh

First invert h, = ootanh(C)

do = dh, o tanh(C,)T

d tanhC, = dh oo

dC, += dtanhC_ o (1-tanh?(C.))T #(1-tanh?) is the derivative of tanh

o/ CI hl Col hol [Wlb])

Next invert o = sigmoid(z,)
dz, = doosigmoid(z,)To(1-sigmoid(z,))T # do x derivative of sigmoid(z,)

Next invert z, = W, .C, + W,h + W_x + b,

oc~o

dC, += dz W # Note - this is a regular matrix multiply

o "oc
dh = dz W,
dx = dz, W,

dWw,, = C,dz, # Note - this multiplies a column vector by a row vector
dw_, = h dz,

dw_,, = x dz,

db, = dz,

Next invert C, = foC + ioC;

dC = dC_ o £
dc, = dC,o i
di = dC_ oC;
df = dC_ oC

108

LSTM cell backward (continued)

Next invert C;

tanh (z_)

dz, = dC;o(1-tanh?(z.))"

Next invert z,

dC += dz W

c 'cc
dh += dz_W_,
dx += dz_ W,

dw.. = C dz,
dWw_, = h dz,
dw_, x dz_
db, = dz

Cc Cc

Next invert i

dz.

1

Next invert z;

dC += dz; W,
dx += dz; W,

dw,. = C dz;
dw,, = h dz;
dw,, = x dz;
db; = dz

1

W.C + Wpoh + W_x + b_

sigmoid(z;)
= diosigmoid(z;)To(1-sigmoid(z,;))T

109

LSTM cell backward (continued)

Next invert £ = sigmoid(z;)
dz, = df o sigmoid(z;)To(1-sigmoid(z;))"”

Finally invert z. = W, C + Wph + W, x + b,
dC += dz, W,
dh += dz; Wg,
dx += dz; Wi,

dWw.., = C dz;
dW;, = h dz;
dW.,, = x dz;
db, = dz;

return dC, dh, dx, d[W, Db]

d[W,b] is shorthand for the complete set
of weight and bias derivatives

110

LSTM network forward (for reference)

Assuming h(-1,*) is known and C(-1,*)=0
Assuming L hidden-state layers and an output layer
Note: LSTM cell is an indexed class with functions

[W{1l},b{1l}] are the entire set of weights and biases
i for the 1* hidden layer

W, and b, are output layer weights and biases

for t = 0:T-1 # Including both ends of the index
h(t,0) = x(t) # Vectors. Initialize h(0) to input
for 1 = 1:L # hidden layers operate at time t

[C(t,1) ,h(t,1)] = LSTM cell(t,1l) .forward(..
.Cc(t-1,1) ,h(t-1,1) ,h(t,1-1) [W{l} 6 b{1l}])

z,(t) = Wh(t,L) + b,
Y(t) = softmax(z (t))

111

LSTM network backward

Assuming h(-1,*) is known and C(-1,*)=0
Assuming L hidden-state layers and an output layer
Note: LSTM cell is an indexed class with functions

[W{l},b{l}] are the entire set of weights and biases
for the 1* hidden layer

W, and b, are output layer weights and biases
Y is the output of the network

Assuming dW_, and db_, and d[W{l} b{l}] (for all 1) are
all initialized to 0 at the start of the computation

FHIH HHHHH I

for t = T-1:0 # Including both ends of the index
dz, = dY(t) o sigmoid(zo(t))T o(1l- sigmoid(zo(t)))T
dw, += h(t,L) dz (t)
dh(t,L) = dz_ (t)W,

db, += dz_(t)

for 1 = L-1:0
[dC(t, 1) ,dh(t,1),dx(t,1),d[w, b]] = ..
.. LSTM cell(t, 1) .backward(..
. dC(t+1,1), dh(t+1, l)+dx(t,l+1), c(t,1), h(t,1),
. C(t,1), h(t,1),[wW(l), b(1l)])

d[W{l} b{l}] += d4d[WwW,Db]
112

Gated Recurrent Units: Lets simplify
the LSTM

hy

- \L 2= 0 (W [y, 1)

(1D] r't =0 (W’P) [ht—lj mt])

Zio ;anr?t h; = tanh (W - [ry « hy_1, x4])
J

ht:(l—zt)*ht_lJrzt*Bt

e Simplified LSTM which addresses some of

your concerns of why

113

Gated Recurrent Units: Lets simplify
the LSTM

it — O (Wz : [htmlaﬂ?t])
re =0 (Wr : [ht—laxt])
h; = tanh (W - [ry « hy_1, x4])

htm(l—zt)*ht_l—!—zt*ﬁt

* Combine forget and input gates

— In new input is to be remembered, then this means
old memory is to be forgotten

 Why compute twice?
114

Gated Recurrent Units: Lets simplify
the LSTM

it = O (Wz : [ht—lamt])
ry =0 (Wr : [ht—hﬁ?t])
h; = tanh (W - [ry « hy_1, x4])

ht:(l—zt)*ht_1+zt*ﬁt

* Don’t bother to separately maintain compressed and
regular memories

— Pointless computation!
— Redundant representation

115

LSTM Equations

i: input gate, how much of the new
information will be let through the memory
cell.

f: forget gate, responsible for information
should be thrown away from memory cell.

o: output gate, how much of the information
will be passed to expose to the next time
step.

g: self-recurrent which is equal to standard
RNN

c;: internal memory of the memory cell
s¢: hidden state

y: final output

[= a(xtUi + st_lwi)

f = a(xth +St_1Wf)
o= o(x;U°+ s;_{W?)

g = tanh(x;U9 + s,_ W?9)
€t =C—1°f+g ol

s; = tanh(c;) o 0

y = softmax(Vs;)

NET OUTPUT

NET INPUT

LSTM Memory Cell

LSTM architectures example

» » » »
» » > »
A A A A A A A A
» » » »
» » > »

Y(t)

X(t)
Time

* Each green box is now an entire LSTM or GRU
unit

* Also keep in mind each box is an array of units

117

Bidirectional LSTM

Y(0) Y(1) Y(2)

L

Y(T-2)

.

Y(T-1)

Y(T)

hy(-1)
X(0) X(1) X(2) X(T-2) X(T-1) X(T)
A A A A A hb(lnf)
X(0) X(1) X(2) X(T-2) X(T-1) X(T)
» T

Like the BRNN, but now the hidden nodes are LSTM units.

Can have multiple layers of LSTM units in either direction
— Its also possible to have MLP feed-forward layers between the hidden layers..

The output nodes (orange boxes) may be complete MLPs

118

Story so far

Recurrent networks are poor at memorization
— Memory can explode or vanish depending on the weights and activation
They also suffer from the vanishing gradient problem during training

— Error at any time cannot affect parameter updates in the too-distant past

— E.g. seeing a “close bracket” cannot affect its ability to predict an “open
bracket” if it happened too long ago in the input

LSTMs are an alternative formalism where memory is made more directly
dependent on the input, rather than network parameters/structure
— Through a “Constant Error Carousel” memory structure with no weights or

activations, but instead direct switching and “increment/decrement” from
pattern recognizers

— Do not suffer from a vanishing gradient problem but do suffer from exploding
gradient issue

Significant issues

* The Divergence
* How to use these nets..
* This and more in next couple of classes..

