! MachineLeaming For S@gnalh'oees'.lg Group

Neural Networks

Representations



Learning in the net

* Problem: Given a collection of input-output
pairs, learn the function



Learning for classification
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* When the net must learn to classify..

— Learn the classification boundaries that separate
the training instances



Learning for classification
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* |n reality

— In general not really cleanly separated
* So what is the function we learn?



In reality: Trivial linear example

 Two-dimensional example
— Blue dots (on the floor) on the “red” side
— Red dots (suspended at Y=1) on the “blue” side
— No line will cleanly separate the two colors



Non-linearly separable data: 1-D example

* One-dimensional example for visualization
— All (red) dots at Y=1 represent instances of class Y=1
— All (blue) dots at Y=0 are from class Y=0

— The data are not linearly separable
* In this 1-D example, a linear separator is a threshold
* No threshold will cleanly separate red and blue dots



Undesired Function
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* One-dimensional example for visualization
— All (red) dots at Y=1 represent instances of class Y=1
— All (blue) dots at Y=0 are from class Y=0

— The data are not linearly separable
* In this 1-D example, a linear separator is a threshold
* No threshold will cleanly separate red and blue dots



What if?
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* One-dimensional example for visualization
— All (red) dots at Y=1 represent instances of class Y=1
— All (blue) dots at Y=0 are from class Y=0

— The data are not linearly separable
* In this 1-D example, a linear separator is a threshold
* No threshold will cleanly separate red and blue dots



What if?
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90 instances
\‘J/ 10 instances
\v/ ]

X

e What must the value of the function be at this
X?
— 1 because red dominates?

— 0.9 : The average?



What if?

V4

90 instances
\‘J/ 10 instances
\w/ ]

X

e What must the value of the function be at this
X?

. Estimate: = P(1|X)
— 1 because red dom%enﬂally much more useful than
a simple 1/0 decision

— . ?
0.9 : The average: Also, potentially more realistic




What if?

y

Should an infinitesimal hudge 90 instances

of the red dot change the function
estimate entirely?

If not, how do we estimate P(1]X)? 10 instances
(since the positions of the red and blue X
Values are different) \J

v

e What must the value of the function be at this
X?

. Estimate: = P(1|X)
— 1 because red dom%enﬂally much more useful than
a simple 1/0 decision

— . ?
0.9 : The average: Also, potentially more realistic




The probability of y=1
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e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of Y=1 at that point



The probability of y=1

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point



The probability of y=1
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e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point



The probability of y=1

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point



The probability of y=1

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point



The probability of y=1

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point
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The probability of y=1
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e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point
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The probability of y=1
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e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point
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The probability of y=1

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point
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The probability of y=1
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e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point
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The probability of y=1
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e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point
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The probability of y=1
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e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point
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The probability of y=1

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point



The logistic regression model

1
P(y=1x)=
(y ‘ ) 1+ e—(Wo"‘WNC)

y=1

y=0

* Class 1 becomes increasingly probable going left to right
— Very typical in many problems
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The logistic perceptron

* Asigmoid perceptron with a single input models
the a posteriori probability of the class given the
input



Non-linearly separable data

 Two-dimensional example
— Blue dots (on the floor) on the “red” side
— Red dots (suspended at Y=1) on the “blue” side
— No line will cleanly separate the two colors
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Logistic regression

P(Y =1]|X) = ! Decision: y > 0.5?

1+ exp(—(Ziwixi + WO))

When X is a 2-D variable X,

* This the perceptron with a sigmoid activation
— It actually computes the probability that the input belongs to class 1

— Decision boundaries may be obtained by comparing the probability to a threshold
* These boundaries will be lines (hyperplanes in higher dimensions)

* The sigmoid perceptron is a linear classifier -



Estimating the model

y

|
P(y‘x) = f(x) = —(Wp+wix)
l+e

* Given the training data (many (x, y) pairs
represented by the dots), estimate wy and wy
for the curve
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Estimating the model

* Easier to represent using ay = +1/-1 notation

y

| |
P(y=1x)= P(y=-lx)=
S ‘ ) |4 o) o ‘ ) ] 4o
|
P(y‘x) = 1+e—y(w0+wlx)
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Estimating the model

* Given: Training data
(X1, ¥1), (X2, ¥2), o, (XN, YN)

* Xs are vectors, ys are binary (0/1) class values
* Total probability of data

P((X1:Y1)» (X2,¥2)) v (XN»)’N)) = HP(Xi:Yi)

1
= | [Pouxoreo = | | mmmms P00
l

l
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Estimating the model

* Likelihood
P(Training data) = 1_[

l

P(X;)

1 + e Yilwotw'X;)

* Log likelihood
log P(Training data) =

Z log P(X;) — Z log (1 + e‘yl'(WOJrWTXi))
i i
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Maximum Likelihood Estimate

Wy, Wy, = argmaxlog P(Training data)
Wo,W1q

Equals (note argmin rather than argmax)

Wo, Wy = argminz: log (1 -+ e—Yi(W0+WTXi))
l

Wo, W

ldentical to minimizing the KL divergence

between the desired output y and actual output
1

14+e~ (W0+WTXi)

Cannot be solved directly, needs gradient descent

33




So what about this one?
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* Non-linear classifiers..



First consider the separable case..
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* When the net must learn to classify..



First consider the separable case..
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e For a “sufficient” net




First consider the separable case..
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e For a “sufficient” net

* This final perceptron is a linear classifier




First consider the separable case..

e For a “sufficient” net

* This final perceptron is a linear classifier over
the output of the penultimate layer



First consider the separable case..

L 4
L 4
*
*
*
’0
L 4

Y2 : T

.0
L 4
.0
*

.0
*
L 4
.0
*

Y1

* For perfect classification the
output of the penultimate layer must be
linearly separable



First consider the separable case..
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* The rest of the network may be viewed as a transformation that
transforms data from non-linear classes to linearly separable features



First consider the separable case..
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* The rest of the network may be viewed as a transformation that transforms data
from non-linear classes to linearly separable features

— We can now attach any linear classifier above it for perfect classification
— Need not be a perceptron
— Could even train an SVM on top of the features!



First consider the separable case..
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* Thisis true of any sufficient structure
— Not just the optimal one

* For insufficient structures, the network may attempt to transform the
inputs to linearly separable features

— Will fail to separate exactly, but will try to minimize error



Mathematically..

Yout = 1+exp(b+WTY)  1+exp(b+WTf(X))
The data are (almost) linearly separable in the space of Y
The network until the second-to-last layer is a non-linear function

f(X) that converts the input space of X into the feature space
Y where the classes are maximally linearly separable



Story so far

* A classification MLP actually comprises two
components

— A “feature extraction network” that converts the
inputs into linearly separable features

* Or nearly linearly separable features

— A final linear classifier that operates on the
linearly separable features



* For binary problems, using an SVM with slack may be more effective than'a final

An SVM at the output?
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How does that work??

— Option 1: First train the MLP with a perceptron at the output, then detach the feature extraction,

compute features, and train an SVM

— Option 2: Directly employ a max-margin rule at the output, and optimize the entire network

e Left as an exercise for the curious
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How about the lower layers?

How do the lower layers respond?
— They too compute features
— But how do they look
Manifold hypothesis: For separable classes, the classes are linearly separable on a
non-linear manifold
Layers sequentially “straighten” the data manifold

— Until the final layer, which fully linearizes it



The behavior of the layers

2-3-1 NN: Forward transformations
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* Synthetic example: Feature space



The behavior of the layers

NN: Ir = 0.001
PCA(X)
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The behavior of the layers

NN: Ir = 0.001
Accuracy (epoch 0) PCA(X) PCA(H,)
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When the data are not separable and
boundaries are not linear..

v /[

»
. »
Xy sa® _a® a»

.
R AR L

" . % anee
* % S a%sns00s ®

X4

* More typical setting for classification
problems



Inseparable classes with an output
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such that the posterior probability may now be

modelled by a logistic



Inseparable classes with an output
logistic perceptron

1

+ e—(wo +wa)

P(Ix) = f(x)= |

 The “feature extraction” layer transforms the data such that
the posterior probability may now be modelled by a logistic

— The output logistic computes the posterior probability of the class
given the input



When the data are not separable and
boundaries are not linear..
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* The output of the network is P(y|x)

— For multi-class networks, it will be the vector of a
posteriori class probabilities
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There’s no such thing as inseparable
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* A sufficiently detailed architecture can separate nearly any

arrangement of points

— “Correctness” of the suggested intuitions subject to various
parameters, such as regularization, detail of network, training

paradigm, convergence etc..



Changing gears..




Intermediate layers

We've seen what the network learns here




Recall: The basic perceptron

1 lf z W;X; >T
Weights y = -

0 else

Threshold T

0 else

lifxX"w>T
y={ if X'W

 What do the weights tell us?

— The neuron fires if the inner product between the
weights and the inputs exceeds a threshold

58



Recall: The weight as a “template”

X'w>T

Weights

cosf >—
Output |X|

g T
0 < cos™1 (—)
| X]|

Threshold T

The perceptron fires if the input is within a specified angle of the weight
— Represents a convex region on the surface of the sphere!
— The network is a Boolean function over these regions.

e The overall decision region can be arbitrarily nonconvex
Neuron fires if the input vector is close enough to the weight vector.
— If the input pattern matches the weight pattern closely enough

59



Recall: The weight as a template

W X

Correlation = 0.57 Correlation = 0.82\‘

 |f the correlation between the weight pattern
and the inputs exceeds a threshold, fire

* The perceptron is a correlation filter!

60



MLP features

DIGIT OR NOT? !

Ic

all

* The lowest layers of a network detect significant features in the signal

— The neurons are correlation filters for these features

* The more features we detect, the more information we retain about the

innput

61



MLP features

DIGIT OR NOT? !

 The higher level layers detect patterns of patterns
— E.g. neurons in the second layer of this net may detect digits
Fire if the pattern of first-layer patterns form the digit

— The topmost layer is just a single neuron that would detect if any of the second-layer neurons
fired 62



Recall: MLP features

DIGIT OR NOT? ‘
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 The lowest layers of a network detect significant features in the
signal
* The signal could be (partially) reconstructed using these features
— Will retain all the significant components of the signal 63




Making it explicit
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* The signal could be (partially) reconstructed using these features

— Will retain all the significant components of the signal

—  Will this work?

* Simply recompose the detected features



Making it explicit
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* The signal could be (partially) reconstructed using these features

— Will retain all the significant components of the signal

* Simply recompose the detected features

—  Will this work?
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Making it explicit: an autoencoder
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* A neural network can be trained to predict the input itself

* This is an autoencoder

* An encoder learns to detect all the most significant patterns in the signals

* A decoder recomposes the signal from the patterns



The Simplest Autencoder

* Asingle hidden unit
 Hidden unit has linear activation

e What will this learn?

67



The Simplest Autencoder

Training: Learning W by minimizing

X L2 divergence
R =wlwx
div(®,x) = [lx — &[|* = [lx — w'wx]|?

W = argmin E[div(%,x)]
w

W = argmin E[||x — wT wx||?]
w

* This is just PCA!

68



The Simplest Autencoder

e The autoencoder finds the direction of maximum
energy

— Variance if the input is a zero-mean RV

e All input vectors are mapped onto a point on the
principal axis
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The Simplest Autencoder

e Simply varying the hidden representation will
result in an output that lies along the major
axis

70



The Simplest Autencoder

* Simply varying the hidden representation will result in
an output that lies along the major axis

* This will happen even if the learned output weight is
separate from the input weight

— The minimume-error direction is the principal eigen vector

71



For more detailed AEs without a non-
linearity

Y=WX| | X=WTY| E =X —W"WX]||* Find W to minimize Avg[E]

* This is still just PCA
— The output of the hidden layer will be in the principal subspace

* Even if the recomposition weights are different from the “analysis”
weights 72



Terminology

DECODER

ENCODER

 Terminology:

— Encoder: The “Analysis” net which computes the hidden

representation

— Decoder: The “Synthesis” which recomposes the data from the

hidden representation
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Introducing nonlinearity

DECODER

ENCODER

*  When the hidden layer has a linear activation the decoder represents the best linear manifold to fit
the data

— Varying the hidden value will move along this linear manifold
*  When the hidden layer has non-linear activation, the net performs nonlinear PCA
— The decoder represents the best non-linear manifold to fit the data
— Varying the hidden value will move along this non-linear manifold 74



* With non-linearity
— “Non linear” PCA

— Deeper networks can capture more complicated manifolds

* “Deep” autoencoders



Some examples
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2-D input
Encoder and decoder have 2 hidden layers of 100 neurons, but
hidden representation is unidimensional

Extending the hidden “z” value beyond the values seen in training
does not continue along a helix



Some examples
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 The model is specific to the training data..

— Varying the hidden layer value only generates data along the
learned manifold
* Any input will result in an output along the learned manifold

— But may not generalize beyond the manifold



* When the hidden representation is of lower dimensionality
than the input, often called a “bottleneck” network
— Nonlinear PCA

— Learns the manifold for the data
* |f properly trained



 The decoder can only generate data on the
manifold that the training data lie on

* This also makes it an excellent “generator” of the
distribution of the training data

— Any values applied to the (hidden) input to the
decoder will produce data similar to the training data



The Decoder:

 The decoder represents a source-specific generative
dictionary

* Exciting it will produce typical data from the source!



Sax dictionary

 The decoder represents a source-specific generative
dictionary

e Exciting it will produce typical data from the source!
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The Decoder:

Clarinet dictionary

 The decoder represents a source-specific generative
dictionary

e Exciting it will produce typical data from the source!
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A cute application..

* Signal separation...

* Given a mixed sound from multiple sources,
separate out the sources



Dictionary-based techniques

Compose

* Basicidea: Learn a dictionary of “building blocks” for
each sound source

All signals by the source are composed from entries
from the dictionary for the source
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Dictionary-based techniques

Compose

S22
I )] ] ]| T
H — o

[ON P
Crash  Closed Open Ride Left Right Snare Floor Bass Hi-H

e Learn a similar dictionary for all sources
expected in the signal
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Guitar Drum
music music

Compose Compose

()
;
g E
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H 'TI e
Crash  Closed Open Ride Ls it Snare Floor Bass Hi-H N
Cymbal  Hi-Hat Hi-Hat Cymbal ke Drum Tom Drum Pead:
m

eft i

* A mixed signal is the linear combination of
signals from the individual sources

— Which are in turn composed of entries from its
dictionary
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e Separation: Identify the combination of
entries from both dictionaries that compose
the mixed signal
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Guitar Drum
music music

Compose Compose

()
:
g E
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m = [ ;
1 Nt
Crash  Closed  Op it rigl Snare  Fl Bass  Hi
Cymbal  Hi-Hat  Hi-H Cymbal ck Ra Drum Drum P
om Tom

e Separation: Identify the combination of entries from
both dictionaries that compose the mixed signal

 The composition from the identified dictionary entries gives you
the separated signals
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Learning Dictionaries

D;(0,t) - Dy(F,t) D,(0,t) -+  Dy(F,t)

11~/ AN A
for10 \ / foe20
fEn10 / \ fen O

ST /TN

D;(0,t) - Dl(F t) D,(0,t) - D,(F,t)

e Autoencoder dictionaries for each source

— Operating on (magnitude) spectrograms

For a well-trained network, the “decoder” dictionary is
highly specialized to creating sounds for that source

89



Model for mixed signal

testset Cost function
X(f,t)

YO0 YW . YEe ] =) X0 = V(DI

fpE1 ()\7_/ \;/fDEZ 0

L,(0,¢t) - IL(H,1) I,(0,t) = I,(H,t)

Estimate I;() and I, () to minimize cost function J()

 The sum of the outputs of both neural
dictionaries

— For some unknown input
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Separation

Test Process testset B Cost function
X(f, o) 5 LA

von  Ywn - YED 1= >0 - ¥ Ol

fDE1()\7_/ \;/fDEZ 0

1,(0,¢t) -+ I;(H,¢) 1,(0,t) - I,(H,t) H : Hidden layer size

Estimate I; () and I, () to minimize cost function J()

* Given mixed signal and source dictionaries, find
excitation that best recreates mixed signal

— Simple backpropagation
* |Intermediate results are separated signals
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Example Results

Mixture Separated Separated

Original Original

5-layer dictionary, 600 units wide

* Separating music
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Story for the day

* C(Classification networks learn to predict the a posteriori
probabilities of classes

— The network until the final layer is a feature extractor that
converts the input data to be (almost) linearly separable

— The final layer is a classifier/predictor that operates on linearly
separable data

* Neural networks can be used to perform linear or non-
linear PCA

— “Autoencoders”
— Can also be used to compose constructive dictionaries for data

* Which, in turn can be used to model data distributions



