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• Symmetric loopy network
• Each neuron is a perceptron with +1/-1 output

Recap: Hopfield network
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Recap: Hopfield network

• At each time each neuron receives a “field” 

• If the sign of the field matches its own sign, it does not 
respond

• If the sign of the field opposes its own sign, it “flips” to 
match the sign of the field
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Recap: Energy of a Hopfield Network

• The system will evolve until the energy hits a local minimum
• In vector form, including a bias term (not typically used in 

Hopfield nets)

4

Not assuming node bias



Recap: Evolution

• The network will evolve until it arrives at a 
local minimum in the energy contour

state
PE
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Recap: Content-addressable memory

• Each of the minima is a “stored” pattern
– If the network is initialized close to a stored pattern, it 

will inevitably evolve to the pattern

• This is a content addressable memory
– Recall memory content from partial or corrupt values

• Also called associative memory

state
PE
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Recap – Analogy: Spin Glasses

• Magnetic diploes
• Each dipole tries to align itself to the local field

– In doing so it may flip

• This will change fields at other dipoles
– Which may flip

• Which changes the field at the current dipole…
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Recap – Analogy: Spin Glasses

• The total energy of the system

௜ ௜

௜
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• The system evolves to minimize the energy
– Dipoles stop flipping if flips result in increase of energy

Total field at current dipole:

௜ ௜௝ ௝
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Recap : Spin Glasses

• The system stops at one of its stable configurations
– Where energy is a local minimum

• Any small jitter from this stable configuration returns it to the stable 
configuration
– I.e. the system remembers its stable state and returns to it

state

PE
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Recap: Hopfield net computation

• Very simple
• Updates can be done sequentially, or all at once
• Convergence

௝௜ ௝ ௜

௝வ௜௜

does not change significantly any more

1. Initialize network with initial pattern

௜ ௜

2. Iterate until convergence

௜ ௝௜ ௝

௝ஷ௜
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Examples: Content addressable 
memory

• http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/11



“Training” the network

• How do we make the network store a specific 
pattern or set of patterns?
– Hebbian learning
– Geometric approach
– Optimization

• Secondary question
– How many patterns can we store?
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Recap: Hebbian Learning to Store a 
Specific Pattern

• For a single stored pattern, Hebbian learning 
results in a network for which the target 
pattern is a global minimum

HEBBIAN LEARNING:
1
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-1 1
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Storing multiple patterns

• is the set of patterns to store
• Superscript represents the specific pattern
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Storing multiple patterns

• Let be the vector representing -th pattern
• Let be a matrix with all the stored patterns
• Then..
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• {p} is the set of patterns to store
– Superscript represents the specific pattern

• is the number of patterns to store
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1 -1
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How many patterns can we store?

• Hopfield: For a network of neurons can store up to 
0.14 random patterns

• In reality, seems possible to store K > 0.14N patterns
– i.e. obtain a weight matrix W such that K > 0.14N patterns 

are stationary
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Bold Claim

• I can always store (upto) N orthogonal 
patterns such that they are stationary!
– Although not necessarily stable

• Why?
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“Training” the network

• How do we make the network store a specific 
pattern or set of patterns?
– Hebbian learning
– Geometric approach
– Optimization

• Secondary question
– How many patterns can we store?

19



A minor adjustment

• Note behavior of with

• Is identical to behavior with

• Since 
 

• But is easier to analyze. Hence in the 
following slides we will use 

20

Energy landscape
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an additive constant

Gradients and location
of minima remain same
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A minor adjustment

• Note behavior of with

• Is identical to behavior with

• Since 
 

• But is easier to analyze. Hence in the 
following slides we will use 
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Energy landscape
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Gradients and location
of minima remain sameNOTE: This

is a positive
semidefinite matrix

Both have the
same Eigen vectors



Consider the energy function

• Reinstating the bias term for completeness 
sake
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Consider the energy function

• Reinstating the bias term for completeness 
sake

This is a quadratic!

For Hebbian learning
W is positive semidefinite

E is concave
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The Energy function

• is a concave quadratic
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The Energy function

• is a concave quadratic
– Shown from above (assuming 0 bias)

• But components of can only take values 
– I.e lies on the corners of the unit hypercube
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The energy function

• is a concave quadratic
– Shown from above (assuming 0 bias)

• The minima will lie on the boundaries of the hypercube
– But components of can only take values 
– I.e. lies on the corners of the unit hypercube
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The energy function

• The stored values of are the ones where all 
adjacent corners are lower on the quadratic

Stored patterns
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Patterns you can store

• All patterns are on the corners of a hypercube
– If a pattern is stored, it’s “ghost” is stored as well
– Intuitively, patterns must ideally be maximally far apart

• Though this doesn’t seem to hold for Hebbian learning

Stored patterns
Ghosts (negations)
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Evolution of the network
• Note:  for real vectors is a projection

– Projects onto the nearest corner of the hypercube
– It “quantizes” the space into orthants

• Response to field:  
– Each step rotates the vector and then projects it onto the nearest 

corner
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Storing patterns
• A pattern is stored if:

– for all target patterns

• Training: Design such that this holds

• Simple solution:  is an Eigenvector of 
– And the corresponding Eigenvalue is positive

– More generally  orthant( ) = orthant( )

• How many such can we have?
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Random fact that should interest you

• Number of ways of selecting two -bit binary 
patterns and such that they differ from 

one another in exactly bits is 

• The size of the largest set of -bit binary 
patterns that all differ from one 
another in exactly bits is at most 
– Trivial proof.. 
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Only N patterns?

• Patterns that differ in bits are orthogonal
• You can have max orthogonal vectors in an -dimensional 

space
33
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random fact that should interest you

• The Eigenvectors of any symmetric matrix 
are orthogonal

• The Eigenvalues may be positive or negative
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Storing more than one pattern
• Requirement: Given 

– Design such that 
• for all target patterns
• There are no other binary vectors for which this holds

• What is the largest number of patterns that 
can be stored?
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Storing orthogonal patterns
• Simple solution:  Design such that 

are the Eigen vectors of 
– Let  

– are positive

– For this is exactly the Hebbian
rule

• The patterns are provably stationary
36



Hebbian rule
• In reality

– Let   

–  are orthogonal to  

–

–
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Storing orthogonal patterns
• When we have orthogonal (or near 

orthogonal) patterns 
–  

–

• The Eigen vectors of span the space

• Also, for any 
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Storing orthogonal patterns
• The orthogonal patterns span the 

space
• Any pattern can be written as

• All patterns are stable
– Remembers everything
– Completely useless network
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Storing K orthogonal patterns
• Even if we store fewer than patterns

– Let ଵ ଶ ௄ 𝑲ାଵ 𝑲ାଶ ே

்

– 𝑲ାଵ 𝑲ାଶ ே are orthogonal to ଵ ଶ ௄

– ଵ ଶ ௄

– ௄ାଵ ே

• Any pattern that is entirely in the subspace spanned by  
is also stable (same logic as earlier)

• Only patterns that are partially in the subspace spanned by 
 are unstable

– Get projected onto subspace spanned by ଵ ଶ ௄
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Problem with Hebbian Rule

• Even if we store fewer than patterns
– Let   

–  are orthogonal to  

–

• Problems arise because Eigen values are all 1.0
– Ensures stationarity of vectors in the subspace
– All stored patterns are equally important
– What if we get rid of this requirement?
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Hebbian rule and general (non-
orthogonal) vectors

• What happens when the patterns are not orthogonal
• What happens when the patterns are presented more than 

once
– Different patterns presented different numbers of times
– Equivalent to having unequal Eigen values..

• Can we predict the evolution of any vector 
– Hint: For real valued vectors, use Lanczos iterations

• Can write ௉ ௉ ௣
்,  ௉

ଶ
௣
்

– Tougher for binary vectors (NP)
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The bottom line
• With a network of units (i.e. -bit patterns)
• The maximum number of stationary patterns is actually 

exponential in 
– McElice and Posner, 84’
– E.g. when we had the Hebbian net with N orthogonal base 

patterns, all patterns are stationary

• For a specific set of patterns, we can always build a 
network for which all patterns are stable provided 
– Mostafa and St. Jacques 85’

• For large N, the upper bound on K is actually N/4logN
– McElice et. Al. 87’

– But this may come with many “parasitic” memories
43
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The bottom line
• With an network of units (i.e. -bit patterns)
• The maximum number of stable patterns is actually 

exponential in 
– McElice and Posner, 84’
– E.g. when we had the Hebbian net with N orthogonal base 

patterns, all patterns are stable

• For a specific set of patterns, we can always build a 
network for which all patterns are stable provided 
– Mostafa and St. Jacques 85’

• For large N, the upper bound on K is actually N/4logN
– McElice et. Al. 87’

– But this may come with many “parasitic” memories
45
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Story so far
• Hopfield nets with N neurons can store up to 0.14N random patterns 

through Hebbian learning with 0.996 probability of recall
– The recalled patterns are the Eigen vectors of the weights matrix with the 

highest Eigen values

• Hebbian learning assumes all patterns to be stored are equally important
– For orthogonal patterns, the patterns are the Eigen vectors of the constructed 

weights matrix
– All Eigen values are identical

• In theory the number of stationary states in a Hopfield network can be 
exponential in N

• The number of intentionally stored patterns (stationary and stable) can be 
as large as N
– But comes with many parasitic memories
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A different tack

• How do we make the network store a specific 
pattern or set of patterns?
– Hebbian learning
– Geometric approach
– Optimization

• Secondary question
– How many patterns can we store?
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Consider the energy function

• This must be maximally low for target patterns

• Must be maximally high for all other patterns
– So that they are unstable and evolve into one of 

the target patterns
48



Alternate Approach to Estimating the 
Network

• Estimate (and ) such that 
– is minimized for 

– is maximized for all other 

• Caveat: Unrealistic to expect to store more than 
patterns, but can we make those patterns 

memorable 49



Optimizing W (and b)

• Minimize total energy of target patterns
– Problem with this?

50

ು
The bias can be captured by 
another fixed-value component



Optimizing W

• Minimize total energy of target patterns

• Maximize the total energy of all non-target 
patterns

51
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Optimizing W

• Simple gradient descent:
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Optimizing W

• Can “emphasize” the importance of a pattern 
by repeating
– More repetitions  greater emphasis

53
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Optimizing W

• Can “emphasize” the importance of a pattern 
by repeating
– More repetitions  greater emphasis

• How many of these?
– Do we need to include all of them?
– Are all equally important?
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The training again..

• Note the energy contour of a Hopfield 
network for any weight 

55
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Energy

Bowls will all actually be
quadratic



The training again

• The first term tries to minimize the energy at target patterns
– Make them local minima
– Emphasize more “important” memories by repeating them more 

frequently

56
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The negative class

• The second term tries to “raise” all non-target 
patterns
– Do we need to raise everything?
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Option 1: Focus on the valleys

• Focus on raising the valleys
– If you raise every valley, eventually they’ll all move up above the 

target patterns, and many will even vanish
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Identifying the valleys..

• Problem: How do you identify the valleys for 
the current ?
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Identifying the valleys..

60state

Energy

• Initialize the network randomly and let it evolve
– It will settle in a valley



Training the Hopfield network

• Initialize 
• Compute the total outer product of all target patterns

– More important patterns presented more frequently

• Randomly initialize the network several times and let it 
evolve
– And settle at a valley

• Compute the total outer product of valley patterns
• Update weights

61
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Training the Hopfield network: SGD 
version

• Initialize 
• Do until convergence, satisfaction, or death from 

boredom:
– Sample a target pattern 

• Sampling frequency of pattern must reflect importance of pattern

– Randomly initialize the network and let it evolve
• And settle at a valley ௩

– Update weights
• ௣ ௣

்
௩ ௩

்
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Training the Hopfield network

• Initialize 
• Do until convergence, satisfaction, or death from 

boredom:
– Sample a target pattern 

• Sampling frequency of pattern must reflect importance of pattern

– Randomly initialize the network and let it evolve
• And settle at a valley ௩

– Update weights
• ௣ ௣

்
௩ ௩

்
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Which valleys?

64state

Energy

• Should we randomly sample valleys?
– Are all valleys equally important?



Which valleys?

65state

Energy

• Should we randomly sample valleys?
– Are all valleys equally important?

• Major requirement: memories must be stable
– They must be broad valleys

• Spurious valleys in the neighborhood of
memories are more important to eliminate



Identifying the valleys..

66state

Energy

• Initialize the network at valid memories and let it evolve
– It will settle in a valley. If this is not the target pattern, raise it



Training the Hopfield network

• Initialize 
• Compute the total outer product of all target patterns

– More important patterns presented more frequently

• Initialize the network with each target pattern and let it 
evolve
– And settle at a valley

• Compute the total outer product of valley patterns
• Update weights

67
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Training the Hopfield network: SGD 
version

• Initialize 
• Do until convergence, satisfaction, or death from 

boredom:
– Sample a target pattern 

• Sampling frequency of pattern must reflect importance of pattern

– Initialize the network at and let it evolve
• And settle at a valley ௩

– Update weights
• ௣ ௣

்
௩ ௩

்
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A possible problem

69state

Energy

• What if there’s another target pattern 
downvalley
– Raising it will destroy a better-represented or 

stored pattern!



A related issue
• Really no need to raise the entire surface, or 

even every valley

70state

Energy



A related issue
• Really no need to raise the entire surface, or even 

every valley
• Raise the neighborhood of each target memory

– Sufficient to make the memory a valley
– The broader the neighborhood considered, the 

broader the valley

71state

Energy



Raising the neighborhood

72state

Energy

• Starting from a target pattern, let the network 
evolve only a few steps
– Try to raise the resultant location

• Will raise the neighborhood of targets

• Will avoid problem of down-valley targets



Training the Hopfield network: SGD 
version

• Initialize 
• Do until convergence, satisfaction, or death from 

boredom:
– Sample a target pattern 

• Sampling frequency of pattern must reflect importance of pattern

– Initialize the network at and let it evolve a few steps (2-4)
• And arrive at a down-valley position ௗ

– Update weights
• ௣ ௣

்
ௗ ௗ

்
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Story so far
• Hopfield nets with neurons can store up to 

patterns through Hebbian learning 
– Issue: Hebbian learning assumes all patterns to be stored are 

equally important

• In theory the number of intentionally stored patterns 
(stationary and stable) can be as large as 
– But comes with many parasitic memories

• Networks that store memories can be trained 
through optimization
– By minimizing the energy of the target patterns, while 

increasing the energy of the neighboring patterns
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Storing more than N patterns

• The memory capacity of an -bit network is at 
most 
– Stable patterns (not necessarily even stationary)

• Abu Mustafa and St. Jacques, 1985
• Although “information capacity” is 

• How do we increase the capacity of the 
network
– How to store more than patterns
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Expanding the network

• Add a  large number of neurons whose actual 
values you don’t care about!

N Neurons K Neurons
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Expanded Network

• New capacity:   patterns
– Although we only care about the pattern of the first N 

neurons
– We’re interested in N-bit patterns

N Neurons K Neurons
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Terminology

• Terminology:
– The neurons that store the actual patterns of interest:  Visible 

neurons
– The neurons that only serve to increase the capacity but whose 

actual values are not important:  Hidden neurons
– These can be set to anything in order to store a visible pattern

Visible 
Neurons

Hidden 
Neurons



Increasing the capacity: bits view

• The maximum number of patterns the net can store is bounded by the 
width N of the patterns..

• So lets pad the patterns with K “don’t care” bits
– The new width of the patterns is N+K
– Now we can store N+K patterns!

79

Visible bits



Increasing the capacity: bits view

• The maximum number of patterns the net can store is bounded by the 
width N of the patterns..

• So lets pad the patterns with K “don’t care” bits
– The new width of the patterns is N+K
– Now we can store N+K patterns!
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Issues: Storage

• What patterns do we fill in the don’t care bits?
– Simple option: Randomly

• Flip a coin for each bit

– We could even compose multiple extended patterns for a base pattern to 
increase the probability that it will be recalled properly
• Recalling any of the extended patterns from a base pattern will recall the base pattern

• How do we store the patterns?
– Standard optimization method should work

81
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Issues: Recall

• How do we retrieve a memory?
• Can do so using usual “evolution” mechanism
• But this is not taking advantage of a key feature of the extended 

patterns:
– Making errors in the don’t care bits doesn’t matter

82
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Robustness of recall

• The value taken by the K hidden neurons during recall 
doesn’t really matter
– Even if it doesn’t match what we actually tried to store

• Can we take advantage of this somehow?

N Neurons K Neurons

83



Taking advantage of don’t care bits

• Simple random setting of don’t care bits, and 
using the usual training and recall strategies for 
Hopfield nets should work

• However, it doesn’t sufficiently exploit the 
redundancy of the don’t care bits

• To exploit it properly, it helps to view the Hopfield 
net differently: as a probabilistic machine

84



A probabilistic interpretation of 
Hopfield Nets

• For binary y the energy of a pattern is the 
analog of the negative log likelihood of a 
Boltzmann distribution
– Minimizing energy maximizes log likelihood
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The Boltzmann Distribution

• is the Boltzmann constant
• is the temperature of the system
• The energy terms are the negative loglikelihood of a Boltzmann 

distribution at to within an additive constant
– Derivation of this probability is in fact quite trivial..
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Continuing the Boltzmann analogy

• The system probabilistically selects states with 
lower energy
– With infinitesimally slow cooling, at it 

arrives at the global minimal state
87



Spin glasses and the Boltzmann 
distribution

• Selecting a next state is analogous to drawing a sample 
from the Boltzmann distribution at in a universe 
where 
– Energy landscape of a spin-glass model: Exploration and 

characterization, Zhou and Wang, Phys. Review E 79, 2009

88
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Hopfield nets: Optimizing W

• Simple gradient descent:

89
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Hopfield nets: Optimizing W

• Simple gradient descent:
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More importance to more frequently 
presented memories

More importance to more attractive
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Hopfield nets: Optimizing W

• Update rule

91
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Natural distribution for variables:  The Boltzmann Distribution
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From Analogy to Model

• The behavior of the Hopfield net is analogous 
to annealed dynamics of a spin glass 
characterized by a Boltzmann distribution

• So lets explicitly model the Hopfield net as a 
distribution..
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Revisiting Thermodynamic Phenomena

• Is the system actually in a specific state at any time?
• No – the state is actually continuously changing

– Based on the temperature of the system
• At higher temperatures, state changes more rapidly

• What is actually being characterized is the probability 
of the state
– And the expected value of the state

state

PE



The Helmholtz Free Energy of a System

• A thermodynamic system at temperature can exist in 
one of many states
– Potentially infinite states
– At any time, the probability of finding the system in state 

at temperature is 

• At each state it has a potential energy 
• The internal energy of the system, representing its 

capacity to do work, is the average:



The Helmholtz Free Energy of a System

• The capacity to do work is counteracted by the internal 
disorder of the system, i.e. its entropy

• The Helmholtz free energy of the system measures the 
useful work derivable from it and combines the two terms



The Helmholtz Free Energy of a System

• A system held at a specific temperature anneals by 
varying the rate at which it visits the various states, to 
reduce the free energy in the system, until a minimum 
free-energy state is achieved

• The probability distribution of the states at steady state 
is known as the Boltzmann distribution



The Helmholtz Free Energy of a System

• Minimizing this w.r.t , we get

– Also known as the Gibbs distribution
– is a normalizing constant
– Note the dependence on 
– A = 0, the system will always remain at the lowest-

energy configuration with prob = 1.



The Energy of the Network

• We can define the energy of the system as before
• Since neurons are stochastic, there is disorder or entropy (with T = 1)
• The equilibribum probability distribution over states is the Boltzmann 

distribution at T=1
– This is the probability of different states that the network will wander over at 

equilibrium

Visible 
Neurons



The Hopfield net is a distribution

• The stochastic Hopfield network models a probability distribution over 
states
– Where a state is a binary string
– Specifically, it models a Boltzmann distribution
– The parameters of the model are the weights of the network

• The probability that (at equilibrium) the network will be in any state is 
– It is a generative model: generates states according to 

Visible 
Neurons



The field at a single node
• Let and be otherwise identical states that only differ in the i-th bit

– S has i-th bit = and S’ has i-th bit =  

௜ ௝ஷ௜ ௝ஷ௜

௜ ௝ஷ௜ ௝ஷ௜

ᇱ
௜ ௝ஷ௜ ௜ ௝ஷ௜

ᇱ ௜ ௝ஷ௜

௜ ௝ஷ௜
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The field at a single node

• Let and be the states with the ith bit in the and 
states

•
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The field at a single node

• Giving us

• The probability of any node taking value 1 
given other node values is a logistic
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Redefining the network

• First try: Redefine a regular Hopfield net as a stochastic system
• Each neuron is now a stochastic unit with a binary state ௜,  which 

can take value 0 or 1 with a probability that depends on the local 
field
– Note the slight change from Hopfield nets
– Not actually necessary; only a matter of convenience

Visible 
Neurons
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The Hopfield net is a distribution

• The Hopfield net is a probability distribution over 
binary sequences
– The Boltzmann distribution

• The conditional distribution of individual bits in the 
sequence is a logistic

Visible 
Neurons
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Running the network

• Initialize the neurons
• Cycle through the neurons and randomly set the neuron to 1 or -1 according to the 

probability given above
– Gibbs sampling:  Fix N-1 variables and sample the remaining variable
– As opposed to energy-based update (mean field approximation): run the test zi > 0 ?

• After many many iterations (until “convergence”), sample the individual neurons

Visible 
Neurons
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Exploiting the probabilistic view

• Next class..
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