Neural Networks

Hopfield Nets and Boltzmann Machines
Spring 2020



Recap: Hopfield network

yi= 0 (2 wjiy; + bi)

J#FI

+1ifz>0
9(2) :{—1ifzSO

 Symmetric loopy network
* Each neuron is a perceptron with +1/-1 output

2



Recap: Hopfield network

yi= 0 (2 wi;y; + bi)

J#FI

+1ifz>0
—-1ifz<0

O(z) = {

. . oe: 14
At each time each neuron receives a “field Zjil- wj;yj + b;

If the sign of the field matches its own sign, it does not
respond

If the sign of the field opposes its own sign, it “flips” to
match the sign of the field



Recap: Energy of a Hopfield Network

(g

JEI

+1ifz>0
G)(Z):{—ufzso

Not assuming node bias

* The system will evolve until the energy hits a local minimum

* In vector form, including a bias term (not typically used in

Hopfield nets) 1

E=—-y"W
5y Wy



Recap: Evolution

,<;'

>
state

* The network will evolve until it arrives at a

local minimum in the energy contour



Recap: Content-addressable memory

a
\

PE

state
 Each of the minima is a “stored” pattern

— If the network is initialized close to a stored pattern, it
will inevitably evolve to the pattern

* This is a content addressable memory

— Recall memory content from partial or corrupt values

* Also called associative memory



Recap — Analogy: Spin Glasses

—. e o g —
——

Magnetic diploes

Each dipole tries to align itself to the local field
— In doing so it may flip

This will change fields at other dipoles
— Which may flip

Which changes the field at the current dipole...



Recap — Analogy: Spin Glasses

= e 5 = Total field at current dipole:
—| = "— "= = f(p:) = z]ijxj + b;
- = x i
o o= S T Response of current diplose
I J—— —'—;r P— =
(%) o - ! - .
Y o~ _ Jxiif sign(x; f(p) =1
- - =_ 2 "= X = -
— B =) —X; otherwise
i — I ol
W -

 The total energy of the system

E(s)=C —%z xi f(pi) = _szijxixj _zbixj

i j>i i
* The system evolves to minimize the energy
— Dipoles stop flipping if flips result in increase of energy



Recap : Spin Glasses

. —
-— P
—
- — e o —
e - - - —
ot | - - — -
— - . 1
— - =
-—
— et — —
- - -
-— o — - -
———

v

State

The system stops at one of its stable configurations
— Where energy is a local minimum

Any small jitter from this stable configuration returns it to the stable
configuration

— l.e. the system remembers its stable state and returns to it



Recap: Hopfield net computation

y;i(0) = x;,

2. Iterate until convergence

yit+1) =6 (Z Wji)’j),

J#FI

1. Initialize network with initial pattern

0<i<N-1

0<i<N-1

Very simple

Updates can be done sequentially, or all at once

E=- z z WjiViYi

Convergence

i j>i

does not change significantly any more

10



Examples: Content addressable
memory

(Original Degraded Eeconstriction

Hoptield network reconstructing degraded inages
frotn notsy (top) of partial (bottom) cues.

* http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/



“Training” the network

* How do we make the network store a specific
pattern or set of patterns?

— Hebbian learning
— Geometric approach
— Optimization

e Secondary question

— How many patterns can we store?



Recap: Hebbian Learning to Store a
Specific Pattern

HEBBIAN LEARNING:
Wji = YVjJi

W=y,y, —1I

* For asingle stored pattern, Hebbian learning
results in a network for which the target
pattern is a global minimum



Storing multiple patterns

* {Vp} is the set of patterns to store

* Superscript p represents the specific pattern

14



Storing multiple patterns

* Lety, be the vector representing p-th pattern

* LletY= [y, ¥,
e Then..

W =

... | be a matrix with all the stored patterns

Z(ypyg - =YY" =N, I
p

Number of patterns

15



Recap: Hebbian Learning to Store
Multiple Patterns

Wji = z Vi ¥j W= Z(ypy$ — ) =YY" - NI
p

* {p}is the set of patterns to store
— Superscript p represents the specific pattern

* N, is the number of patterns to store

16



How many patterns can we store?

* Hopfield: For a network of N neurons can store up to
0.14N random patterns

* |n reality, seems possible to store K > 0.14N patterns

— i.e. obtain a weight matrix W such that K > 0.14N patterns
are stationary

17



Bold Claim

* | can always store (upto) N orthogonal
patterns such that they are stationary!

— Although not necessarily stable

e Why?



“Training” the network

* How do we make the network store a specific
pattern or set of patterns?

— Hebbian learning

— Geometric approach

— Optimization

e Secondary question

— How many patterns can we store?



A minor adjustment

Note behavior of E(y) = y' Wy with

W =YY! — N l / Ener'gy landsca‘pe \

only differs by
Is identical to behavior with

an additive constant

W = YYT \ Gradients and location

Since

But W = YY7 is easier to analyze. Hence in the
following slides we will use W = YY”

y' (YYT — Nyl )y =ylYYTy — NN,

" of minima remain sany/

20



A minor adjustment

* Note behavior of E(y) = y' Wy with

W = YY? — N l / Ener'gy landscape \
only differs by \

an additive constant

£ " Both have the

same Eigen vectors >ehavior with

///

B W = YY! | Gradients and location

<f minima remain sany/
* Since

yT(YY — N1 )y = yTYYTy — NN,

« But W = YY7 is easier to analyze. Hence in the
following slides we will use W = YY”

21



A minor adjustment

* Note behavior of E(y) = y/ Wy with
W = YY? — N I / Ener'gy landscape \

Both have the

, an additive constant
same Eigen vectors

>ehavior with
S W = YYT . Gradients and location

iy

AN semldefml’re matrix

RSy Ty - NN,

e ButW = YYT is easier to analyze. Hence in the
following slides we will use W = YY7

22

only differs by \

/~ NOTE: This \ \<m|n|ma remain sany/
e S is a positive <



Consider the energy function

1
E=-2y Wy-bly
* Reinstating the bias term for completeness

sake

23



Consider the energy function

This is a quadratic!

For Hebbian learning
W is positive semidefinite

\ E is concave

1
E=-2y Wy-bly

* Reinstating the bias term for completeness
sake

24



The Energy function

* E is a concave quadratic

25



The Energy function

1
R _nT
E = 2yWy b'y @

1<

 E is a concave quadratic

— Shown from above (assuming 0 bias)

26



The energy function

1
—5y Wy-—bly

B

//
(e

— Shown from above (assuming O bias)

E is a concave quadratic

The minima will lie on the boundaries of the hypercube
— But components of y can only take values +1
— l.e. y lies on the corners of the unit hypercube

27



The energy function

1
E=-2y Wy-bly

@ d patterns

I
¥

* The stored values of y are the ones where all
adjacent corners are lower on the quadratic

28



Patterns you can store

Ghosts (hegations)

Stored patterns

A

e All patterns are on the corners of a hypercube
— |If a pattern is stored, it’s “ghost” is stored as well

— Intuitively, patterns must ideally be maximally far apart

* Though this doesn’t seem to hold for Hebbian learning

29



Evolution of the network

* Note: for real vectors sign(y)is a projection
— Projects y onto the nearest corner of the hypercube
— It “guantizes” the space into orthants

* Response to field: y « sign(Wy)
— Each step rotates the vector y and then projects it onto the nearest

corner . . .
Projection: sign(Wy)
2D example 3D example
N | ~ y o
1 sign(Wy) : y
rojection ;
V:R' Wy i /
T 4 g
- | i
< - 'I> < I >
-1 1 /'
T,l;énsform
I,,
1 /
v y v 30




Storing patterns

A pattern yp is stored if:
- Sign(Wyp) =y, for all target patterns

Training: Design W such that this holds

Simple solution: y,, is an Eigenvector of W
— And the corresponding Eigenvalue is positive

Wy, = 1y,
— More generally orthant(Wy,) = orthant(y,)

How many such y,can we have?



Random fact that should interest you

* Number of ways of selecting two N-bit binary
patterns y;and y, such that they differ from

3N
one another in exactly N/2 bits is 0(2 2 )

* The size of the largest set of N-bit binary
patterns {y4, ¥, ... } that all differ from one
another in exactly N/2 bits is at most N

— Trivial proof.. ©



Only N patterns?

(1,1)

(11'1)

* Patterns that differ in N /2 bits are orthogonal

* You can have max N orthogonal vectors in an N-dimensional
space

33



random fact that should interest you

* The Eigenvectors of any symmetric matrix W
are orthogonal

* The Eigenvalues may be positive or negative



Storing more than one pattern

* Requirement: Givenyq, Vo, ..., Vp

— Design W such that
. Sign(Wyp) =y, for all target patterns

* There are no other binary vectors for which this holds

 What is the largest number of patterns that
can be stored?



Storing K orthogonal patterns

* Simple solution: Design W such that y;,
Y,, ..., Vi are the Eigen vectors of W

—LetY =y, y2 ... x|

W = YAY?
— A4, ..., A are positive

— ForA; = A, = Ax = 1 this is exactly the Hebbian

rule

* The patterns are provably stationary

36



Hebbian rule

* |n reality

—LetY = [y1 ¥2 ... Yk Tk41 Tk42 - T

W = YAY!
— Tg4q k4o ... Iy are orthogonaltoy, v, ... vy
— A=A =4k =1
—Agy1,0Ay =0

37



Storing N orthogonal patterns

* When we have N orthogonal (or near
orthogonal) patterns y4, v, ..., ¥y

-Y=|ly1y;..¥n]

W = YAY!
_Al — /12 — AN —_ 1
* The Eigen vectors of W span the space

* Also, for any y,
Wy, = yk

38



Storing N orthogonal patterns

* The N orthogonal patterns y4, v, ..., Yy Span the
space

* Any pattern y can be written as
y=a.y1 +ay; + -+ ayyn
Wy = q;Wy; + a, Wy, + -+ ayWyy
= a1y T Ay, + -+ ayyn =Yy

* All patterns are stable
— Remembers everything
— Completely useless network

39



Storing K orthogonal patterns

Even if we store fewer than N patterns

— LetY =y, ¥2 .. Yk k41 Tk42 - In]

W =YAYT
— TIg4q1 k4o ... Iy areorthogonaltoy, v, ... Vx
A=A, = =1
— ka1, Ay =0
Any pattern that is entirely in the subspace spanned by y,
V- ... Vkis also stable (same logic as earlier)

Only patterns that are partially in the subspace spanned by
V1 V> ... Vg are unstable
— Get projected onto subspace spanned by y; V> ... Vx

40



Problem with Hebbian Rule

* Even if we store fewer than N patterns

— LetY = [y, ¥2 .. ¥k Tk+1 Tga2 - T

W =YAY?

— Igy4q1 k4o ... Iy are orthogonaltoy, v, ... Vg

Ch=h=I=D

. Problems arise because Eigen values are all 1.0
— Ensures stationarity of vectors in the subspace

— All stored patterns are equally important

— What if we get rid of this requirement?

41



Hebbian rule and general (non-
orthogonal) vectors

What happens when the patterns are not orthogonal
What happens when the patterns are presented more than
once
— Different patterns presented different numbers of times
— Equivalent to having unequal Eigen values..
Can we predict the evolution of any vector y

— Hint: For real valued vectors, use Lanczos iterations
* Canwrite Yp = UpAV), > W = UpA°U),
— Tougher for binary vectors (NP)



The bottom line

With a network of N units (i.e. N-bit patterns)

The maximum number of stationary patterns is actually
exponential in N
— McElice and Posner, 84’

— E.g. when we had the Hebbian net with N orthogonal base
patterns, all patterns are stationary

For a specific set of K patterns, we can always build a
network for which all K patterns are stable provided K < N

— Mostafa and St. Jacques 85’

* For large N, the upper bound on K is actually N/4logN
— McéElice et. Al. 87’

— But this may come with many “parasitic” memories

43



The bottom line

With an network of N units (i.e. N-bit patterns)
The maximum number of stable patterns is actually
exponential in N

— McElice and Posner, 84’

— E.g. when we had the
patterns, all patterns are stabie

How do we find this
network?

For a specific set of K patterns, we can always build a
network for which all K patterns are stable provided K < N

— Mostafa and St. Jacques 85’

* For large N, the upper bound on K is actually N/4logN
— McéElice et. Al. 87’

— But this may come with many “parasitic” memories

44



The bottom line

With an network of N units (i.e. N-bit patterns)
The maximum number of stable patterns is actually
exponential in N

— McElice and Posner, 84’

— E.g. when we had the
patterns, all patterns are stabie

How do we find this
network?

For a specific set of K patterns, we can always build a
network for which all K patterns are stable nrovided K < N

— Mostafa and St. Jacques 85’ Can we do something

_ about this?
e Forlarge N, the upper bound on K is actuany
— McéElice et. Al. 87’

— But this may come with many “parasitic” memories

45



Story so far

Hopfield nets with N neurons can store up to 0.14N random patterns
through Hebbian learning with 0.996 probability of recall

— The recalled patterns are the Eigen vectors of the weights matrix with the
highest Eigen values

Hebbian learning assumes all patterns to be stored are equally important

— For orthogonal patterns, the patterns are the Eigen vectors of the constructed
weights matrix

— All Eigen values are identical

In theory the number of stationary states in a Hopfield network can be
exponential in N

The number of intentionally stored patterns (stationary and stable) can be
as large as N

— But comes with many parasitic memories



A different tack

* How do we make the network store a specific
pattern or set of patterns?

— Hebbian learning
— Geometric approach

— Optimization

e Secondary question

— How many patterns can we store?



Consider the energy function

1
E=-2y Wy-bly

* This must be maximally low for target patterns

 Must be maximally high for all other patterns

— So that they are unstable and evolve into one of
the target patterns

48



Alternate Approach to Estimating the
Network

1
E(y) = — zyTWy — b’y

Estimate W (and b) such that

— E is minimized for y4, y5, ..., ¥p

— E is maximized for all othery

* Caveat: Unrealistic to expect to store more than
N patterns, but can we make those N patterns
memorable .



Optimizing W (and b)

1 .
E(y) = —=-y'Wy W = argmin 2 E(y)
w

2
YEYp
The bias can be captured by
another fixed-value component

* Minimize total energy of target patterns

— Problem with this?

50



Optimizing W

1 T
E(Y)=—§y Wy

W = argmin 2 E(y) — 2 E(y)
Vo yer yEYp
* Minimize total energy of target patterns

* Maximize the total energy of all non-target
patterns

51



Optimizing W

1 N n
E(y)=—5y"Wy W = argmin 2 E(y) — 2 E(y)
W
yEYp y¢&Yp

* Simple gradient descent:

W=W+n<2 yy' — 2 ny)

YEYp Y€Yp

52



Optimizing W

W=W+n<2 yy' — Eny)

yEYp y€Yp

* Can “emphasize” the importance of a pattern
by repeating

— More repetitions = greater emphasis

53



Optimizing W

W=W+n(2 yy' — Eny>

YEYp y&Yp

* Can “emphasize” the importance of a pattern
by repeating
— More repetitions = greater emphasis
* How many of these?
— Do we need to include all of them?
— Are all equally important?



The training again..

W=W+n<2 yy' — Eny>

YEYp y€Yp

* Note the energy contour of a Hopfield
network for any weight W

Bowls will all actually be
quadratic

Energy

state

55



The training again

W=W+n ZYYT—EYYT

yEYp Y€Yp

* The first term tries to minimize the energy at target patterns
— Make them local minima

— Emphasize more “important” memories by repeating them more
frequently

4 Target patterns

Energy

v

state

56



The negative class
W=W+n(2 yy' - z ny)
YEYp y&Yp

 The second term tries to “raise” all non-target
patterns

— Do we need to raise everything?

Energy

state >/



Option 1: Focus on the valleys

W=W+1 Eny— z yy'

yEYp yeYp&y=valley

* Focus on raising the valleys

— If you raise every valley, eventually they’ll all move up above the
target patterns, and many will even vanish

Energy | ‘

state

v

58



Identifying the valleys..

w:w+n<2 yy” — z ny)

yEYp yeYp&y=valley

* Problem: How do you identify the valleys for
the current W?

Energy | ‘

state

59



Identifying the valleys..

* |nitialize the network randomly and let it evolve

— It will settle in a valley

Energy

v

state



Training the Hopfield network

W=W+rp Eny— 2 yy'

yEYp yéYp&y=valley

Initialize W
Compute the total outer product of all target patterns
— More important patterns presented more frequently

Randomly initialize the network several times and let it
evolve

— And settle at a valley
Compute the total outer product of valley patterns
Update weights

61



Training the Hopfield network: SGD

version
W=W+1 Eny— 2 yy'
yEYp y&€Yp&y=valley

e |nitialize W

* Do until convergence, satisfaction, or death from
boredom:

— Sample a target pattern y,,
* Sampling frequency of pattern must reflect importance of pattern

— Randomly initialize the network and let it evolve
* And settle at a valley y,,

— Update weights
* W=W+n(y,y5 —¥o¥s)

62



Training the Hopfield network

W=W+rp Eny— 2 yy'

yEYp yéYp&y=valley

e |nitialize W

* Do until convergence, satisfaction, or death from
boredom:

— Sample a target pattern y,,
. Samphngfrequency of pattern must reflect importance of pattern

< Randomly |n|t|aI|ze/the network and let it evolve
+ Andsettle at a vaIIey V'

— Update weights
c W=W+ U(Ypr YUYU)

63



Which valleys?

* Should we randomly sample valleys?

— Are all valleys equally important?

Energy | I

state



Which valleys?

* Should we randomly sample valleys?

— Are all valleys equally important?

* Major requirement: memories must be stable
— They must be broad valleys

e Spurious valleys in the neighborhood of
memories are more important to eliminate

Energy ‘

state




Identifying the valleys..

e |nitialize the network at valid memories and let it evolve

— It will settle in a valley. If this is not the target pattern, raise it

(D
Energy

v

state o0



Training the Hopfield network

w:w+n<2 yyT — 2 ny)

yEYp yeYp&y=valley

Initialize W
Compute the total outer product of all target patterns
— More important patterns presented more frequently

Initialize the network with each target pattern and let it
evolve

— And settle at a valley
Compute the total outer product of valley patterns
Update weights

67



Training the Hopfield network: SGD

version
W=W+1 Eny— 2 yy'
yEYp y&€Yp&y=valley

e |nitialize W

* Do until convergence, satisfaction, or death from
boredom:

— Sample a target pattern y,,

* Sampling frequency of pattern must reflect importance of pattern
— Initialize the network at y,, and let it evolve

* And settle at a valley y,,
— Update weights

* W=W+n(y,y5 — ¥o¥s)

68



A possible problem

 What if there’s another target pattern
downvalley

— Raising it will destroy a better-represented or
stored pattern!

Energy

state



A related issue

* Really no need to raise the entire surface, or
even every valley

Energy

state

70



A related issue

* Really no need to raise the entire surface, or even
every valley

* Raise the neighborhood of each target memory
— Sufficient to make the memory a valley

— The broader the neighborhood considered, the
broader the valley

Energy T

state



Raising the neighborhood

e Starting from a target pattern, let the network

evolve only a few steps

— Try to raise the resultan

* Will raise the neighbor

t location

nood of targets

* Will avoid problem of c

Energy

own-valley targets

state



Training the Hopfield network: SGD

version
W=W+1 Eny— 2 yy'
yEYp y&Yp&y=valley

* I|nitialize W

* Do until convergence, satisfaction, or death from
boredom:
— Sample a target pattern y,,
* Sampling frequency of pattern must reflect importance of pattern
— Initialize the network at y,, and let it evolve a few steps (2-4)
* And arrive at a down-valley position y,

— Update weights
* W=W+n(y,ys — YaVa)

73



Story so far

* Hopfield nets with N neurons can store up to 0.14N
patterns through Hebbian learning

— |Issue: Hebbian learning assumes all patterns to be stored are
equally important

* |ntheory the number of intentionally stored patterns
(stationary and stable) can be as large as N

— But comes with many parasitic memories

* Networks that store O(N) memories can be trained
through optimization

— By minimizing the energy of the target patterns, while
increasing the energy of the neighboring patterns



Storing more than N patterns

* The memory capacity of an N-bit network is at
most N

— Stable patterns (not necessarily even stationary)
* Abu Mustafa and St. Jacques, 1985
* Although “information capacity” is O(N3)

* How do we increase the capacity of the
network

— How to store more than N patterns



Expanding the network

K Neurons
N Neurons M

2%

2
AT

e

L7
s

s,
7%
Ay

Al

5 et
I“ 'I

SN
o

o

(1AL
L

s

o

 Add a large number of neurons whose actual
values you don’t care about!

76



Expanded Network

K Neurons
N Neurons e =

- ) . b
' N PSS il 7
SRS AR 2
\}\g"}; .

L AL AT
) .Er?,);’*'i—,%'—‘ﬁl .
A, el

* New capacity: ~(N + K) patterns

— Although we only care about the pattern of the first N
neurons

— We're interested in N-bit patterns

77



Terminology

Hidden

Visible Neurons

Neurons

 Terminology:

— The neurons that store the actual patterns of interest: Visible
neurons

— The neurons that only serve to increase the capacity but whose
actual values are not important: Hidden neurons

— These can be set to anything in order to store a visible pattern



Increasing the capacity: bits view

Visible bits

00000000

o] o] (o0 @
00000000

00000000

00000000

00000000
OC0000000
QOQQOQO?

* The maximum number of patterns the net can store is bounded by the
width N of the patterns..




Increasing the capacity: bits view

Visible bits Hidden bits

L 3 0/e] o] | [0/0/0/0/000000eeee0ee

o o] (00 (0000000000000 000
L 0] o] [0 [0/0/0/0000 000000000

o] [0/00] | 0000000000000V

ole] o] o] 000 0000000000000

L 1 10 [0 | (0000000000000 0e0
ol [ [ [ [0 [0/0/0/0/000 0000000000

QOQOOQ‘?OOOOOOOOOOOOOOOO

N+ K

* The maximum number of patterns the net can store is bounded by the
width N of the patterns..

* So lets pad the patterns with K “don’t care” bits
— The new width of the patterns is N+K
— Now we can store N+K patterns!

80



Issues: Storage

Visible bits I Hidden bits

0000000000000 000000O0000

o] o (00 0000000000000 000V
L 9] O] (O] [0000000000000e0ee

00000 0@OOO00O0O0O0O0O0O0O0O00000

ool o] (6] 0000000000000
L 1 10 0@ | 00000000000 0e000e
0000000000000 0000000000

QOQQOQ‘QOOOOOOOOOOOOOOOO

N+ K

* What patterns do we f|II in the don’t care bits?

— Simple option: Randomly
* Flip a coin for each bit
— We could even compose multiple extended patterns for a base pattern to
increase the probability that it will be recalled properly

* Recalling any of the extended patterns from a base pattern will recall the base pattern

* How do we store the patterns?

— Standard optimization method should work .



Issues: Recall
Visible bits l Hidden bits

0000000000000 000000O0000

o] o (00 0000000000000 000V
L 9] O] (O] [0000000000000e0ee

00000 0@OOO00O0O0O0O0O0O0O0O00000

ool o] (6] 0000000000000

L 1 10 0@ | 00000000000 0e000e
0000000000000 0000000000
QOQQOQ‘QOOOOOOOOOOOOOOOO

N+ K

 How do we retrieve a memory?

* Can do so using usual “evolution” mechanism

* But this is not taking advantage of a key feature of the extended

patterns:
— Making errors in the don’t care bits doesn’t matter

82



Robustness of recall

K Neurons
N Neurons I,

/.5- S =
S iinsg

[

T Ay PALL W
SIS
AR

S
N
TAoCS

TS
il

&I .

Ly

g

2

=
T

iy

—
e

—

i

Tl

i

SR AT,
Sl

-y 3 4 I
T T A T
e\ Z

 The value taken by the K hidden neurons uring recall
doesn’t really matter

— Even if it doesn’t match what we actually tried to store

* Can we take advantage of this somehow?

83



Taking advantage of don’t care bits

* Simple random setting of don’t care bits, and
using the usual training and recall strategies for
Hopfield nets should work

 However, it doesn’t sufficiently exploit the
redundancy of the don’t care bits

* To exploit it properly, it helps to view the Hopfield
net differently: as a probabilistic machine



A probabilistic interpretation of
Hopfield Nets

* For binary y the energy of a pattern is the
analog of the negative log likelihood of a

Boltzmann distribution

— Minimizing energy maximizes log likelihood

E(y) = —%yTWy P(y) = Cexp(—E(y))

85



The Boltzmann Distribution

1 —E(y)
E(y) = —-y"Wy—-Dbly P(y) = Cexp
2 kT
g . 1
FLm = s B —E(y)
S ialone Sl 2y exp( kT )

e kisthe Boltzmann constant
T isthe temperature of the system

* The energy terms are the negative loglikelihood of a Boltzmann
distribution at T = 1 to within an additive constant
— Derivation of this probability is in fact quite trivial..

86



Continuing the Boltzmann analogy

1 —
E(y) = —EyTWy —b'y P(y) = Cexp ( E<y>>

- N
— - g = -— —
y f— — s
= — —
S S — - —
—
— ety —
- -—— ~ SR =
- —— - -— e
— - - -
TR = o —_—
1 —_—_ —
- > — — - —
-— —-— -t
— gl -
T — - g —
- — — b o
-—  all
- - y ex
-— -—
— it - -— -
— - - -
e il -— -
— et p—
- Poct - — b
— —
—— . -l

* The system probabilistically selects states with
lower energy

— With infinitesimally slow cooling, at T = 0, it
arrives at the global minimal state

87



Spin glasses and the Boltzmann
distribution

Energy

state

* Selecting a next state is analogous to drawing a sample
from the Boltzmann distribution at T = 1, in a universe
where k =1

— Energy landscape of a spin-glass model: Exploration and
characterization, Zhou and Wang, Phys. Review E 79, 2009



Hopfield nets: Optimizing W

1 A
E(y) = —5y"™Wy W =argmin » E(y)— ) E(y)
W
YEYp y&Yp

* Simple gradient descent:

W=W+n (2 ayyy' — ) B(E (y))ny>

yEYp [ yEYp \

More importance to more frequently More importance o more attractive
presented memories spurious memories

89



Hopfield nets: Optimizing W

1 A
E(y) = —5¥"Wy W=argmin ) E@) - ) E(Y)

YEYp y&Yp

* Simple gradient descent:

W=W+n (2 ayyy' — ) B(E (y))ny>

YEYp [

More importance to more frequently
presented memories

y&Yp \

More importance o more attractive
spurious memories

THIS LOOKS LIKE AN EXPECTATION!

90



Hopfield nets: Optimizing W

1 ~
E(y) = —EyTWy W = argmin E E(y) — E E(y)
w
YEYp y¢Yp

e Update rule

W=W +7 (2 ayyy' — Z ﬁ(E(y))ny>

YEYp VEYp
W =W+n(Ey-y,yy" — Eyyyy’)

Natural distribution for variables: The Boltzmann Distribution

91



From Analogy to Model

 The behavior of the Hopfield net is analogous
to annealed dynamics of a spin glass
characterized by a Boltzmann distribution

* So lets explicitly model the Hopfield net as a
distribution..



Revisiting Thermodynamic Phenomena

- A
— | —
— | — i -
- — " — -
ek - et
L -— = i
— —

u
PE

state

* |s the system actually in a specific state at any time?

* No —the state is actually continuously changing

— Based on the temperature of the system
* At higher temperatures, state changes more rapidly

 What is actually being characterized is the probability
of the state

— And the expected value of the state



The Helmholtz Free Energy of a System

* Athermodynamic system at temperature T can exist in
one of many states

— Potentially infinite states

— At any time, the probability of finding the system in state s
at temperature T is Pr(s)

* At each state s it has a potential energy E|

 The internal energy of the system, representing its
capacity to do work, is the average:

Ur =) Pr(s)E



The Helmholtz Free Energy of a System

* The capacity to do work is counteracted by the internal
disorder of the system, i.e. its entropy

Hr = —z Pr(s)log Pr(s)

 The Helmholtz free energy of the system measures the
useful work derivable from it and combines the two terms

FT — UT + kTHT

= z Pr(s)E; — kT z Pr(s)log Pr(s)



The Helmholtz Free Energy of a System

Fr = z Pr(s)E; — kTZ Pr(s)log Pr(s)

* A system held at a specific temperature anneals by
varying the rate at which it visits the various states, to
reduce the free energy in the system, until a minimum
free-energy state is achieved

* The probability distribution of the states at steady state
is known as the Boltzmann distribution



The Helmholtz Free Energy of a System

Fr = z Pr(s)E, — kTZ Pr(s) log Pr(s)

* Minimizing this w.r.t P;(s), we get

1 —E,
Pr(s) = —exp ( T )

— Also known as the Gibbs distribution
— Z is a normalizing constant
— Note the dependenceon T

— AT =0, the system will always remain at the lowest-
energy configuration with prob = 1.



The Energy of the Network

Visible E(S) = —Z W;;S;Sj — b;s;
Neurons i<j

exp(—E(S))
ZS/ exp(_E(S,))

P(S) =

We can define the energy of the system as before
Since neurons are stochastic, there is disorder or entropy (with T = 1)

The equilibribum probability distribution over states is the Boltzmann
distribution at T=1

— This is the probability of different states that the network will wander over at
equilibrium



The Hopfield net is a distribution

Visible E(S) = —Z W;;S;Sj — b;s;
Neurons i<j

exp(—E(S))
ZSI exp(_E(S,))

P(S) =

* The stochastic Hopfield network models a probability distribution over
states

— Where a state is a binary string
— Specifically, it models a Boltzmann distribution
— The parameters of the model are the weights of the network

* The probability that (at equilibrium) the network will be in any state is P(S)
— Itis a generative model: generates states according to P(S)



The field at a single node

* LetSandS ' be otherwise identical states that only differ in the i-th bit
- S has i-th bit =+1 and S’ has i-th bit= —1

P(S) = P(s; = 1|8j1)P(Sj1)
P(S") = P(s; = —1|sj1)P(Sjxi)

logP(S) — logP(S") = logP(s; = 1|S]-¢l~) — logP(s; = —1|Sj¢i)

P(Sl' = 1|Sj¢i)

logP(S) — logP(S") = log - P(s- — 1|S. )
I = JEI

100



The field at a single node

 LetS and S’ be the states with the ith bitin the +1 and
— 1 states

logP(S) =—-E(S)+C

1
= _E<Enoti +2Wj5j +bi

)
|

1
E(S) = _§<Enoti _ZWJ'SJ' — b;

JE

* logP(S) —logP(S') = E(S') —E(S) = Xz Wjsj + b

101



The field at a single node

P(s: = 1ls:
log( (Sl ‘S]# ) ZW]S] + b;
1 — P(Sl = 1‘51#

j#i

* Giving us

1
P(Si — 1‘51'__“') =

1 e—(Z]#w]S]+b )
* The probability of any node taking value 1
given other node values is a logistic




Redefining the network

Visible Zi = z WjiSj + by
Neurons J

1
1+e™%

P(s; = 1]sj4;) =

First try: Redefine a regular Hopfield net as a stochastic system
Each neuron is now a stochastic unit with a binary state s;, which
can take value 0 or 1 with a probability that depends on the local
field

— Note the slight change from Hopfield nets

— Not actually necessary; only a matter of convenience



The Hopfield net is a distribution

Visible Zi = z WjiSj + by
Neurons J

i
@ Ploi = Hs=) = T o

 The Hopfield net is a probability distribution over
binary sequences

— The Boltzmann distribution

 The conditional distribution of individual bits in the
sequence is a logistic



Running the network

Visible Zi = z WjiSj + by
Neurons J

1
1+e™%

P(s; = 1]sjzi) =

Initialize the neurons
Cycle through the neurons and randomly set the neuron to 1 or -1 according to the

probability given above
— Gibbs sampling: Fix N-1 variables and sample the remaining variable
— As opposed to energy-based update (mean field approximation): run the test z,>0 ?

After many many iterations (until “convergence”), sample the individual neurons



Exploiting the probabilistic view

 Next class..



