
Neural Networks

Hopfield Nets and Boltzmann Machines
Spring 2020

1

• Symmetric loopy network
• Each neuron is a perceptron with +1/-1 output

Recap: Hopfield network

2

Recap: Hopfield network

• At each time each neuron receives a “field”

• If the sign of the field matches its own sign, it does not
respond

• If the sign of the field opposes its own sign, it “flips” to
match the sign of the field

3

Recap: Energy of a Hopfield Network

• The system will evolve until the energy hits a local minimum
• In vector form, including a bias term (not typically used in

Hopfield nets)

4

Not assuming node bias

Recap: Evolution

• The network will evolve until it arrives at a
local minimum in the energy contour

state
PE

5

Recap: Content-addressable memory

• Each of the minima is a “stored” pattern
– If the network is initialized close to a stored pattern, it

will inevitably evolve to the pattern

• This is a content addressable memory
– Recall memory content from partial or corrupt values

• Also called associative memory

state
PE

6

Recap – Analogy: Spin Glasses

• Magnetic diploes
• Each dipole tries to align itself to the local field

– In doing so it may flip

• This will change fields at other dipoles
– Which may flip

• Which changes the field at the current dipole…
7

Recap – Analogy: Spin Glasses

• The total energy of the system

௜ ௜

௜

௜௝ ௜ ௝

௝வ௜௜

௜ ௝

௜

• The system evolves to minimize the energy
– Dipoles stop flipping if flips result in increase of energy

Total field at current dipole:

௜ ௜௝ ௝

௝ஷ௜

௜

Response of current diplose

௜
௜ ௜ ௜

௜

8

Recap : Spin Glasses

• The system stops at one of its stable configurations
– Where energy is a local minimum

• Any small jitter from this stable configuration returns it to the stable
configuration
– I.e. the system remembers its stable state and returns to it

state

PE

9

Recap: Hopfield net computation

• Very simple
• Updates can be done sequentially, or all at once
• Convergence

௝௜ ௝ ௜

௝வ௜௜

does not change significantly any more

1. Initialize network with initial pattern

௜ ௜

2. Iterate until convergence

௜ ௝௜ ௝

௝ஷ௜

10

Examples: Content addressable
memory

• http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/11

“Training” the network

• How do we make the network store a specific
pattern or set of patterns?
– Hebbian learning
– Geometric approach
– Optimization

• Secondary question
– How many patterns can we store?

12

Recap: Hebbian Learning to Store a
Specific Pattern

• For a single stored pattern, Hebbian learning
results in a network for which the target
pattern is a global minimum

HEBBIAN LEARNING:
1

-1

-1

-1 1

13

Storing multiple patterns

• is the set of patterns to store
• Superscript represents the specific pattern

1

-1

-1

-1 1

1

1

-1

1 -1

14

Storing multiple patterns

• Let be the vector representing -th pattern
• Let be a matrix with all the stored patterns
• Then..

1

-1

-1

-1 1

1

1

-1

1 -1

15

Number of patterns

• {p} is the set of patterns to store
– Superscript represents the specific pattern

• is the number of patterns to store

1

-1

-1

-1 1

1

1

-1

1 -1

16

Recap: Hebbian Learning to Store
Multiple Patterns

How many patterns can we store?

• Hopfield: For a network of neurons can store up to
0.14 random patterns

• In reality, seems possible to store K > 0.14N patterns
– i.e. obtain a weight matrix W such that K > 0.14N patterns

are stationary

17

Bold Claim

• I can always store (upto) N orthogonal
patterns such that they are stationary!
– Although not necessarily stable

• Why?

18

“Training” the network

• How do we make the network store a specific
pattern or set of patterns?
– Hebbian learning
– Geometric approach
– Optimization

• Secondary question
– How many patterns can we store?

19

A minor adjustment

• Note behavior of with

• Is identical to behavior with

• Since

• But is easier to analyze. Hence in the
following slides we will use

20

Energy landscape
only differs by

an additive constant

Gradients and location
of minima remain same

A minor adjustment

• Note behavior of with

• Is identical to behavior with

• Since

• But is easier to analyze. Hence in the
following slides we will use

21

Energy landscape
only differs by

an additive constant

Gradients and location
of minima remain same

Both have the
same Eigen vectors

A minor adjustment

• Note behavior of with

• Is identical to behavior with

• Since

• But is easier to analyze. Hence in the
following slides we will use

22

Energy landscape
only differs by

an additive constant

Gradients and location
of minima remain sameNOTE: This

is a positive
semidefinite matrix

Both have the
same Eigen vectors

Consider the energy function

• Reinstating the bias term for completeness
sake

23

Consider the energy function

• Reinstating the bias term for completeness
sake

This is a quadratic!

For Hebbian learning
W is positive semidefinite

E is concave

24

The Energy function

• is a concave quadratic

25

-1

1 -1

1

ଵ

଴

The Energy function

• is a concave quadratic
– Shown from above (assuming 0 bias)

• But components of can only take values
– I.e lies on the corners of the unit hypercube

26

The energy function

• is a concave quadratic
– Shown from above (assuming 0 bias)

• The minima will lie on the boundaries of the hypercube
– But components of can only take values
– I.e. lies on the corners of the unit hypercube

27

The energy function

• The stored values of are the ones where all
adjacent corners are lower on the quadratic

Stored patterns

28

Patterns you can store

• All patterns are on the corners of a hypercube
– If a pattern is stored, it’s “ghost” is stored as well
– Intuitively, patterns must ideally be maximally far apart

• Though this doesn’t seem to hold for Hebbian learning

Stored patterns
Ghosts (negations)

29

Evolution of the network
• Note: for real vectors is a projection

– Projects onto the nearest corner of the hypercube
– It “quantizes” the space into orthants

• Response to field:
– Each step rotates the vector and then projects it onto the nearest

corner

30

1

1

-1

-1

2D example 3D example

Storing patterns
• A pattern is stored if:

– for all target patterns

• Training: Design such that this holds

• Simple solution: is an Eigenvector of
– And the corresponding Eigenvalue is positive

– More generally orthant() = orthant()

• How many such can we have?

31

Random fact that should interest you

• Number of ways of selecting two -bit binary
patterns and such that they differ from

one another in exactly bits is

• The size of the largest set of -bit binary
patterns that all differ from one
another in exactly bits is at most
– Trivial proof.. 

32

Only N patterns?

• Patterns that differ in bits are orthogonal
• You can have max orthogonal vectors in an -dimensional

space
33

(1,1)

(1,-1)

random fact that should interest you

• The Eigenvectors of any symmetric matrix
are orthogonal

• The Eigenvalues may be positive or negative

34

Storing more than one pattern
• Requirement: Given

– Design such that
• for all target patterns
• There are no other binary vectors for which this holds

• What is the largest number of patterns that
can be stored?

35

Storing orthogonal patterns
• Simple solution: Design such that

are the Eigen vectors of
– Let

– are positive

– For this is exactly the Hebbian
rule

• The patterns are provably stationary
36

Hebbian rule
• In reality

– Let

– are orthogonal to

–

–

37

Storing orthogonal patterns
• When we have orthogonal (or near

orthogonal) patterns
–

–

• The Eigen vectors of span the space

• Also, for any

38

Storing orthogonal patterns
• The orthogonal patterns span the

space
• Any pattern can be written as

• All patterns are stable
– Remembers everything
– Completely useless network

39

Storing K orthogonal patterns
• Even if we store fewer than patterns

– Let ଵ ଶ ௄ 𝑲ାଵ 𝑲ାଶ ே

்

– 𝑲ାଵ 𝑲ାଶ ே are orthogonal to ଵ ଶ ௄

– ଵ ଶ ௄

– ௄ାଵ ே

• Any pattern that is entirely in the subspace spanned by
is also stable (same logic as earlier)

• Only patterns that are partially in the subspace spanned by
 are unstable

– Get projected onto subspace spanned by ଵ ଶ ௄

40

Problem with Hebbian Rule

• Even if we store fewer than patterns
– Let

– are orthogonal to

–

• Problems arise because Eigen values are all 1.0
– Ensures stationarity of vectors in the subspace
– All stored patterns are equally important
– What if we get rid of this requirement?

41

Hebbian rule and general (non-
orthogonal) vectors

• What happens when the patterns are not orthogonal
• What happens when the patterns are presented more than

once
– Different patterns presented different numbers of times
– Equivalent to having unequal Eigen values..

• Can we predict the evolution of any vector
– Hint: For real valued vectors, use Lanczos iterations

• Can write ௉ ௉ ௣
்,  ௉

ଶ
௣
்

– Tougher for binary vectors (NP)
42

The bottom line
• With a network of units (i.e. -bit patterns)
• The maximum number of stationary patterns is actually

exponential in
– McElice and Posner, 84’
– E.g. when we had the Hebbian net with N orthogonal base

patterns, all patterns are stationary

• For a specific set of patterns, we can always build a
network for which all patterns are stable provided
– Mostafa and St. Jacques 85’

• For large N, the upper bound on K is actually N/4logN
– McElice et. Al. 87’

– But this may come with many “parasitic” memories
43

The bottom line
• With an network of units (i.e. -bit patterns)
• The maximum number of stable patterns is actually

exponential in
– McElice and Posner, 84’
– E.g. when we had the Hebbian net with N orthogonal base

patterns, all patterns are stable

• For a specific set of patterns, we can always build a
network for which all patterns are stable provided
– Mostafa and St. Jacques 85’

• For large N, the upper bound on K is actually N/4logN
– McElice et. Al. 87’

– But this may come with many “parasitic” memories
44

How do we find this
network?

The bottom line
• With an network of units (i.e. -bit patterns)
• The maximum number of stable patterns is actually

exponential in
– McElice and Posner, 84’
– E.g. when we had the Hebbian net with N orthogonal base

patterns, all patterns are stable

• For a specific set of patterns, we can always build a
network for which all patterns are stable provided
– Mostafa and St. Jacques 85’

• For large N, the upper bound on K is actually N/4logN
– McElice et. Al. 87’

– But this may come with many “parasitic” memories
45

Can we do something
about this?

How do we find this
network?

Story so far
• Hopfield nets with N neurons can store up to 0.14N random patterns

through Hebbian learning with 0.996 probability of recall
– The recalled patterns are the Eigen vectors of the weights matrix with the

highest Eigen values

• Hebbian learning assumes all patterns to be stored are equally important
– For orthogonal patterns, the patterns are the Eigen vectors of the constructed

weights matrix
– All Eigen values are identical

• In theory the number of stationary states in a Hopfield network can be
exponential in N

• The number of intentionally stored patterns (stationary and stable) can be
as large as N
– But comes with many parasitic memories

46

A different tack

• How do we make the network store a specific
pattern or set of patterns?
– Hebbian learning
– Geometric approach
– Optimization

• Secondary question
– How many patterns can we store?

47

Consider the energy function

• This must be maximally low for target patterns

• Must be maximally high for all other patterns
– So that they are unstable and evolve into one of

the target patterns
48

Alternate Approach to Estimating the
Network

• Estimate (and) such that
– is minimized for

– is maximized for all other

• Caveat: Unrealistic to expect to store more than
patterns, but can we make those patterns

memorable 49

Optimizing W (and b)

• Minimize total energy of target patterns
– Problem with this?

50

ು
The bias can be captured by
another fixed-value component

Optimizing W

• Minimize total energy of target patterns

• Maximize the total energy of all non-target
patterns

51

ು ು

Optimizing W

• Simple gradient descent:

52

ು ು

ು ು

Optimizing W

• Can “emphasize” the importance of a pattern
by repeating
– More repetitions  greater emphasis

53

ು ು

Optimizing W

• Can “emphasize” the importance of a pattern
by repeating
– More repetitions  greater emphasis

• How many of these?
– Do we need to include all of them?
– Are all equally important?

54

ು ು

The training again..

• Note the energy contour of a Hopfield
network for any weight

55

ು ು

state

Energy

Bowls will all actually be
quadratic

The training again

• The first term tries to minimize the energy at target patterns
– Make them local minima
– Emphasize more “important” memories by repeating them more

frequently

56

ು ು

state

Energy

Target patterns

The negative class

• The second term tries to “raise” all non-target
patterns
– Do we need to raise everything?

57

ು ು

state

Energy

Option 1: Focus on the valleys

• Focus on raising the valleys
– If you raise every valley, eventually they’ll all move up above the

target patterns, and many will even vanish

58

ು ು

state

Energy

Identifying the valleys..

• Problem: How do you identify the valleys for
the current ?

59

ು ು

state

Energy

Identifying the valleys..

60state

Energy

• Initialize the network randomly and let it evolve
– It will settle in a valley

Training the Hopfield network

• Initialize
• Compute the total outer product of all target patterns

– More important patterns presented more frequently

• Randomly initialize the network several times and let it
evolve
– And settle at a valley

• Compute the total outer product of valley patterns
• Update weights

61

ು ು

Training the Hopfield network: SGD
version

• Initialize
• Do until convergence, satisfaction, or death from

boredom:
– Sample a target pattern

• Sampling frequency of pattern must reflect importance of pattern

– Randomly initialize the network and let it evolve
• And settle at a valley ௩

– Update weights
• ௣ ௣

்
௩ ௩

்

62

ು ು

Training the Hopfield network

• Initialize
• Do until convergence, satisfaction, or death from

boredom:
– Sample a target pattern

• Sampling frequency of pattern must reflect importance of pattern

– Randomly initialize the network and let it evolve
• And settle at a valley ௩

– Update weights
• ௣ ௣

்
௩ ௩

்

63

ು ು

Which valleys?

64state

Energy

• Should we randomly sample valleys?
– Are all valleys equally important?

Which valleys?

65state

Energy

• Should we randomly sample valleys?
– Are all valleys equally important?

• Major requirement: memories must be stable
– They must be broad valleys

• Spurious valleys in the neighborhood of
memories are more important to eliminate

Identifying the valleys..

66state

Energy

• Initialize the network at valid memories and let it evolve
– It will settle in a valley. If this is not the target pattern, raise it

Training the Hopfield network

• Initialize
• Compute the total outer product of all target patterns

– More important patterns presented more frequently

• Initialize the network with each target pattern and let it
evolve
– And settle at a valley

• Compute the total outer product of valley patterns
• Update weights

67

ು ು

Training the Hopfield network: SGD
version

• Initialize
• Do until convergence, satisfaction, or death from

boredom:
– Sample a target pattern

• Sampling frequency of pattern must reflect importance of pattern

– Initialize the network at and let it evolve
• And settle at a valley ௩

– Update weights
• ௣ ௣

்
௩ ௩

்

68

ು ು

A possible problem

69state

Energy

• What if there’s another target pattern
downvalley
– Raising it will destroy a better-represented or

stored pattern!

A related issue
• Really no need to raise the entire surface, or

even every valley

70state

Energy

A related issue
• Really no need to raise the entire surface, or even

every valley
• Raise the neighborhood of each target memory

– Sufficient to make the memory a valley
– The broader the neighborhood considered, the

broader the valley

71state

Energy

Raising the neighborhood

72state

Energy

• Starting from a target pattern, let the network
evolve only a few steps
– Try to raise the resultant location

• Will raise the neighborhood of targets

• Will avoid problem of down-valley targets

Training the Hopfield network: SGD
version

• Initialize
• Do until convergence, satisfaction, or death from

boredom:
– Sample a target pattern

• Sampling frequency of pattern must reflect importance of pattern

– Initialize the network at and let it evolve a few steps (2-4)
• And arrive at a down-valley position ௗ

– Update weights
• ௣ ௣

்
ௗ ௗ

்

73

ು ು

Story so far
• Hopfield nets with neurons can store up to

patterns through Hebbian learning
– Issue: Hebbian learning assumes all patterns to be stored are

equally important

• In theory the number of intentionally stored patterns
(stationary and stable) can be as large as
– But comes with many parasitic memories

• Networks that store memories can be trained
through optimization
– By minimizing the energy of the target patterns, while

increasing the energy of the neighboring patterns
74

Storing more than N patterns

• The memory capacity of an -bit network is at
most
– Stable patterns (not necessarily even stationary)

• Abu Mustafa and St. Jacques, 1985
• Although “information capacity” is

• How do we increase the capacity of the
network
– How to store more than patterns

75

Expanding the network

• Add a large number of neurons whose actual
values you don’t care about!

N Neurons K Neurons

76

Expanded Network

• New capacity: patterns
– Although we only care about the pattern of the first N

neurons
– We’re interested in N-bit patterns

N Neurons K Neurons

77

Terminology

• Terminology:
– The neurons that store the actual patterns of interest: Visible

neurons
– The neurons that only serve to increase the capacity but whose

actual values are not important: Hidden neurons
– These can be set to anything in order to store a visible pattern

Visible
Neurons

Hidden
Neurons

Increasing the capacity: bits view

• The maximum number of patterns the net can store is bounded by the
width N of the patterns..

• So lets pad the patterns with K “don’t care” bits
– The new width of the patterns is N+K
– Now we can store N+K patterns!

79

Visible bits

Increasing the capacity: bits view

• The maximum number of patterns the net can store is bounded by the
width N of the patterns..

• So lets pad the patterns with K “don’t care” bits
– The new width of the patterns is N+K
– Now we can store N+K patterns!

80

Visible bits Hidden bits

Issues: Storage

• What patterns do we fill in the don’t care bits?
– Simple option: Randomly

• Flip a coin for each bit

– We could even compose multiple extended patterns for a base pattern to
increase the probability that it will be recalled properly
• Recalling any of the extended patterns from a base pattern will recall the base pattern

• How do we store the patterns?
– Standard optimization method should work

81

Visible bits Hidden bits

Issues: Recall

• How do we retrieve a memory?
• Can do so using usual “evolution” mechanism
• But this is not taking advantage of a key feature of the extended

patterns:
– Making errors in the don’t care bits doesn’t matter

82

Visible bits Hidden bits

Robustness of recall

• The value taken by the K hidden neurons during recall
doesn’t really matter
– Even if it doesn’t match what we actually tried to store

• Can we take advantage of this somehow?

N Neurons K Neurons

83

Taking advantage of don’t care bits

• Simple random setting of don’t care bits, and
using the usual training and recall strategies for
Hopfield nets should work

• However, it doesn’t sufficiently exploit the
redundancy of the don’t care bits

• To exploit it properly, it helps to view the Hopfield
net differently: as a probabilistic machine

84

A probabilistic interpretation of
Hopfield Nets

• For binary y the energy of a pattern is the
analog of the negative log likelihood of a
Boltzmann distribution
– Minimizing energy maximizes log likelihood

85

The Boltzmann Distribution

• is the Boltzmann constant
• is the temperature of the system
• The energy terms are the negative loglikelihood of a Boltzmann

distribution at to within an additive constant
– Derivation of this probability is in fact quite trivial..

86

Continuing the Boltzmann analogy

• The system probabilistically selects states with
lower energy
– With infinitesimally slow cooling, at it

arrives at the global minimal state
87

Spin glasses and the Boltzmann
distribution

• Selecting a next state is analogous to drawing a sample
from the Boltzmann distribution at in a universe
where
– Energy landscape of a spin-glass model: Exploration and

characterization, Zhou and Wang, Phys. Review E 79, 2009

88

state

Energy

Hopfield nets: Optimizing W

• Simple gradient descent:

89

ು ು

ು ು

More importance to more frequently
presented memories

More importance to more attractive
spurious memories

Hopfield nets: Optimizing W

• Simple gradient descent:

90

ು ು

THIS LOOKS LIKE AN EXPECTATION!

ು ು

More importance to more frequently
presented memories

More importance to more attractive
spurious memories

Hopfield nets: Optimizing W

• Update rule

91

ು ು

Natural distribution for variables: The Boltzmann Distribution

ು

ು ು

From Analogy to Model

• The behavior of the Hopfield net is analogous
to annealed dynamics of a spin glass
characterized by a Boltzmann distribution

• So lets explicitly model the Hopfield net as a
distribution..

92

Revisiting Thermodynamic Phenomena

• Is the system actually in a specific state at any time?
• No – the state is actually continuously changing

– Based on the temperature of the system
• At higher temperatures, state changes more rapidly

• What is actually being characterized is the probability
of the state
– And the expected value of the state

state

PE

The Helmholtz Free Energy of a System

• A thermodynamic system at temperature can exist in
one of many states
– Potentially infinite states
– At any time, the probability of finding the system in state

at temperature is

• At each state it has a potential energy
• The internal energy of the system, representing its

capacity to do work, is the average:

The Helmholtz Free Energy of a System

• The capacity to do work is counteracted by the internal
disorder of the system, i.e. its entropy

• The Helmholtz free energy of the system measures the
useful work derivable from it and combines the two terms

The Helmholtz Free Energy of a System

• A system held at a specific temperature anneals by
varying the rate at which it visits the various states, to
reduce the free energy in the system, until a minimum
free-energy state is achieved

• The probability distribution of the states at steady state
is known as the Boltzmann distribution

The Helmholtz Free Energy of a System

• Minimizing this w.r.t , we get

– Also known as the Gibbs distribution
– is a normalizing constant
– Note the dependence on
– A = 0, the system will always remain at the lowest-

energy configuration with prob = 1.

The Energy of the Network

• We can define the energy of the system as before
• Since neurons are stochastic, there is disorder or entropy (with T = 1)
• The equilibribum probability distribution over states is the Boltzmann

distribution at T=1
– This is the probability of different states that the network will wander over at

equilibrium

Visible
Neurons

The Hopfield net is a distribution

• The stochastic Hopfield network models a probability distribution over
states
– Where a state is a binary string
– Specifically, it models a Boltzmann distribution
– The parameters of the model are the weights of the network

• The probability that (at equilibrium) the network will be in any state is
– It is a generative model: generates states according to

Visible
Neurons

The field at a single node
• Let and be otherwise identical states that only differ in the i-th bit

– S has i-th bit = and S’ has i-th bit =

௜ ௝ஷ௜ ௝ஷ௜

௜ ௝ஷ௜ ௝ஷ௜

ᇱ
௜ ௝ஷ௜ ௜ ௝ஷ௜

ᇱ ௜ ௝ஷ௜

௜ ௝ஷ௜

100

The field at a single node

• Let and be the states with the ith bit in the and
states

•

101

The field at a single node

• Giving us

• The probability of any node taking value 1
given other node values is a logistic

102

Redefining the network

• First try: Redefine a regular Hopfield net as a stochastic system
• Each neuron is now a stochastic unit with a binary state ௜, which

can take value 0 or 1 with a probability that depends on the local
field
– Note the slight change from Hopfield nets
– Not actually necessary; only a matter of convenience

Visible
Neurons

೔

The Hopfield net is a distribution

• The Hopfield net is a probability distribution over
binary sequences
– The Boltzmann distribution

• The conditional distribution of individual bits in the
sequence is a logistic

Visible
Neurons

೔

Running the network

• Initialize the neurons
• Cycle through the neurons and randomly set the neuron to 1 or -1 according to the

probability given above
– Gibbs sampling: Fix N-1 variables and sample the remaining variable
– As opposed to energy-based update (mean field approximation): run the test zi > 0 ?

• After many many iterations (until “convergence”), sample the individual neurons

Visible
Neurons

೔

Exploiting the probabilistic view

• Next class..

106

