
Neural Networks
Learning the network: Part 1
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Topics for the day

• The problem of learning
• The perceptron rule for perceptrons

– And its inapplicability to multi-layer perceptrons

• Greedy solutions for classification networks: 
ADALINE and MADALINE

• Learning through Empirical Risk Minimization
• Intro to function optimization and gradient 

descent
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Recap

• Neural networks are universal function approximators
– Can model any Boolean function
– Can model any classification boundary
– Can model any continuous valued function

• Provided the network satisfies minimal architecture constraints
– Networks with fewer than the required number of parameters can be 

very poor approximators
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These boxes are functions

• Take an input
• Produce an output
• Can be modeled by a neural network!

N.Net
Voice 
signal Transcription N.NetImage Text caption

N.Net
Game
State Next move
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Questions

• Preliminaries:
– How do we represent the input?

– How do we represent the output?

• How do we compose the network that performs 
the requisite function?
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– How do we represent the input?

– How do we represent the output?

• How do we compose the network that performs 
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The original perceptron

• Simple threshold unit
– Unit comprises a set of weights and a threshold
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Preliminaries: The units in the 
network

• Perceptron
– General setting, inputs are real valued
– A bias representing a threshold to trigger the perceptron
– Activation functions are not necessarily threshold functions
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Preliminaries: Redrawing the neuron

• The bias can also be viewed as the weight of another input 
component that is always set to 1
– If the bias is not explicitly mentioned, we will implicitly be assuming 

that every perceptron has an additional input that is always fixed at 1

9

+.....

ଵ

ଶ

ଷ

ே

ଵ

ଶ

ଷ

ே

ேିଵ

ேିଵ

ேାଵ

௜ ௜

 

௜



First: the structure of the network

• We will assume a feed-forward network
– No loops: Neuron outputs do not feed back to their inputs directly or 

indirectly
– Loopy networks are a future topic

• Part of the design of a network:  The architecture
– How many layers/neurons, which neuron connects to which and how, etc.

• For now, assume the architecture of the network is capable of 
representing the needed function
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What we learn: The parameters of the 
network

• Given: the architecture of the network
• The parameters of the network: The weights and biases

– The weights associated with the blue arrows in the picture

• Learning the network : Determining the values of these parameters 
such that the network computes the desired function

1

1
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The network is a function f() 
with parameters W which must

be set to the appropriate values
to get the desired behavior from
the net
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• Moving on..
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The MLP can represent anything

• The MLP can be constructed to represent anything
• But how do we construct it?
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Option 1:  Construct by hand

• Given a function, handcraft a network to satisfy it
• E.g.:  Build an MLP to classify this decision boundary
• Not possible for all but the simplest problems..
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Option 1:  Construct by hand
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Option 1:  Construct by hand
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Option 1:  Construct by hand
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Option 1:  Construct by hand
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Option 1:  Construct by hand
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Option 1:  Construct by hand

• Given a function, handcraft a network to satisfy it
• E.g.:  Build an MLP to classify this decision boundary
• Not possible for all but the simplest problems..
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Option 2: Automatic estimation 
of an MLP

• More generally, given the function to 
model, we can derive the parameters of the 
network to model it, through computation
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How to learn a network?

• When has the capacity to exactly represent 

ௐ ௑

• div() is a divergence function that goes to zero when 
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Problem is unknown

• Function must be fully specified
– Known everywhere, i.e. for every input 

• In practice we will not have such specification 23



Sampling the function

• Sample 
– Basically, get input-output pairs for a number of samples of input ௜

• Many samples (𝑋௜, 𝑑௜), where 𝑑௜ = 𝑔 𝑋௜ + 𝑛𝑜𝑖𝑠𝑒

– Good sampling: the samples of will be drawn from 

• Very easy to do in most problems:  just gather training data
– E.g. set of images and their class labels
– E.g. speech recordings and their transcription 24
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Drawing samples

• We must learn the entire function from these 
few examples
– The “training” samples

Xi
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Learning the function

• Estimate the network parameters to  “fit” the training 
points exactly
– Assuming network architecture is sufficient for such a fit
– Assuming unique output d at any X

• And hopefully  the resulting function is also correct where we 
don’t have training samples 26
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Story so far

• “Learning” a neural network == determining the parameters of the 
network (weights and biases) required for it to model a desired 
function
– The network must have sufficient capacity to model the function

• Ideally, we would like to optimize the network to represent the 
desired function everywhere

• However this requires knowledge of the function everywhere
• Instead, we draw “input-output” training instances from the 

function and estimate network parameters to “fit” the input-output 
relation at these instances
– And hope it fits the function elsewhere as well
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Lets begin with a simple task

• Learning a classifier
– Simpler than regressions

• This was among the earliest problems 
addressed using MLPs

• Specifically, consider binary classification
– Generalizes to multi-class
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History: The original MLP

• The original MLP as proposed by Minsky: a 
network of threshold units
– But how do you train it?

• Given only “training” instances of input-output pairs
29
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The simplest MLP: a single perceptron

• Learn this function
– A step function across a hyperplane

30

x1

x2

x1

x2 1
0



• Learn this function
– A step function across a hyperplane

– Given only samples from it
31
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Learning the perceptron

• Given a number of input output pairs, learn the weights and bias

– ௜ ௜
ே
௜ୀଵ

– Learn ଵ ே
் , given several pairs
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Restating the perceptron

• Restating the perceptron equation by adding another dimension to 

௜ ௜

ேାଵ

௜ୀଵ

where  ேାଵ

• Note that the boundary ௜ ௜
ேାଵ
௜ୀଵ is now a hyperplane through origin

x1

x2

x3

xN
WN+1xN+1=1
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The Perceptron Problem

• Find the hyperplane ௜ ௜
ேାଵ
௜ୀଵ that perfectly separates the two 

groups of points
– Note:  ଵ ଶ ேାଵ is a vector that is orthogonal to the hyperplane

• In fact the equation for the hyperplane itself means “the set of all Xs that are 
orthogonal to 𝑊”
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The Perceptron Problem

• Find the hyperplane ௜ ௜
ேାଵ
௜ୀଵ that perfectly separates the two groups 

of points
– Note:  ଵ ଶ ேାଵ

் is a vector that is orthogonal to the hyperplane
• In fact the equation for the hyperplane itself means “the set of all 𝑋s that are orthogonal 

to 𝑊”  (∑ 𝑤௜𝑋௜ = 𝑊்𝑋 = 0ேାଵ
௜ୀଵ )
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The Perceptron Problem

• Learning the perceptron:  Find the weights vector 
such that is positive for all blue dots and 

negative for all red ones
36

Key:  Red -1, Blue = +1



Perceptron Algorithm: Summary

• Cycle through the training instances

• Only update on misclassified instances

• If instance misclassified:
– If instance is positive class (positive misclassified as 

negative)

– If instance is negative class (negative misclassified 
as positive) 
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Perceptron Learning Algorithm

• Given training instances ଵ ଵ ଶ ଶ ே ே

– ௜ or 

• Initialize 
• Cycle through the training instances:
• do

– For 𝑡𝑟𝑎𝑖𝑛

௜
்

௜

• If 𝑂(𝑋௜) ≠ 𝑦௜

௜ ௜

• until no more classification errors

38
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A Simple Method: The Perceptron 
Algorithm

• Initialize: Randomly initialize the hyperplane
– I.e. randomly initialize the normal vector 

• Classification rule ்

– Vectors on the same side of the hyperplane as will be assigned +1 class, 
and those on the other side will be assigned  -1

• The random initial plane will make mistakes 39
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Perceptron Algorithm
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Perceptron Algorithm
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Perceptron Algorithm

42

-1(Red)

+1 (blue)



Perceptron Algorithm
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Perceptron Algorithm
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Perceptron Algorithm
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Perceptron Algorithm
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Perceptron Algorithm

47

-1(Red)

Misclassified negative instance,  subtract it from W

+1 (blue)



Perceptron Algorithm
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Perceptron Algorithm
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Convergence of Perceptron Algorithm

• Guaranteed to converge if classes are linearly 
separable

– After no more than misclassifications

• Specifically when W is initialized to 0

– is length of longest training point
– is the best case closest distance of a training 

point from the classifier
• Same as the margin in an SVM

– Intuitively – takes many increments of size to 
undo an error resulting from a step of size 
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Perceptron Algorithm
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History: A more complex problem

• Learn an MLP for this function
– 1 in the yellow regions, 0 outside

• Using just the samples
• We know this can be perfectly represented using an MLP
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More complex decision boundaries

• Even using the perfect architecture
• Can we use the perceptron algorithm?

– Making incremental corrections every time we encounter an error
53
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The pattern to be learned at the 
lower level

• The lower-level neurons are linear classifiers
– They require linearly separated labels to be learned
– The actually provided labels are not linearly separated
– Challenge: Must also learn the labels for the lowest units! 54
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The pattern to be learned at the 
lower level

• Consider a single linear classifier that must be 
learned from the training data
– Can it be learned from this data? 55
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The pattern to be learned at the 
lower level

56
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• Consider a single linear classifier that must be learned from the 
training data
– Can it be learned from this data?
– The individual classifier actually requires the kind of labelling shown 

here
• Which is not given!!



The pattern to be learned at the 
lower level

• The lower-level neurons are linear classifiers
– They require linearly separated labels to be learned
– The actually provided labels are not linearly separated
– Challenge: Must also learn the labels for the lowest units! 57
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The pattern to be learned at the 
lower level

• For a single line:
– Try out every possible way of relabeling the blue dots 

such that we can learn a line that keeps all the red dots 
on one side! 58
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The pattern to be learned at the 
lower level

• This must be done for each of the lines (perceptrons)
• Such that, when all of them are combined by the higher-

level perceptrons we get the desired pattern
– Basically an exponential search over inputs 59
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x1 x2

x2

Must know the output of every neuron
for every training instance, in order
to learn this neuron
The outputs should be such that the
neuron individually has a linearly
separable task
The linear separators must combine to
form the desired boundary

This must be done for every neuron

Getting any of them wrong will result in
incorrect output!

Individual neurons represent one of the lines
that compose the figure (linear classifiers)



Learning a multilayer perceptron

• Training this network using the perceptron rule is a combinatorial optimization 
problems

• We don’t know the outputs of the individual intermediate neurons in the network 
for any training input

• Must also determine the correct output for each neuron for every training 
instance

• NP!  Exponential time complexity

Training data only specifies
input and output of network

Intermediate outputs (outputs
of individual neurons) are not specified

61
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Greedy algorithms: Adaline and 
Madaline

• The perceptron learning algorithm cannot 
directly be used to learn an MLP
– Exponential complexity of assigning intermediate 

labels
• Even worse when classes are not actually separable

• Can we use a greedy algorithm instead?
– Adaline / Madaline
– On slides, will skip in class (check the quiz)
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A little bit of History: Widrow

• First known attempt at an analytical solution to training 
the perceptron and the MLP

• Now famous as the LMS algorithm
– Used everywhere
– Also known as the “delta rule”

Bernie Widrow
• Scientist, Professor, Entrepreneur
• Inventor of most useful things in 

signal processing and machine 
learning!
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History: ADALINE

• Adaptive linear element 
(Hopf and Widrow, 1960)

• Actually just a regular perceptron
– Weighted sum on inputs and bias passed 

through a thresholding function

• ADALINE differs in the learning rule

Using 1-extended vector
notation to account for bias
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History: Learning in ADALINE

• During learning, minimize the squared 
error assuming to be real output

• The desired output is still binary!

Error for a single input
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History: Learning in ADALINE

• If we just have a single training input, 
the gradient descent update rule is

Error for a single input
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The ADALINE learning rule

• Online learning rule
• After each input , that has 

target (binary) output , compute 
and update: ௜ ௜

 

௧

• This is the famous delta rule
– Also called the LMS update rule
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The Delta Rule
• In fact both the Perceptron 

and ADALINE use variants 
of the delta rule!
– Perceptron: Output used in 

delta rule is 

– ADALINE: Output used to 
estimate weights is 

• For both 𝑥

𝑧

1

𝑦𝑑

𝛿

𝑥

𝑧

1

𝑦
𝑑

𝛿

Perceptron

ADALINE
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Aside: Generalized delta rule
• For any differentiable activation function

the following update rule is used

𝒇(𝒛)

• This is the famous Widrow-Hoff update rule
– Lookahead: Note that this is exactly 

backpropagation in multilayer nets if we let 
represent the entire network between and 

• It is possibly the most-used update rule in 
machine learning and signal processing
– Variants of it appear in almost every problem
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Multilayer perceptron: MADALINE

• Multiple Adaline
– A multilayer perceptron with threshold activations
– The MADALINE

+

+

+

+

+
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MADALINE Training

• Update only on error
–

– On inputs for which output and target values differ 

+

+

+

+

+

-
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MADALINE Training

• While stopping criterion not met do:
– Classify an input
– If error, find the z that is closest to 0
– Flip the output of corresponding unit
– If error reduces:

• Set the desired output of the unit to the flipped value
• Apply ADALINE rule to update weights of the unit  

+

+

+

+

+
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MADALINE Training

• While stopping criterion not met do:
– Classify an input
– If error, find the z that is closest to 0
– Flip the output of corresponding unit
– If error reduces:

• Set the desired output of the unit to the flipped value
• Apply ADALINE rule to update weights of the unit  
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MADALINE Training

• While stopping criterion not met do:
– Classify an input
– If error, find the z that is closest to 0
– Flip the output of corresponding unit and compute new output
– If error reduces:

• Set the desired output of the unit to the flipped value
• Apply ADALINE rule to update weights of the unit  

+

+

+

+

+

-
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MADALINE Training

• While stopping criterion not met do:
– Classify an input
– If error, find the z that is closest to 0
– Flip the output of corresponding unit and compute new output
– If error reduces:

• Set the desired output of the unit to the flipped value
• Apply ADALINE rule to update weights of the unit  
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+

+

+

-
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MADALINE

• Greedy algorithm, effective for small networks
• Not very useful for large nets

– Too expensive
– Too greedy
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Story so far
• “Learning” a network = learning the weights and biases to compute a target function

– Will require a network with sufficient “capacity”

• In practice, we learn networks by “fitting” them to match the input-output relation of 
“training” instances drawn from the target function

• A linear decision boundary can be learned by a single perceptron (with a threshold-
function activation) in linear time if classes are linearly separable

• Non-linear decision boundaries require networks of perceptrons

• Training an MLP with threshold-function activation perceptrons will require 
knowledge of the input-output relation for every training instance, for every 
perceptron in the network
– These must be determined as part of training
– For threshold activations,  this is an NP-complete combinatorial optimization problem
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History..

• The realization that training an entire MLP was 
a combinatorial optimization problem stalled 
development of neural networks for well over 
a decade!
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Why this problem?

• The perceptron is a flat function with zero derivative everywhere, 
except at 0 where it is non-differentiable
– You can vary the weights a lot without changing the error
– There is no indication of which direction to change the weights to 

reduce error 79



This only compounds on larger 
problems

• Individual neurons’ weights can change significantly without changing 
overall error

• The simple MLP is a flat, non-differentiable function
– Actually a function with 0 derivative nearly everywhere, and no derivatives at 

the boundaries
80
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A second problem: What we actually 
model

• Real-life data are rarely clean
– Not linearly separable
– Rosenblatt’s perceptron wouldn’t work in the first 

place
81



Solution

• Lets make the neuron differentiable, with non-zero derivatives over 
much of the input space
– Small changes in weight can result in non-negligible changes in output
– This enables us to estimate the parameters using gradient descent 

techniques..
82
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Differentiable Activations: An aside

• This particular one has a nice interpretation

83
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Non-linearly separable data

• Two-dimensional example
– Blue dots (on the floor) on the “red” side
– Red dots (suspended at Y=1) on the “blue” side
– No line will cleanly separate the two colors

84
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Non-linearly separable data: 1-D example

• One-dimensional example for visualization
– All (red) dots at Y=1 represent instances of class Y=1
– All (blue) dots at Y=0 are from class Y=0
– The data are not linearly separable

• In this 1-D example, a linear separator is a threshold
• No threshold will cleanly separate red and blue dots
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The probability of y=1

• Consider this differently: at each point look at a small 
window around that point

• Plot the average value within the window
– This is an approximation of the probability of Y=1 at that point
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• Consider this differently: at each point look at a small 
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point
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• Consider this differently: at each point look at a small 
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point
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• Consider this differently: at each point look at a small 
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point
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• Consider this differently: at each point look at a small 
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point
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• Consider this differently: at each point look at a small 
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point
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• Consider this differently: at each point look at a small 
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point
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• Consider this differently: at each point look at a small 
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point
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• Consider this differently: at each point look at a small 
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point
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• Consider this differently: at each point look at a small 
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point
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• Consider this differently: at each point look at a small 
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point
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• Consider this differently: at each point look at a small 
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point
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• Consider this differently: at each point look at a small 
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point
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The logistic regression model

• Class 1 becomes increasingly probable going left to right
– Very typical in many problems
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Logistic regression

• This the perceptron with a sigmoid activation
– It actually computes the probability that the input belongs to class 1

100
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Perceptrons and probabilities

• We will return to the fact that perceptrons
with sigmoidal activations actually model class 
probabilities in a later lecture

• But for now moving on..
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Perceptrons with differentiable 
activation functions

• is a differentiable function of 

–
ௗఙ ௭

ௗ௭
is well-defined and finite for all 

• Using the chain rule, is a differentiable function of both inputs 𝒊 and 
weights 𝒊

• This means that we can compute the change in the output for small
changes in either the input or the weights 102
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Overall network is differentiable

• Every individual perceptron is differentiable w.r.t its inputs 
and its weights (including “bias” weight)

• By the chain rule, the overall function is differentiable w.r.t 
every parameter (weight or bias)
– Small changes in the parameters result in measurable changes in 

output

ଵ,ଵ
ଶ

ଶ,ଵ
ଶ

= output of overall network

௜,௝
௞ = weight connecting the ith unit
of the kth layer to the jth unit of
the k+1-th layer

௜
௞ = output of the ith unit of the kth layer

is differentiable w.r.t both and ௜
௞

103

Figure does not  show
bias connections



Overall function is differentiable

1

104

• The overall function is differentiable w.r.t every parameter 
– Small changes in the parameters result in measurable changes 

in the output
– We will derive the actual derivatives using the chain rule later



Overall setting for “Learning” the MLP

• Given a training set of input-output pairs ଵ ଵ ଶ 2 ே ே

– is the desired output of the network in response to 
– and may both be vectors

• …we must find the network parameters such that the network produces the 
desired output for each training input
– Or a close approximation of it
– The architecture of the network must be specified by us
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Recap: Learning the function

• When has the capacity to exactly represent 

ௐ ௑

• div() is a divergence function that goes to zero when 

106



Minimizing expected error

• More generally, assuming is a random variable

107



Recap: Sampling the function

• Sample 
– Basically, get input-output pairs for a number of samples of 

input ௜

• Many samples ௜ ௜ , where ௜ ௜

– Good sampling: the samples of will be drawn from 

• Estimate function from the samples
108
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The Empirical risk

• The expected error (or risk) is the average error over the entire input space

௑

• The empirical estimate of the expected error (or risk) is the average error over the samples

௜ ௜

ே
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Empirical Risk Minimization

• Given a training set of input-output pairs ଵ ଵ ଶ 2 ே ே

– Error on the ith instance:  ௜ ௜

– Empirical average error (Empirical Risk) on all training data:

௜ ௜

 

௜

• Estimate the parameters to minimize the empirical estimate of expected 
error (empiricial risk)

ௐ

– I.e. minimize the empirical risk over the drawn samples 110



Empirical Risk Minimization

• Given a training set of input-output pairs ଵ ଵ ଶ 2 ே ே

– Error on the ith instance:  ௜ ௜

– Empirical average error on all training data:

௜ ௜

 

௜

• Estimate the parameters to minimize the empirical estimate of expected 
error

ௐ

– I.e. minimize the empirical error over the drawn samples 111

Note :  Its really a measure of error, but using standard terminology, 
we will call it a “Loss”
Note 2: The empirical risk is only an empirical approximation 
to the true risk which is our actual minimization
objective



ERM for neural networks

– What is the exact form of Div()?  More on this later

• Optimize network parameters to minimize the 
total error over all training inputs

Actual output of network:

Desired output of network: 

Error on i-th training input: 

ଵ ଶ ௄

Average training error(loss):

112



Problem Statement
• Given a training set of input-output pairs 

• Minimize the following function

w.r.t 

• This is problem of function minimization
– An instance of optimization

113



Story so far
• We learn networks by “fitting” them to training instances drawn from a target function

• Learning networks of threshold-activation perceptrons requires solving a hard 
combinatorial-optimization problem
– Because we cannot compute the influence of small changes to the parameters on the overall error

• Instead we use continuous activation functions with non-zero derivatives to enables us 
to estimate network parameters
– This makes the output of the network differentiable w.r.t every parameter in the network
– The logistic activation perceptron actually computes the a posteriori probability of the output given 

the input

• We define differentiable divergence between the output of the network and the 
desired output for the training instances
– And a total error, which is the average divergence over all training instances

• We optimize network parameters to minimize this error
– Empirical risk minimization

• This is an instance of function minimization 
114



• A CRASH COURSE ON FUNCTION 
OPTIMIZATION

115



A brief note on derivatives..

• A derivative of a function at any point tells us how 
much a minute increment to the argument of the 
function will increment the value of the function
 For any expressed as a multiplier to a tiny 

increment to obtain the increments to the output

 Based on the fact that at a fine enough resolution, any 
smooth, continuous function is locally linear at any point 116

derivative



• When and are scalar

 Derivative:

 Often represented (using somewhat inaccurate notation) as ௗ௬
ௗ௫

 Or alternately (and more reasonably) as 

117

Scalar function of scalar argument



• Giving us that is a row vector: ଵ ஽

ଵ ଵ ଶ ଶ ஽ ஽

• The partial derivative ௜ gives us how increments when only ௜ is 
incremented

• Often represented as డ௬
డ௫೔

ଵ
ଵ

ଶ
ଶ

஽
஽

118

Note: is now a vector

Multivariate scalar function:
Scalar function of vector argument

ଵ

஽



• Where

o You may be more familiar with the term “gradient” which 
is actually defined as the transpose of the derivative

119

Note: is now a vector

Multivariate scalar function:
Scalar function of vector argument

ଵ

஽

We will be using this 
symbol for vector and
matrix derivatives



Caveat about following slides

• The following slides speak of optimizing a 
function w.r.t a variable “x”

• This is only mathematical notation.  In our actual 
network optimization problem we would be 
optimizing w.r.t. network weights “w”

• To reiterate – “x” in the slides represents the 
variable that we’re optimizing a function over 
and not the input to a neural network

• Do not get confused!
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The problem of optimization

• General problem of 
optimization: find 
the value of x where 
f(x) is minimum

f(x)

x

global minimum

inflection point

local minimum

global maximum

121



Finding the minimum of a function

• Find the value at which = 0
– Solve

• The solution is a “turning point”
– Derivatives go from positive to negative or vice versa at this point

• But is it a minimum? 
122
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Turning Points
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• Both maxima and minima have zero derivative

• Both are turning points



Derivatives of a curve

124

• Both maxima and minima are turning points

• Both maxima and minima have zero derivative

xf(x)

f ’(x)



Derivative of the derivative of the 
curve

125

• Both maxima and minima are turning points
• Both maxima and minima have zero derivative

• The second derivative f’’(x) is –ve at maxima and 
+ve at minima!

xf(x)

f ’(x)
f ’’(x)



Soln: Finding the minimum or 
maximum of a function

• Find the value at which = 0:    Solve

• The solution ௦௢௟௡ is a turning point
• Check the double derivative at ௦௢௟௡ : compute

ᇱᇱ
௦௢௟௡

௦௢௟௡

• If ᇱᇱ
௦௢௟௡ is positive ௦௢௟௡ is a minimum, otherwise it is a maximum

126
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A note on derivatives of functions of  
single variable

• All locations with zero 
derivative are critical points
– These can be local maxima, local 

minima, or inflection points

• The second derivative is 
– Positive (or 0) at minima

– Negative (or 0) at maxima

– Zero at inflection points

• It’s a little more complicated for 
functions of multiple variables

127

Critical points

Derivative is 0

maximum

minimum

Inflection point



A note on derivatives of functions of  
single variable

• All locations with zero 
derivative are critical points
– These can be local maxima, local 

minima, or inflection points

• The second derivative is 
– at minima

– at maxima

– Zero at inflection points

• It’s a little more complicated for 
functions of multiple variables..
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ଶ
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What about functions of multiple 
variables?

• The optimum point is still  “turning” point
– Shifting in any direction will increase the value
– For smooth functions, miniscule shifts will not result in any change at all

• We must find a point where shifting in any direction by a microscopic 
amount will not change the value of the function
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A brief note on derivatives of 
multivariate functions

130



The Gradient of a scalar function

• The derivative of a scalar function of a 
multi-variate input is a multiplicative factor that gives 
us the change in for tiny variations in 

– The gradient is the transpose of the derivative 131



Gradients of scalar functions with 
multi-variate inputs

• Consider 

• Relation:

132



Gradients of scalar functions with 
multi-variate inputs

• Consider 

• Relation:

133

This is a vector inner product.  To understand its behavior lets
consider a well-known property of inner products



A well-known vector property

• The inner product between two vectors of 
fixed lengths is maximum when the two 
vectors are aligned
– i.e. when 

134



Properties of Gradient
•

– The inner product between T and 

• Fixing the length of 
– E.g.

• is max if is aligned with 
– T

– The function f(X) increases most rapidly if the input 
increment is perfectly aligned to T

• The gradient is the direction of fastest increase in f(X)

135



Gradient

136

Gradient
vector ௑

𝑇



Gradient
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Gradient
vector ௑

𝑇

Moving in this 
direction increases 

fastest



Gradient
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Gradient
vector ௑

𝑇

Moving in this 
direction increases 

fastest
௑

𝑇

Moving in this 
direction decreases 

fastest



Gradient
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Gradient here
is 0

Gradient here
is 0



Properties of Gradient: 2

• The gradient vector ௑
𝑇 is perpendicular to the level curve
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The Hessian
• The Hessian of a function is 

given by the second derivative 
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Returning to direct optimization…
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Finding the minimum of a scalar 
function of a multi-variate input

• The optimum point is a turning point – the 
gradient will be 0
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Unconstrained Minimization of 
function (Multivariate)

1. Solve for the where the derivative (or gradient) 
equals to zero

2. Compute the Hessian Matrix at the candidate 
solution and verify that
– Hessian is positive definite (eigenvalues positive)  -> to 

identify local minima 
– Hessian is negative definite (eigenvalues negative) -> to 

identify local maxima

144
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Unconstrained Minimization of 
function (Example)

• Minimize

• Gradient 
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Unconstrained Minimization of 
function (Example)

• Set the gradient to null

• Solving the 3 equations system with 3 unknowns
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Unconstrained Minimization of 
function (Example)

• Compute the Hessian matrix

• Evaluate the eigenvalues of the Hessian matrix

• All the eigenvalues are positives => the Hessian 
matrix is positive definite

• The point                                is a minimum
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Closed Form Solutions are not always 
available

• Often it is not possible to simply solve 
– The function to minimize/maximize may have an 

intractable form

• In these situations, iterative solutions are used
– Begin with a “guess” for the optimal and refine it 

iteratively until the correct value is obtained
148
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Iterative solutions

• Iterative solutions
– Start from an initial guess ଴ for the optimal 
– Update the guess towards a (hopefully) “better” value of 
– Stop when no longer decreases

• Problems: 
– Which direction to step in
– How big must the steps be

149
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The Approach of Gradient Descent

• Iterative solution:  
– Start at some point
– Find direction in which to shift this point to decrease error

• This can be found from the derivative of the function
– A positive derivative moving left decreases error
– A negative derivative moving right decreases error

– Shift point in this direction
150



The Approach of Gradient Descent

• Iterative solution:  Trivial algorithm
 Initialize 

 While 

• If ᇱ ௞ is positive:
𝑥௞ାଵ = 𝑥௞ − 𝑠𝑡𝑒𝑝

• Else
𝑥௞ାଵ = 𝑥௞ + 𝑠𝑡𝑒𝑝

– What must step be to ensure we actually get to the optimum?151



The Approach of Gradient Descent

• Iterative solution:  Trivial algorithm
 Initialize 

 While 

• Identical to previous algorithm
152



The Approach of Gradient Descent

• Iterative solution:  Trivial algorithm
 Initialize 

 While 

• is the “step size”
153



Gradient descent/ascent (multivariate) 

• The gradient descent/ascent method to find the 
minimum or maximum of a function iteratively
– To find a maximum move in the direction of the 

gradient

– To find a minimum move exactly opposite the 
direction of the gradient

• Many solutions to choosing step size 
154



1. Fixed step size
• Fixed step size

– Use fixed value for 
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Influence of step size example
(constant step size)
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What is the optimal step size?

• Step size is critical for fast optimization
• Will revisit this topic later
• For now, simply assume a potentially-

iteration-dependent step size
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Gradient descent convergence criteria 

• The gradient descent algorithm converges 
when one of the following criteria is satisfied

• Or

158
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Overall Gradient Descent Algorithm

• Initialize: 




• do





• while 
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Next up

• Gradient descent to train neural networks

• A.K.A.  Back propagation
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