
Neural Networks
Learning the network: Part 1

11-785, Spring 2020
Lecture 3

1

Topics for the day

• The problem of learning
• The perceptron rule for perceptrons

– And its inapplicability to multi-layer perceptrons

• Greedy solutions for classification networks:
ADALINE and MADALINE

• Learning through Empirical Risk Minimization
• Intro to function optimization and gradient

descent

2

Recap

• Neural networks are universal function approximators
– Can model any Boolean function
– Can model any classification boundary
– Can model any continuous valued function

• Provided the network satisfies minimal architecture constraints
– Networks with fewer than the required number of parameters can be

very poor approximators

3

These boxes are functions

• Take an input
• Produce an output
• Can be modeled by a neural network!

N.Net
Voice
signal Transcription N.NetImage Text caption

N.Net
Game
State Next move

4

Questions

• Preliminaries:
– How do we represent the input?

– How do we represent the output?

• How do we compose the network that performs
the requisite function?

5

N.NetSomething
odd

Something
weird

Questions

• Preliminaries:
– How do we represent the input?

– How do we represent the output?

• How do we compose the network that performs
the requisite function?

6

N.NetSomething
odd

Something
weird

The original perceptron

• Simple threshold unit
– Unit comprises a set of weights and a threshold

7

ଵ

ଶ

ଷ

ே

Preliminaries: The units in the
network

• Perceptron
– General setting, inputs are real valued
– A bias representing a threshold to trigger the perceptron
– Activation functions are not necessarily threshold functions

8

+.....

ଵ

ଶ

ଷ

ே

ଵ

ଶ

ଷ

ே

௜ ௜

௜

Preliminaries: Redrawing the neuron

• The bias can also be viewed as the weight of another input
component that is always set to 1
– If the bias is not explicitly mentioned, we will implicitly be assuming

that every perceptron has an additional input that is always fixed at 1

9

+.....

ଵ

ଶ

ଷ

ே

ଵ

ଶ

ଷ

ே

ேିଵ

ேିଵ

ேାଵ

௜ ௜

௜

First: the structure of the network

• We will assume a feed-forward network
– No loops: Neuron outputs do not feed back to their inputs directly or

indirectly
– Loopy networks are a future topic

• Part of the design of a network: The architecture
– How many layers/neurons, which neuron connects to which and how, etc.

• For now, assume the architecture of the network is capable of
representing the needed function

10

What we learn: The parameters of the
network

• Given: the architecture of the network
• The parameters of the network: The weights and biases

– The weights associated with the blue arrows in the picture

• Learning the network : Determining the values of these parameters
such that the network computes the desired function

1

1

11

The network is a function f()
with parameters W which must

be set to the appropriate values
to get the desired behavior from
the net

1
1

• Moving on..

12

The MLP can represent anything

• The MLP can be constructed to represent anything
• But how do we construct it?

13

Option 1: Construct by hand

• Given a function, handcraft a network to satisfy it
• E.g.: Build an MLP to classify this decision boundary
• Not possible for all but the simplest problems..

14

-1,0

0,1

0,-1

1,0

Option 1: Construct by hand

15

-1,0

0,1

0,-1

1,0

1 -1
1

X1

X2

X1 X2

Assuming simple perceptrons:
output = 1 if ௜ ௜

௜ ௜

Option 1: Construct by hand

16

-1,0

0,1

0,-1

1,0
X1

X2

-1 -1
1

X1 X2

Assuming simple perceptrons:
output = 1 if ௜ ௜

௜ ௜

Option 1: Construct by hand

17

-1,0

0,1

0,-1

1,0
X1

X2

-1 1
1

X1 X2

Assuming simple perceptrons:
output = 1 if ௜ ௜

௜ ௜

Option 1: Construct by hand

18

-1,0

0,1

0,-1

1,0
X1

X2

1 1
1

X1 X2

Assuming simple perceptrons:
output = 1 if ௜ ௜

௜ ௜

Option 1: Construct by hand

19

-1,0

0,1

0,-1

1,0

1 -1
1

X1

X2

X1 X2

1 1
1

X1 X2

-1 -1
1

X1 X2

-1 1
1

X1 X2

X1 X2

1 -1
1 1

1 1 -1 -1
1 1

-1 1

-4
1 1 1

1

Assuming simple perceptrons:
output = 1 if ௜ ௜

௜ ௜

Option 1: Construct by hand

• Given a function, handcraft a network to satisfy it
• E.g.: Build an MLP to classify this decision boundary
• Not possible for all but the simplest problems..

20

-1,0

0,1

0,-1

1,0

Option 2: Automatic estimation
of an MLP

• More generally, given the function to
model, we can derive the parameters of the
network to model it, through computation

21

How to learn a network?

• When has the capacity to exactly represent

ௐ ௑

• div() is a divergence function that goes to zero when

22

Problem is unknown

• Function must be fully specified
– Known everywhere, i.e. for every input

• In practice we will not have such specification 23

Sampling the function

• Sample
– Basically, get input-output pairs for a number of samples of input ௜

• Many samples (𝑋௜, 𝑑௜), where 𝑑௜ = 𝑔 𝑋௜ + 𝑛𝑜𝑖𝑠𝑒

– Good sampling: the samples of will be drawn from

• Very easy to do in most problems: just gather training data
– E.g. set of images and their class labels
– E.g. speech recordings and their transcription 24

Xi

di

Drawing samples

• We must learn the entire function from these
few examples
– The “training” samples

Xi

di

25

Learning the function

• Estimate the network parameters to “fit” the training
points exactly
– Assuming network architecture is sufficient for such a fit
– Assuming unique output d at any X

• And hopefully the resulting function is also correct where we
don’t have training samples 26

Xi

di

Story so far

• “Learning” a neural network == determining the parameters of the
network (weights and biases) required for it to model a desired
function
– The network must have sufficient capacity to model the function

• Ideally, we would like to optimize the network to represent the
desired function everywhere

• However this requires knowledge of the function everywhere
• Instead, we draw “input-output” training instances from the

function and estimate network parameters to “fit” the input-output
relation at these instances
– And hope it fits the function elsewhere as well

27

Lets begin with a simple task

• Learning a classifier
– Simpler than regressions

• This was among the earliest problems
addressed using MLPs

• Specifically, consider binary classification
– Generalizes to multi-class

28

History: The original MLP

• The original MLP as proposed by Minsky: a
network of threshold units
– But how do you train it?

• Given only “training” instances of input-output pairs
29

+.....

ଵ

ଶ

ଷ

ே

ଵ

ଶ

ଷ

ே

௜ ௜

௜

The simplest MLP: a single perceptron

• Learn this function
– A step function across a hyperplane

30

x1

x2

x1

x2 1
0

• Learn this function
– A step function across a hyperplane

– Given only samples from it
31

x1

x2

x1

x2

The simplest MLP: a single perceptron

Learning the perceptron

• Given a number of input output pairs, learn the weights and bias

– ௜ ௜
ே
௜ୀଵ

– Learn ଵ ே
் , given several pairs

32

+.....

ଵ

ଶ

ଷ

ே

ଵ

ଶ

ଷ

ேx1

x2

Restating the perceptron

• Restating the perceptron equation by adding another dimension to

௜ ௜

ேାଵ

௜ୀଵ

where ேାଵ

• Note that the boundary ௜ ௜
ேାଵ
௜ୀଵ is now a hyperplane through origin

x1

x2

x3

xN
WN+1xN+1=1

33

The Perceptron Problem

• Find the hyperplane ௜ ௜
ேାଵ
௜ୀଵ that perfectly separates the two

groups of points
– Note: ଵ ଶ ேାଵ is a vector that is orthogonal to the hyperplane

• In fact the equation for the hyperplane itself means “the set of all Xs that are
orthogonal to 𝑊”

34

The Perceptron Problem

• Find the hyperplane ௜ ௜
ேାଵ
௜ୀଵ that perfectly separates the two groups

of points
– Note: ଵ ଶ ேାଵ

் is a vector that is orthogonal to the hyperplane
• In fact the equation for the hyperplane itself means “the set of all 𝑋s that are orthogonal

to 𝑊” (∑ 𝑤௜𝑋௜ = 𝑊்𝑋 = 0ேାଵ
௜ୀଵ)

35

The Perceptron Problem

• Learning the perceptron: Find the weights vector
such that is positive for all blue dots and

negative for all red ones
36

Key: Red -1, Blue = +1

Perceptron Algorithm: Summary

• Cycle through the training instances

• Only update on misclassified instances

• If instance misclassified:
– If instance is positive class (positive misclassified as

negative)

– If instance is negative class (negative misclassified
as positive)

37

Perceptron Learning Algorithm

• Given training instances ଵ ଵ ଶ ଶ ே ே

– ௜ or

• Initialize
• Cycle through the training instances:
• do

– For 𝑡𝑟𝑎𝑖𝑛

௜
்

௜

• If 𝑂(𝑋௜) ≠ 𝑦௜

௜ ௜

• until no more classification errors

38

Using a +1/-1 representation
for classes to simplify
notation

A Simple Method: The Perceptron
Algorithm

• Initialize: Randomly initialize the hyperplane
– I.e. randomly initialize the normal vector

• Classification rule ்

– Vectors on the same side of the hyperplane as will be assigned +1 class,
and those on the other side will be assigned -1

• The random initial plane will make mistakes 39

-1(Red)

+1 (blue)

Perceptron Algorithm

40

-1(Red)

Initialization

+1 (blue)

Perceptron Algorithm

41

-1(Red)

Misclassified positive instance

+1 (blue)

Perceptron Algorithm

42

-1(Red)

+1 (blue)

Perceptron Algorithm

43

Updated weight vector

Misclassified positive instance, add it to W

Perceptron Algorithm

44

-1(Red)

Updated hyperplane

+1 (blue)

Perceptron Algorithm

45

-1(Red)

Misclassified instance, negative class

+1 (blue)

Perceptron Algorithm

46

-1(Red)+1 (blue)

Perceptron Algorithm

47

-1(Red)

Misclassified negative instance, subtract it from W

+1 (blue)

Perceptron Algorithm

48

-1(Red)

Updated hyperplane

+1 (blue)

Perceptron Algorithm

49

-1(Red)

Perfect classification, no more updates

+1 (blue)

Convergence of Perceptron Algorithm

• Guaranteed to converge if classes are linearly
separable

– After no more than misclassifications

• Specifically when W is initialized to 0

– is length of longest training point
– is the best case closest distance of a training

point from the classifier
• Same as the margin in an SVM

– Intuitively – takes many increments of size to
undo an error resulting from a step of size

50

Perceptron Algorithm

51

-1(Red)

g is the best-case margin
R is the length of the longest vector

R

g g

+1 (blue)

History: A more complex problem

• Learn an MLP for this function
– 1 in the yellow regions, 0 outside

• Using just the samples
• We know this can be perfectly represented using an MLP

52

x2

More complex decision boundaries

• Even using the perfect architecture
• Can we use the perceptron algorithm?

– Making incremental corrections every time we encounter an error
53

x1 x2

x2

x1

The pattern to be learned at the
lower level

• The lower-level neurons are linear classifiers
– They require linearly separated labels to be learned
– The actually provided labels are not linearly separated
– Challenge: Must also learn the labels for the lowest units! 54

x1 x2

x2

x1

The pattern to be learned at the
lower level

• Consider a single linear classifier that must be
learned from the training data
– Can it be learned from this data? 55

x1 x2

x2

x1

The pattern to be learned at the
lower level

56

x1 x2

x2

x1

• Consider a single linear classifier that must be learned from the
training data
– Can it be learned from this data?
– The individual classifier actually requires the kind of labelling shown

here
• Which is not given!!

The pattern to be learned at the
lower level

• The lower-level neurons are linear classifiers
– They require linearly separated labels to be learned
– The actually provided labels are not linearly separated
– Challenge: Must also learn the labels for the lowest units! 57

x1 x2

x2

x1

The pattern to be learned at the
lower level

• For a single line:
– Try out every possible way of relabeling the blue dots

such that we can learn a line that keeps all the red dots
on one side! 58

x1 x2

x2

x1

The pattern to be learned at the
lower level

• This must be done for each of the lines (perceptrons)
• Such that, when all of them are combined by the higher-

level perceptrons we get the desired pattern
– Basically an exponential search over inputs 59

x1 x2

x2

x1

60

x1 x2

x2

Must know the output of every neuron
for every training instance, in order
to learn this neuron
The outputs should be such that the
neuron individually has a linearly
separable task
The linear separators must combine to
form the desired boundary

This must be done for every neuron

Getting any of them wrong will result in
incorrect output!

Individual neurons represent one of the lines
that compose the figure (linear classifiers)

Learning a multilayer perceptron

• Training this network using the perceptron rule is a combinatorial optimization
problems

• We don’t know the outputs of the individual intermediate neurons in the network
for any training input

• Must also determine the correct output for each neuron for every training
instance

• NP! Exponential time complexity

Training data only specifies
input and output of network

Intermediate outputs (outputs
of individual neurons) are not specified

61

x1 x2

Greedy algorithms: Adaline and
Madaline

• The perceptron learning algorithm cannot
directly be used to learn an MLP
– Exponential complexity of assigning intermediate

labels
• Even worse when classes are not actually separable

• Can we use a greedy algorithm instead?
– Adaline / Madaline
– On slides, will skip in class (check the quiz)

62

A little bit of History: Widrow

• First known attempt at an analytical solution to training
the perceptron and the MLP

• Now famous as the LMS algorithm
– Used everywhere
– Also known as the “delta rule”

Bernie Widrow
• Scientist, Professor, Entrepreneur
• Inventor of most useful things in

signal processing and machine
learning!

63

History: ADALINE

• Adaptive linear element
(Hopf and Widrow, 1960)

• Actually just a regular perceptron
– Weighted sum on inputs and bias passed

through a thresholding function

• ADALINE differs in the learning rule

Using 1-extended vector
notation to account for bias

64

History: Learning in ADALINE

• During learning, minimize the squared
error assuming to be real output

• The desired output is still binary!

Error for a single input

65

History: Learning in ADALINE

• If we just have a single training input,
the gradient descent update rule is

Error for a single input

66

The ADALINE learning rule

• Online learning rule
• After each input , that has

target (binary) output , compute
and update: ௜ ௜

௧

• This is the famous delta rule
– Also called the LMS update rule

67

The Delta Rule
• In fact both the Perceptron

and ADALINE use variants
of the delta rule!
– Perceptron: Output used in

delta rule is

– ADALINE: Output used to
estimate weights is

• For both 𝑥

𝑧

1

𝑦𝑑

𝛿

𝑥

𝑧

1

𝑦
𝑑

𝛿

Perceptron

ADALINE

68

Aside: Generalized delta rule
• For any differentiable activation function

the following update rule is used

𝒇(𝒛)

• This is the famous Widrow-Hoff update rule
– Lookahead: Note that this is exactly

backpropagation in multilayer nets if we let
represent the entire network between and

• It is possibly the most-used update rule in
machine learning and signal processing
– Variants of it appear in almost every problem

69

Multilayer perceptron: MADALINE

• Multiple Adaline
– A multilayer perceptron with threshold activations
– The MADALINE

+

+

+

+

+

70

MADALINE Training

• Update only on error
–

– On inputs for which output and target values differ

+

+

+

+

+

-

71

MADALINE Training

• While stopping criterion not met do:
– Classify an input
– If error, find the z that is closest to 0
– Flip the output of corresponding unit
– If error reduces:

• Set the desired output of the unit to the flipped value
• Apply ADALINE rule to update weights of the unit

+

+

+

+

+

72

MADALINE Training

• While stopping criterion not met do:
– Classify an input
– If error, find the z that is closest to 0
– Flip the output of corresponding unit
– If error reduces:

• Set the desired output of the unit to the flipped value
• Apply ADALINE rule to update weights of the unit

+

+

+

+

+

-

73

MADALINE Training

• While stopping criterion not met do:
– Classify an input
– If error, find the z that is closest to 0
– Flip the output of corresponding unit and compute new output
– If error reduces:

• Set the desired output of the unit to the flipped value
• Apply ADALINE rule to update weights of the unit

+

+

+

+

+

-

74

MADALINE Training

• While stopping criterion not met do:
– Classify an input
– If error, find the z that is closest to 0
– Flip the output of corresponding unit and compute new output
– If error reduces:

• Set the desired output of the unit to the flipped value
• Apply ADALINE rule to update weights of the unit

+

+

+

+

+

-

75

MADALINE

• Greedy algorithm, effective for small networks
• Not very useful for large nets

– Too expensive
– Too greedy

76

Story so far
• “Learning” a network = learning the weights and biases to compute a target function

– Will require a network with sufficient “capacity”

• In practice, we learn networks by “fitting” them to match the input-output relation of
“training” instances drawn from the target function

• A linear decision boundary can be learned by a single perceptron (with a threshold-
function activation) in linear time if classes are linearly separable

• Non-linear decision boundaries require networks of perceptrons

• Training an MLP with threshold-function activation perceptrons will require
knowledge of the input-output relation for every training instance, for every
perceptron in the network
– These must be determined as part of training
– For threshold activations, this is an NP-complete combinatorial optimization problem

77

History..

• The realization that training an entire MLP was
a combinatorial optimization problem stalled
development of neural networks for well over
a decade!

78

Why this problem?

• The perceptron is a flat function with zero derivative everywhere,
except at 0 where it is non-differentiable
– You can vary the weights a lot without changing the error
– There is no indication of which direction to change the weights to

reduce error 79

This only compounds on larger
problems

• Individual neurons’ weights can change significantly without changing
overall error

• The simple MLP is a flat, non-differentiable function
– Actually a function with 0 derivative nearly everywhere, and no derivatives at

the boundaries
80

x1 x2

x2

A second problem: What we actually
model

• Real-life data are rarely clean
– Not linearly separable
– Rosenblatt’s perceptron wouldn’t work in the first

place
81

Solution

• Lets make the neuron differentiable, with non-zero derivatives over
much of the input space
– Small changes in weight can result in non-negligible changes in output
– This enables us to estimate the parameters using gradient descent

techniques..
82

+.....

ଵ

ଶ

ଷ

ே

ଵ

ଶ

ଷ

ே

ேିଵ

ேିଵ

ேାଵ

Differentiable Activations: An aside

• This particular one has a nice interpretation

83

+.....

ଵ

ଶ

ଷ

ே

ଵ

ଶ

ଷ

ே

ேିଵ

ேିଵ

ேାଵ

ି௭

௜ ௜

௜

Non-linearly separable data

• Two-dimensional example
– Blue dots (on the floor) on the “red” side
– Red dots (suspended at Y=1) on the “blue” side
– No line will cleanly separate the two colors

84

84

x1

x2

Non-linearly separable data: 1-D example

• One-dimensional example for visualization
– All (red) dots at Y=1 represent instances of class Y=1
– All (blue) dots at Y=0 are from class Y=0
– The data are not linearly separable

• In this 1-D example, a linear separator is a threshold
• No threshold will cleanly separate red and blue dots

85

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of Y=1 at that point

86

x

y

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

87

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

88

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

89

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

90

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

91

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

92

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

93

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

94

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

95

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

96

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

97

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

98

x

y

The probability of y=1

The logistic regression model

• Class 1 becomes increasingly probable going left to right
– Very typical in many problems

99

y=0

y=1

x

ି௫

Logistic regression

• This the perceptron with a sigmoid activation
– It actually computes the probability that the input belongs to class 1

100

When X is a 2-D variable

x1

x2

Decision: y > 0.5?

௜ ௜

௜

Perceptrons and probabilities

• We will return to the fact that perceptrons
with sigmoidal activations actually model class
probabilities in a later lecture

• But for now moving on..

101

Perceptrons with differentiable
activation functions

• is a differentiable function of

–
ௗఙ ௭

ௗ௭
is well-defined and finite for all

• Using the chain rule, is a differentiable function of both inputs 𝒊 and
weights 𝒊

• This means that we can compute the change in the output for small
changes in either the input or the weights 102

+.....

ଵ

ଶ

ଷ

ே

ଵ

ଶ

ଷ

ே

ேିଵ

ேିଵ

ேାଵ

௜ ௜

௜

೔ ೔

೔ ೔

Overall network is differentiable

• Every individual perceptron is differentiable w.r.t its inputs
and its weights (including “bias” weight)

• By the chain rule, the overall function is differentiable w.r.t
every parameter (weight or bias)
– Small changes in the parameters result in measurable changes in

output

ଵ,ଵ
ଶ

ଶ,ଵ
ଶ

= output of overall network

௜,௝
௞ = weight connecting the ith unit
of the kth layer to the jth unit of
the k+1-th layer

௜
௞ = output of the ith unit of the kth layer

is differentiable w.r.t both and ௜
௞

103

Figure does not show
bias connections

Overall function is differentiable

1

104

• The overall function is differentiable w.r.t every parameter
– Small changes in the parameters result in measurable changes

in the output
– We will derive the actual derivatives using the chain rule later

Overall setting for “Learning” the MLP

• Given a training set of input-output pairs ଵ ଵ ଶ 2 ே ே

– is the desired output of the network in response to
– and may both be vectors

• …we must find the network parameters such that the network produces the
desired output for each training input
– Or a close approximation of it
– The architecture of the network must be specified by us

105

Recap: Learning the function

• When has the capacity to exactly represent

ௐ ௑

• div() is a divergence function that goes to zero when

106

Minimizing expected error

• More generally, assuming is a random variable

107

Recap: Sampling the function

• Sample
– Basically, get input-output pairs for a number of samples of

input ௜

• Many samples ௜ ௜ , where ௜ ௜

– Good sampling: the samples of will be drawn from

• Estimate function from the samples
108

Xi

di

The Empirical risk

• The expected error (or risk) is the average error over the entire input space

௑

• The empirical estimate of the expected error (or risk) is the average error over the samples

௜ ௜

ே

௜ୀଵ 109

Xi

di

Empirical Risk Minimization

• Given a training set of input-output pairs ଵ ଵ ଶ 2 ே ே

– Error on the ith instance: ௜ ௜

– Empirical average error (Empirical Risk) on all training data:

௜ ௜

௜

• Estimate the parameters to minimize the empirical estimate of expected
error (empiricial risk)

ௐ

– I.e. minimize the empirical risk over the drawn samples 110

Empirical Risk Minimization

• Given a training set of input-output pairs ଵ ଵ ଶ 2 ே ே

– Error on the ith instance: ௜ ௜

– Empirical average error on all training data:

௜ ௜

௜

• Estimate the parameters to minimize the empirical estimate of expected
error

ௐ

– I.e. minimize the empirical error over the drawn samples 111

Note : Its really a measure of error, but using standard terminology,
we will call it a “Loss”
Note 2: The empirical risk is only an empirical approximation
to the true risk which is our actual minimization
objective

ERM for neural networks

– What is the exact form of Div()? More on this later

• Optimize network parameters to minimize the
total error over all training inputs

Actual output of network:

Desired output of network:

Error on i-th training input:

ଵ ଶ ௄

Average training error(loss):

112

Problem Statement
• Given a training set of input-output pairs

• Minimize the following function

w.r.t

• This is problem of function minimization
– An instance of optimization

113

Story so far
• We learn networks by “fitting” them to training instances drawn from a target function

• Learning networks of threshold-activation perceptrons requires solving a hard
combinatorial-optimization problem
– Because we cannot compute the influence of small changes to the parameters on the overall error

• Instead we use continuous activation functions with non-zero derivatives to enables us
to estimate network parameters
– This makes the output of the network differentiable w.r.t every parameter in the network
– The logistic activation perceptron actually computes the a posteriori probability of the output given

the input

• We define differentiable divergence between the output of the network and the
desired output for the training instances
– And a total error, which is the average divergence over all training instances

• We optimize network parameters to minimize this error
– Empirical risk minimization

• This is an instance of function minimization
114

• A CRASH COURSE ON FUNCTION
OPTIMIZATION

115

A brief note on derivatives..

• A derivative of a function at any point tells us how
much a minute increment to the argument of the
function will increment the value of the function
 For any expressed as a multiplier to a tiny

increment to obtain the increments to the output

 Based on the fact that at a fine enough resolution, any
smooth, continuous function is locally linear at any point 116

derivative

• When and are scalar

 Derivative:

 Often represented (using somewhat inaccurate notation) as ௗ௬
ௗ௫

 Or alternately (and more reasonably) as

117

Scalar function of scalar argument

• Giving us that is a row vector: ଵ ஽

ଵ ଵ ଶ ଶ ஽ ஽

• The partial derivative ௜ gives us how increments when only ௜ is
incremented

• Often represented as డ௬
డ௫೔

ଵ
ଵ

ଶ
ଶ

஽
஽

118

Note: is now a vector

Multivariate scalar function:
Scalar function of vector argument

ଵ

஽

• Where

o You may be more familiar with the term “gradient” which
is actually defined as the transpose of the derivative

119

Note: is now a vector

Multivariate scalar function:
Scalar function of vector argument

ଵ

஽

We will be using this
symbol for vector and
matrix derivatives

Caveat about following slides

• The following slides speak of optimizing a
function w.r.t a variable “x”

• This is only mathematical notation. In our actual
network optimization problem we would be
optimizing w.r.t. network weights “w”

• To reiterate – “x” in the slides represents the
variable that we’re optimizing a function over
and not the input to a neural network

• Do not get confused!

120

The problem of optimization

• General problem of
optimization: find
the value of x where
f(x) is minimum

f(x)

x

global minimum

inflection point

local minimum

global maximum

121

Finding the minimum of a function

• Find the value at which = 0
– Solve

• The solution is a “turning point”
– Derivatives go from positive to negative or vice versa at this point

• But is it a minimum?
122

x

f(x)

Turning Points

123

0

+
+

+

0

+
+

+

+

+

+

0

- - -

- ----- - -

• Both maxima and minima have zero derivative

• Both are turning points

Derivatives of a curve

124

• Both maxima and minima are turning points

• Both maxima and minima have zero derivative

xf(x)

f ’(x)

Derivative of the derivative of the
curve

125

• Both maxima and minima are turning points
• Both maxima and minima have zero derivative

• The second derivative f’’(x) is –ve at maxima and
+ve at minima!

xf(x)

f ’(x)
f ’’(x)

Soln: Finding the minimum or
maximum of a function

• Find the value at which = 0: Solve

• The solution ௦௢௟௡ is a turning point
• Check the double derivative at ௦௢௟௡ : compute

ᇱᇱ
௦௢௟௡

௦௢௟௡

• If ᇱᇱ
௦௢௟௡ is positive ௦௢௟௡ is a minimum, otherwise it is a maximum

126

x

f(x)

A note on derivatives of functions of
single variable

• All locations with zero
derivative are critical points
– These can be local maxima, local

minima, or inflection points

• The second derivative is
– Positive (or 0) at minima

– Negative (or 0) at maxima

– Zero at inflection points

• It’s a little more complicated for
functions of multiple variables

127

Critical points

Derivative is 0

maximum

minimum

Inflection point

A note on derivatives of functions of
single variable

• All locations with zero
derivative are critical points
– These can be local maxima, local

minima, or inflection points

• The second derivative is
– at minima

– at maxima

– Zero at inflection points

• It’s a little more complicated for
functions of multiple variables..

128

ଶ

ଶ

maximum

minimum

Inflection point

negative

positive

zero

What about functions of multiple
variables?

• The optimum point is still “turning” point
– Shifting in any direction will increase the value
– For smooth functions, miniscule shifts will not result in any change at all

• We must find a point where shifting in any direction by a microscopic
amount will not change the value of the function

129

A brief note on derivatives of
multivariate functions

130

The Gradient of a scalar function

• The derivative of a scalar function of a
multi-variate input is a multiplicative factor that gives
us the change in for tiny variations in

– The gradient is the transpose of the derivative 131

Gradients of scalar functions with
multi-variate inputs

• Consider

• Relation:

132

Gradients of scalar functions with
multi-variate inputs

• Consider

• Relation:

133

This is a vector inner product. To understand its behavior lets
consider a well-known property of inner products

A well-known vector property

• The inner product between two vectors of
fixed lengths is maximum when the two
vectors are aligned
– i.e. when

134

Properties of Gradient
•

– The inner product between T and

• Fixing the length of
– E.g.

• is max if is aligned with
– T

– The function f(X) increases most rapidly if the input
increment is perfectly aligned to T

• The gradient is the direction of fastest increase in f(X)

135

Gradient

136

Gradient
vector ௑

𝑇

Gradient

137

Gradient
vector ௑

𝑇

Moving in this
direction increases

fastest

Gradient

138

Gradient
vector ௑

𝑇

Moving in this
direction increases

fastest
௑

𝑇

Moving in this
direction decreases

fastest

Gradient

139

Gradient here
is 0

Gradient here
is 0

Properties of Gradient: 2

• The gradient vector ௑
𝑇 is perpendicular to the level curve

140

The Hessian
• The Hessian of a function is

given by the second derivative

141




























































2

2

2

2

1

2

2

2

2
2

2

12

2
1

2

21

2

2
1

2

1
2

..

.....

.....

..

..

:),...,(

nnn

n

n

n

x

f

xx

f

xx

f

xx

f

x

f

xx

f
xx

f

xx

f

x

f

xxfX

Returning to direct optimization…

142

Finding the minimum of a scalar
function of a multi-variate input

• The optimum point is a turning point – the
gradient will be 0

143

Unconstrained Minimization of
function (Multivariate)

1. Solve for the where the derivative (or gradient)
equals to zero

2. Compute the Hessian Matrix at the candidate
solution and verify that
– Hessian is positive definite (eigenvalues positive) -> to

identify local minima
– Hessian is negative definite (eigenvalues negative) -> to

identify local maxima

144

0)( XfX

Unconstrained Minimization of
function (Example)

• Minimize

• Gradient

145

3
2

332
2

221
2

1321)()()1()(),,(xxxxxxxxxxxf 























12

2

12

32

321

21

xx

xxx

xx

f T
X

Unconstrained Minimization of
function (Example)

• Set the gradient to null

• Solving the 3 equations system with 3 unknowns

146








































0

0

0

12

2

12

 0

32

321

21

xx

xxx

xx

fX

x 

x1

x2

x3




















1
1
1

















Unconstrained Minimization of
function (Example)

• Compute the Hessian matrix

• Evaluate the eigenvalues of the Hessian matrix

• All the eigenvalues are positives => the Hessian
matrix is positive definite

• The point is a minimum

147























210

121

012
2 fX

l1  3.414, l2  0.586, l3  2

x 

x1

x2

x3




















1
1
1

















Closed Form Solutions are not always
available

• Often it is not possible to simply solve
– The function to minimize/maximize may have an

intractable form

• In these situations, iterative solutions are used
– Begin with a “guess” for the optimal and refine it

iteratively until the correct value is obtained
148

X

f(X)

Iterative solutions

• Iterative solutions
– Start from an initial guess ଴ for the optimal
– Update the guess towards a (hopefully) “better” value of
– Stop when no longer decreases

• Problems:
– Which direction to step in
– How big must the steps be

149

f(X)

X
x0 x1 x2 x3

x4

x5
଴

ଵ

ଶ

The Approach of Gradient Descent

• Iterative solution:
– Start at some point
– Find direction in which to shift this point to decrease error

• This can be found from the derivative of the function
– A positive derivative moving left decreases error
– A negative derivative moving right decreases error

– Shift point in this direction
150

The Approach of Gradient Descent

• Iterative solution: Trivial algorithm
 Initialize

 While

• If ᇱ ௞ is positive:
𝑥௞ାଵ = 𝑥௞ − 𝑠𝑡𝑒𝑝

• Else
𝑥௞ାଵ = 𝑥௞ + 𝑠𝑡𝑒𝑝

– What must step be to ensure we actually get to the optimum?151

The Approach of Gradient Descent

• Iterative solution: Trivial algorithm
 Initialize

 While

• Identical to previous algorithm
152

The Approach of Gradient Descent

• Iterative solution: Trivial algorithm
 Initialize

 While

• is the “step size”
153

Gradient descent/ascent (multivariate)

• The gradient descent/ascent method to find the
minimum or maximum of a function iteratively
– To find a maximum move in the direction of the

gradient

– To find a minimum move exactly opposite the
direction of the gradient

• Many solutions to choosing step size
154

1. Fixed step size
• Fixed step size

– Use fixed value for

155

Influence of step size example
(constant step size)

156

2
221

2
121)(4)(),(xxxxxxf  xinitial  3

3











2.01.0

x0 x0

What is the optimal step size?

• Step size is critical for fast optimization
• Will revisit this topic later
• For now, simply assume a potentially-

iteration-dependent step size

157

Gradient descent convergence criteria

• The gradient descent algorithm converges
when one of the following criteria is satisfied

• Or

158

f (xk1) f (xk) <e1

2)(e< k
x xf

Overall Gradient Descent Algorithm

• Initialize:




• do





• while

159

Next up

• Gradient descent to train neural networks

• A.K.A. Back propagation

160

