Neural Networks
Learning the network: Backprop

11-785, Spring 2020
Lecture 4

Recap: The MLP can represent any

fu nction/
g(X)

* The MLP can be constructed to represent anything

e But how do we construct it?

— l.e. how do we determine the weights (and biases) of the network to
best represent a target function

* Assuming that the architecture of the network is given

Recap: How to learn the function

%\

* By minimizing expected error

—

W = argmin f div(f (X; W), g(X))P(X)dX
w X

= argmin E[div(f(X; W), g(X))|
w

Recap: Sampling the function

* g(X) is unknown, so sample it

— Basically, get input-output pairs for a number of samples of
input X;

— Good sampling: the samples of X will be drawn from P(X)

e Estimate function from the samples

The Empirical risk

/

 The empirical estimate of the expected error is the average error over the samples

E[div(f G W), g(0)] ~ Zdw(f(Xl,W) dy)

e This approximation is an unbiased estimate of the expected divergence that we
actually want to estimate
— We can hope that minimizing the empirical loss will minimize the true loss
— Caveat: This hope is generally not based on anything but, well, hope.. 5

Empirical Risk Minimization

Y =fX;W)

* Given a training set of input-output pairs (X;,d;), (X5, d,), ..., X7,dr)
— Error on the i-th instance: div(f(X; W), d;)
— Empirical average error on all training data:

Loss(W) = %z div(f(X; W), d;)

* Estimate the parameters to minimize the empirical estimate of expected
error

—

W = argmin Loss(W)
w

— l.e. minimize the empirical error over the drawn samples

Empirical Risk Minimization

Y =fX;W)

This is an instance of
function minimization
(optimization)

|

* Given a training set of input-output pairs (X;,d;), X5, d,), ..., (X7,dr)
— Error on the i-th instance: div(f(X; W), d;)
— Empirical average error on all training data:

Loss(W) = %z div(f(X; W), d;)

* Estimate the parameters to minimize the empirical estimate of expected
error

—

W = argmin Loss(W)
w

— l.e. minimize the empirical error over the drawn samples 5

* A CRASH COURSE ON FUNCTION
OPTIMIZATION

The problem of optimization

f(x)

global maximum

inflection point

local minimum

gldbal minimum o

o /

* General problem of
optimization: find
the value of x where '
f(x) is minimum A

o

Finding the minimum of a function

A

fx)

X

Find the value x at which f'(x) =0
— Solve

af @) _
dx
The solution is a “turning point”
— Derivatives go from positive to negative or vice versa at this point

But is it a minimum?

10

Turning Points

* Bot
e Bot

N maxima and minima have zero derivative

N are turning points

11

Derivatives of a curve

* Bot
e Bot

N Maxima anc

N Maxima anc

minima are turning points

minima have zero derivative

12

Derivative of the derivative of the
curve

e Both maxima and minima are turning points
 Both maxima and minima have zero derivative

* The second derivative f”’(x) is —ve at maxima and
+ve at minimal

13

Soln: Finding the minimum or
. maximum of a function

>
X
Find the value x at which f'(x) =0: Solve
dfeo _
dx

The solution x,;5, is a turning point
Check the double derivative at x¢,;,, : compute

df’ soln
f”(xsoln) — ! (C)lcx in)

If " (X5011,) iS pOSitive Xg,1,, iS @ minimum, otherwise it is a maximum

14

A note on derivatives of functions of
single variable

2 T T T
maximum . .
. 1 All locations with zero
Inflection point X
f(x) of—— T~ derivative are critical points
N minimum 7 — These can be local maxima, local
-2 /, Tl T : :

ne®

. T 2000 300D 4000 5000 6000 minima, or inflection points
Critical points
£ T

df(x) |
dx ’

-1+

72 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000

Derivative is O

15

A note on derivatives of functions of
single variable

2 T T T
maximum . .
il \ i » All locations with zero
Inflection point X
f(x) o \ derivative are critical points
A+ g .
| | | minimum | — These can be local maxima, local
_20 1000 2000 3000 4000 5000 6000 minima’ or inflection points
2
. | Y C e
af () | The second derivative is

— = 0 at minima
-1+
5 | — < 0 at maxima
_ 0 1000 2000 3000 4000 5000 6000 . . .

— Zero at inflection points
) positivé
2r]

d2f (x), zero / * It’s a little more complicated for
2l / | functions of multiple variables..
negative
“ ' | ' | | ' 16
0 1000 2000 3000 4000 5000 6000

What about functions of multiple

variables?
7,&&% };3; j___ﬁ
%, = ﬁ”ﬂ .. %\/

Jr it
i

gl N _ ?’ 1 y
£ 03
| ; \ #ﬂ: “".' e *'*“# ".__?-_____ z
Mg RN

The optimum point is still “turning” point
— Shifting in any direction will increase the value
— For smooth functions, miniscule shifts will not result in any change at all

We must find a point where shifting in any direction by a microscopic
amount will not change the value of the function

17

Gradient

Gradient
- vector Vy f(X)T

The gradient is the direction of fastest increase of the function e

Gradient

ks

.....

Gradient
| vector Vy f(X)T

Moving in this
direction increases
f(X) fastest

_af - L
|l
|
¥
Iy :
|
| !
o
: _H__q_|
= j‘ .ll-"l-
= I s
L — :
e e —
e e -
‘-\-‘I.:-\'\- e - - .I..
Iy ™ :H-'-\._?:T—\"—_ 2
- B g
- e T . o 15
- ——
12 i A 1a
s 5
iLs]
“
2

19

Gradient

i5 e i

1.2 et

ks

Q4 _r._..-'-"'

N

Moving in this
direction decreases
f(X) fastest

e |
5
|'ﬁ .
|
-____H_- |
. i T .
e i !
=== —_——
o ! - f '-n“_
= -\.\‘_"-._.\- o
- ..- '.-Ij: e 4
- - .o-.".'- - - o
S e 15
12 e 10
) 5
15
d
=

Gradient
vector Vy f(X)T

Moving in this
direction increases
f(X) fastest

20

lent

Grad

Gradient here

Gradient here I+

isO

21

Properties of Gradient: 2

* The gradient vector Vy f(X)' is perpendicular to the level curve
22

The Hessian

* The Hessian of a function f (x4, X5, ..., Xy,) is
given by the second derivative

o f Of > f |

ox, oxox, oOxox,

O*f 8 f o f

V2 (X)X,) 1= ox,0x, ox,0 Ox,0x,
;f &f &

| Ox,0x; 0Ox,0x,) |

Finding the minimum of a scalar
function of a multi-variate input

* The optimum point is a turning point — the
gradient will be 0

24

Unconstrained Minimization of
function (Multivariate)

1. Solve for the X where the derivative (or gradient)
equals to zero

Vi f(X)=0

2. Compute the Hessian Matrix V7 f(X) at the candidate
solution and verify that

— Hessian is positive definite (eigenvalues positive) -> to
identify local minima

— Hessian is negative definite (eigenvalues negative) -> to
identify local maxima

Closed Form Solutions are not always
1 available

f(X)

> X

 Often it is not possible to simply solve V,f(X) =0

— The function to minimize/maximize may have an
intractable form

* In these situations, iterative solutions are used

— Begin with a “guess” for the optimal X and refine it
iteratively until the correct value is obtained

Iterative solutions

f(X)

EE > X

Xo X% Xsf X3
X4

* |terative solutions
— Start from an initial guess X, for the optimal X
— Update the guess towards a (hopefully) “better” value of f(X)
— Stop when f(X) no longer decreases
* Problems:
— Which direction to step in
— How big must the steps be

27

The Approach of Gradient Descent

E
NEGATIVE SLOPE
. POSITIVE SLOPE

A IB DAL :
._—.' 4—

* |terative solution:
— Start at some point
— Find direction in which to shift this point to decrease error

* This can be found from the derivative of the function
— A positive derivative = moving left decreases error
— A negative derivative = moving right decreases error

— Shift point in this direction

28

The Approach of Gradient Descent

E
NEGATIVE SLOPE

POSITIVE SLOPE

. GLOBAL X
P B 00 06 L0 ;
._—.' 4—
Decrease w Increase w

* |terative solution: Trivial algorithm

= |nitialize x°
= While f'(x*) # 0

. If sign (f’(xk)) is positive:

k+1 k

X"t = x" — step

* Else

k+

x*tl = xk + step

29

The Approach of Gradient Descent

NEGATIVE SLOPE
: POSITIVE SLOPE

i

5 GLOBAL (

1 T :
Decrease w Increase w

* |terative solution: Trivial algorithm

= |nitialize x©

= While f'(x*) # 0
xR+l = x* — sign (f’(xk)) .step

* |dentical to previous algorithm

30

The Approach of Gradient Descent

E
NEGATIVE SLOPE
: POSITIVE SLOPE

i

5 GLOBAL (

1 T :
Decrease w Increase w

* |terative solution: Trivial algorithm

= |nitialize x©

= While f'(x*) # 0
K+l — ok _ nkfl(xk)

» 1% is the “step size”

31

Gradient descent/ascent (multivariate)

* The gradient descent/ascent method to find the
minimum or maximum of a function f iteratively

— To find a maximum move in the direction of the
gradient

T
xR+l — ok 4 nkvxf(xk)
— To find a minimum move exactly opposite the
direction of the gradient

k+1 — ok _ nkvxf(xk)T

» Many solutions to choosing step size n*

Gradient descent convergence criteria

* The gradient descent algorithm converges
when one of the following criteria is satisfied

S =fON<g gy S

. lteration 3

e Or

' lteration 4

V. [<e,

Convergence

Final
Value

[T N | |
T EEEEE >

33

Overall Gradient Descent Algorithm

* |nitialize:
. x0
" k=0
[do
kL — ok nkvxf(xk)T
sk=k+1
o| while [f(x**1) — f(x*)| > ¢

34

Convergence of Gradient Descent

* For appropriate step
size, for convex (bowl-
shaped) functions
gradient descent will
always find the
minimum.

* For non-convex
functions it will find a
local minimum or an
inflection point

35

* Returning to our problem..

Problem Statement

* Given a training set of input-output pairs
(Xl; dl)i (XZ; dZ)J L (XTJ dT)

* Minimize the following function

Loss(W) = %2 div(f(X; W), d;)
w.r.t W

* This is problem of function minimization

— An instance of optimization

Preliminaries

* Before we proceed: the problem setup

Problem Setup: Things to define

* Given a training set of input-output pairs
(X1; dl)) (Xz, dZ)i L (XT' dT)
- \/

 |What are these input-output pairs?

Loss(W) = %2 div(f(X; W), d;)

39

Problem Setup: Things to define

* Given a training set of input-output pairs
(X1; dl)J (Xz, dZ)i L (XT' dT)
- \/

. |What are these input-output pairs?

1
Loss(W) = —2 div(f(X; W), d;)

What is f() and
what are its
parameters W?

Problem Setup: Things to define

Given a training set of input-output pairs
(X1; dl)J (Xz, dZ)i L (XT' dT)
- \/

What are these input-output pairs?

1
Lowdiv(ﬂxii W), d;)

What is the mlﬁfai:efi(,r)sand
divergence div()?

parameters W?

Problem Setup: Things to define

* Given a training set of input-output pairs
(X1; dl)) (Xz, dZ)J L (XT' dT)

* Minimize the following function

1
Loss(W) = —2 div(f(X; W), d;)

What is f() and
what are its
parameters W?

42

What is f()? Typical network

Input _ _
P Hidden units
units g Output
= o =% ° =% units
o
= Z ;¥?; 3 jj#
.

* Multi-layer perceptron

* Adirected network with a set of inputs and
outputs

— No loops

43

Typical network

Input

Layer _ Output

Hidden Layers

We assume a “layered” network for simplicity

— Each “layer” of neurons only gets inputs from the earlier layer(s)
and outputs signals only to later layer(s)

— We will refer to the inputs as the input layer

* No neurons here — the “layer” simply refers to inputs
— We refer to the outputs as the output layer
— Intermediate layers are “hidden” layers »

—_— _{_\—_
= ﬂ'"‘::,_r_::—.::_'_"_-_ g
S e <
T R S TR output layer
) = z R
o : N
S R :
- B
= it ; >
o - z A
4 R e 25
s e e
St S W e
py

The individual neurons

Individual neurons operate on a set of inputs and produce a single
output

— Standard setup: A differentiable activation function applied to an
affine combination of the inputs

yzf(zwixi+b>

— More generally: any differentiable function
y — f(xl’xZ""’xN; W) 45

The individual neurons

output layer

o}
iy
X

* Individual neurons operate on a set of inputs and produce a single

output

— Standard setup: A differentiable activation function applied to an

affine combination of the input

yzf(zwixi'l'b) —

— More generally: any differentiable function

y = f(x1:xz» o XN W)

We will assume this
unless otherwise
specified

Parameters are weights

w; and bias b

46

Activations and their derivatives

f'(2) = f(2)(A - f(2)

f(2) = 1+ exp(—2z)

/. f(@=tanh(z) f'@=Q0-f*@)

1,z=0

: . . _)% z=0 3 ! =
J[=5 V f(z) = {0, z<0 Fre) {O,Z <0

f(z) =log(1 + exp(z)) f@) = 1+ exp(—2z)

 Some popular activation functions and their
derivatives

Vector Activations

Input Hidden Layers
Layer) Output

— — —

- e = Layer

* We can also have neurons that have multiple coupled
outputs

[yl' Y2, ---;yl] — f(lexZJ ey X W)

— Function f () operates on set of inputs to produce set of
outputs

— Modifying a single parameter in W will affect all outputs

48

Vector activation example: Softmax

— > VI

X o 3+ HhoQo v

* Example: Softmax vector activation

Zi = z W]lX] ~+ bi
J

y:

Parameters are
WelghTS le'
C(nd biC(S bi

exp(z;)

% exp(z;)

49

Multiplicative combination: Can be
viewed as a case of vector activations

X z y

Zi = Z Wjin ~+ bi
J

Yi = H(Zz)“”
l

Parameters are
welghTS le'
and bias b;

* A layer of multiplicative combination is a special case of vector activatiogO

Typical network

Input

Hidden Layers

i W

* |n a layered network, each layer of

perceptrons can be viewed as a single vector
activation

51

Notation

The input layer is the 0" layer

We will represent the output of the i-th perceptron of the k" layer as y.(k)

l
— Input to network: y.(o)

i =X

(V)

i

— Output of network: y; =
We will represent the weight of the connection between the i-th unit of

the k-1th layer and the jth unit of the k-th layer as Wl-(;c)

— The bias to the jth unit of the k-th layer is bj(k)

52

Problem Setup: Things to define

* Given a training set of input-output pairs
(X1; dl)) (Xz, dZ)i L (XT' dT)
- \/

 |What are these input-output pairs?

Loss(W) = %2 div(f(X; W), d;)

53

Vector notation

X1 - ey
= _.—f:;/ \._;E <t
= output layer
)
= ’
v . y 1
“ 2
! =
i o
e ~ YL
= s ¢~
L e oo
X — i e
D py

Given a training set of input-output pairs (X;,d,), (X5, d,), ..., X, dr)
Xy = [Xn1, Xn2, -, Xnp] is the nth input vector
d, = |dn1,dya, ..., dyyp] is the nth desired output

Y, = [Vn1, Yn2 -, Ynr] is the nth vector of actual outputs of the
network

We will sometimes drop the first subscript when referring to a specific
instance

54

Representing the input

Input
Layer

* Vectors of numbers

Hidden Layers
Output

—— - — i

- = Layer

(or may even be just a scalar, if input layer is of size 1)

E.g. vector of pixel values

E.g. vector of speech features

E.g. real-valued vector representing text

* We will see how this happens later in the course

Other real valued vectors

55

Representing the output

In :
put Hidden Layers
Layer N Output
—— X : Layer
2 . N
put | . : N
7 . —
S Zos =

* If the desired output is real-valued, no special tricks are necessary
— Scalar Output : single output neuron
* d=scalar (real value)

— Vector Output : as many output neurons as the dimension of the
desired output

* d=[d,d,..d] (vector of real values)

56

Representing the output

* |f the desired output is binary (is this a cat or not), use
a simple 1/0 representation of the desired output

— 1 =Yesit’s a cat
— 0 =No it’s not a cat.

57

Representing the output

i 1

* |f the desired output is binary (is this a cat or not), use
a simple 1/0 representation of the desired output

e Qutput activation: Typically a sigmoid
— Viewed as the probability P(Y = 1|X) of class value 1

* Indicating the fact that for actual data, in general a feature value X
may occur for both classes, but with different probabilities

e |s differentiable .

input layer

Representing the output

hidden layers

Input Hidden Output
layer layer layer

If the desired output is binary (is this a cat or not), use a simple 1/0 representation of the desired
output

— 1=Yesit'sacat

— 0=Noit’s not a cat.

Sometimes represented by two outputs, one representing the desired output, the other
representing the negation of the desired output
— Yes: 2> [10]
— No:~>[01]
The output explicitly becomes a 2-output softmax
59

Multi-class output: One-hot
representations

Consider a network that must distinguish if an input is a cat, a dog, a
camel, a hat, or a flower

We can represent this set as the following vector:
[cat dog camel hat flower]’
For inputs of each of the five classes the desired output is:
cat: [10000]T
dog: [01000]"
camel: [00100]T
hat: [00010]T
flower: [00001]7

For an input of any class, we will have a five-dimensional vector output
with four zeros and a single 1 at the position of that class

This is a one hot vector

Multi-class networks

Input

Hidden L
Laver idden Layers

BT V. E— Output
= 0% 0 =% Layer

—

L

= e
vt 2l *

S 7 3 . - o

For a multi-class classifier with N classes, the one-hot
representation will have N binary target outputs (d)

— An N-dimensional binary vector

The neural network’s output too must ideally be binary (N-1 zeros
and a single 1 in the right place)

More realistically, it will be a probability vector
— N probability values that sum to 1.

61

Multi-class classification: Output

Input Hidden Layers
Layer N Output

~S—— = P == Layer

.
- A

Softmax vector activation is often used at the output of multi-class
classifier nets

This can be viewed as the probability y; = P(class = i|X)

62

Typical Problem Statement

* We are given a number of “training” data instances

* E.g.images of digits, along with information about
which digit the image represents

* Tasks:
— Binary recognition: Is thisa “2” or not
— Multi-class recognition: Which digit is this? Is this a digit in
the first place?

63

Typical Problem statement:
binary classification

Training data

(3,0) (Z, 1)

(0,0) (2,1)

Output: sigmoid

Input: vector of
pixel values

e Given, many positive and negative examples (training data),

— learn all weights such that the network does the desired job

64

Typical Problem statement:
multiclass classification

Training data

(35,5) (2, 2)
(2, 2) (4, 4)
(0,0) (2, 2)

Input Hidden Layers
Layer _ ~ Output
—_:2__::::_, — T :_::cj:_:: e L ay er

2 s =
1 ;?; e PE% S N
et i o
e -

Input: vector of Output: Class prob

pixel values

e Given, many positive and negative examples (training data),

— learn all weights such that the network does the desired job

65

Problem Setup: Things to define

* Given a training set of input-output pairs
(X1; dl)) (Xz, dZ)J L (XT' dT)

* Minimize the following function

LOSS(VV;%ZWU(]C(XU w),d;)

What is the
divergence div()?

66

Problem Setup: Things to define

* Given a training set of input-output pairs
(X1; dl)) (Xz, dZ)J L (XT' dT)

* Minimize the following function

LOSS(VV;%Zdw(f(Xi; w),d;)

What is the
divergence div()?

Note: For Loss(W) to be differentiable
w.r.t W, div() must be differentiable

Examples of divergence functions

—() = d1d2d3 d4

e !
el A\ i
; /
b

L, Div() Div

* For real-valued output vectors, the (scaled) L, divergence is popular

. 1 2 1 2
Div(Y,d) = > Y —d||? = EZ(YL’ —d;)
i

— Squared Euclidean distance between true and desired output
— Note: this is differentiable

dDiv(Y, d)
= (5 — dy)
dyl yl l

VyDiv(Y, d) = [yl - dl’ Yo — dz,]

68

For binary classifier

For binary classifier with scalar output, Y € (0,1), d is 0/1, the cross entropy
between the probability distribution [Y, 1 — Y] and the ideal output probability
[d,1 — d] is popular
Div(Y,d) = —dlogY — (1 — d)log(1 —Y)
— Minimumwhend =Y

Derivative

1 .
CMWWJ)_<_71fd:1
awv

ifd=0

1-Y
69

For binary classifier

Div

For binary classifier with scalar output, Y € (0,1), d is 0/1, the cross entropy
between the probability distribution [Y, 1 — Y] and the ideal output probability
[d,1 — d] is popular

Div(Y,d) = —dlogY — (1 — d)log(1 —Y)

— Minimumwhend =Y

Derivative Note: wheny = d the
(derivative is not 0
dDiv(Y,d) —y fd=1
) 1 Even though div() =0
ifd=0 -)
1-Y (minimum) wheny =d

70

For multi-class classification

AN — d;d,d;d,

: S

= 2 # 2 LR . .
: - ’% KL Div() Div

— x: i

Desired output d is a one hot vector [0 0...1 ...0 0 0] with the 1 in the c¢-th position (for class ¢)

Actual output will be probability distribution [y,, V5, ...]
The cross-entropy between the desired one-hot output and actual output:

Div(Y,d) = — z d;logy; = —logy,
i

Derivative If y. < 1, the slopeis
. negative w.r.t. y,
dDiv(Y,d) _)- " for the ¢ — th component
aYi 0 Cfor remaining component Indicates increasing Yc
_1 will reduce divergence
VyDiv(Y,d) = [0 0 om0 0] -

For multi-class classification

== O g d,d,d;d,

KL Div() Div

Desired output d is a one hot vector [0 0...1 ...0 0 0] with the 1 in the c¢-th position (for class ¢)

Actual output will be probability dis.tribution [V1, Vo, .] If y, < 1, the slope is
The cross-entropy between the desired one-hot output and actual output: .
negative w.r.t. y,

Div(Y,d) = — z d;logy, = —logy,
l. Indicates increasing vy,

will reduce divergence

Derivative
vy, d) 1 Note: wheny = d the
(Y, —— for the ¢ — th component TR
———=1 % ! P derivative is not O
‘ 0 for remaining component
7, Div(Y. d) [0 N 0] Even though div() =0
iv(Y,d) = e ..
! c (minimum) when y = d

For multi-class classification

= Ao S — dl d2 d3 d4
\ oA
: - ! KL Div() Div

- . e
- g — e sl

It is sometimes useful to set the target outputto [€ €...(1 — (K — 1)€) ...€ € €]
with the value 1 — (K — 1)€ in the c-th position (for class c) and € elsewhere for

some small €

“Label smoothing” -- aids gradient descent

The cross-entropy remains:
Div(Y,d) = — z d; log y;
i

Derivative

(11— (K—1)e
dDiv(Y,d) _) V.

dY; € .
l —— for remaining components

L Vi

for the c — th component

73

Problem Setup: Things to define

* Given a training set of input-output pairs
(X1; dl)) (Xz, dZ)J L (XT' dT)

* Minimize the following function

Loss(W) = %2 div(f(X; W), d;)

ALL TERMS HAVE BEEN DEFINED

74

Problem Setup

Given a training set of input-output pairs
(XlI dl)J (Xz, dZ)I L (XT' dT)

The error on the it" instance is div(Y;, d;)
-Y; =f(X; W)
The loss

1
Loss = Tz div(Y;, d;)

l

Minimize Loss w.r.t {Wl-(;c), bj(k)}

75

Recap: Gradient Descent Algorithm

e |nitialize: L :
0 To minimize any function f(x) w.r.t x
— X
—-k=0
e do
_ Xk+1 — xk _ T]ka(Xk) T
—-k=k+1
» while |[f(x*) — f(x*1)| > &

Recap: Gradient Descent Algorithm

* In order to minimize any function f(x) w.r.t. x

e |nitialize:
_ 0

— k=0

* do

— For every component i

o yktl — Kk _ k 9f Explicitly stating it by component
l l r] aXi

—-k=k+1

» while [f(x*) — f(x*"1)| > ¢

11-755/18-797

Training Neural Nets through Gradient
Descent

Total training Loss:

1
Loss = TZ Div(Y, d;)
t

* Gradient descent algorithm: Assuming the bias is also
(k) represented as a weight

ij }

— Using the extended notation: the bias is also a weight

* Do:

— For every layer k for all i, j, update:

* |nitialize all weights and biases {W

o 1, _ (k) dLos
Wi =W T G,®
LJ

e Until Loss has converged

78

Training Neural Nets through Gradient
Descent

Total training Loss:

1
Loss = TZ Div(Y, d;)
t

Gradient descent algorithm:

ey : (k)
Initialize all weights {Wl-j }
* Do:

— For every layer k for all i, j, update:

. (k) _ (k) _[dLoss
L]

Until Err has converged

79

The derivative

Total training Loss:

1
Loss = TZ Div(Y, d;)
t

 Computing the derivative

Total derivative:

dLoss z dDiv(Y, d;)
T

(k) (k)
J

80

Training by gradient descent

* Initialize all weights {Wi(jk)}
* Do:

.. dLo
— Forall i, j, k, |n|t|aI|ze (k) =0
]

— Forallt = 1:T
* For every layer k for all i, j:

adDiv(Yd
— Compute (t t)
w®
Wi j
dLoss lev(Yt dy)
w® w®

U l]

— For every Iayer k forall i, j:

W(k) _ W(k) n dLoss
i,j i,j TdW(k)

e Until Err has converged

81

The derivative

Total training Loss:

1
Loss = ?z Div(Y, d;)
t

Total derivative:
dLoss 1~ dDiv(Y: d;)

k)
dWi’ j T n

* So we must first figure out how to compute the
derivative of divergences of individual training
iInputs

Calculus Refresher: Basic rules of

calculus
For any differentiable function
y=f(x)
with derivative
ay
the following must hold for sufficiently small ax =) A Y\
e followi old for icie all Ax ~ — Ax
g9 Y y dx
For any differentiable function
h y =l];(x1,x2, ...,xM)
with partial derivatives Both by the
9y 9y Oy definition

0x, 0x,” " Oxy

the following must hold for sufficiently small Axy, Ax,, ..., Axy, | 2 = VIAX

dy dy dy
Ay =~ ——Ax; + =——Axy + -+ ——A
Y= 0x4 d0x, 0Xx *M

83

Calculus Refresher: Chain rule
For any nested function y = f(g(x))

dy _ 9f dg(x)

dx 0dg(x) dx
. dy
Check - we can confirm that: Ay = d—Ax
X
d
z=g(x) = Az = ‘Zlgcx) Ax

y=f@ = ay=TLar =L, /

Calculus Refresher: Distributed Chain

rule
y = f(g1(x), g1 (%), ..., gu ()
dy __0f dgi(@) _f dg® . 0f dgu(o)
dx 0d0g;(x) dx dg,(x) dx dgy(x) dx
. dy
Check: Ayngx Letzi=gl~(x)
of af af
Ay = —A —A e ——A
” 0z Zl+622 72T +BZM M
_0fdzy, o 0fdz, L Of din
Ay = 0z dx Ax+az2 dx Ax + +62M dx Ax

_(_Of dgi(@) | Of dg(@) , |, Of dgu®) v
Ay_(agl(x) dx +agz(x) dx T +6gM(x) dx)Ax 85

Calculus Refresher: Distributed Chain
rule
y = f(gl(x),gl(x), ---»gM(x))

dy 0f dgi(x) 9f dga(x) of dgm(x)

i oo ar eme ar o Banc) on

of of of
59,00 92 Tt e 5

Agy(x)

_ _Of dgi(x) af dgx(x) of dgm(x)
Ay_agl(x) dx Ax-l_agz(x) dx Ax + +6gM(x) dx Ax

_(_Of dgi(@) | Of dg(@) , |, Of dgu®) v
Ay_(agl(x) dx +agz(x) dx T +6gM(x) dx)Ax 86

Distributed Chain Rule: Influence
Diagram

y = f(9:1(0), 91 (), ---'gM
AP

* x affects y through each of g; ... gy

87

Distributed Chain Rule: Influence
Diagram

* Small perturbations in x cause small
perturbations in each of g4 ... g5, each of
which individually additively perturbs vy

88

Returning to our problem

dDiv(Y,d)

(k)
dwi’ i

* How to compute

89

A first closer look at the network

X1

X2

* Showing a tiny 2-input network for illustration

— Actual network would have many more neurons
and inputs

A first closer look at the network
[X
1

O—(O)—> ¥

1 1

* Showing a tiny 2-input network for illustration

— Actual network would have many more neurons and inputs

* Explicitly separating the weighted sum of inputs from the
activation

91

Showing a tiny 2-input network for illustration

— Actual network would have many more neurons and inputs
Expanded with all weights and activations shown

The overall function is differentiable w.r.t every weight, bias
and input

92

Computing the derivative for a single
input

(3) .
W31 Each yellow ellipse

represents a perceptron

* Aim: compute derivative of Div(Y, d) w.r.t. each of the
weights

e But first, lets label all our variables and activation functions

93

Computing the derivative for a single

input
w® £1() W1<21> FQ
Zl(l) (1) Zfz) 9
(1) |
W12 ' W(Z) [/ W1(31)
1,2 d
f3() l
(3)

94

Computing the gradient

dDiv(Y,d)

e Whatis:

95

Computing the gradient

. dDiv(Y,d) ,
 What is: ((B) Wi o0 fl()w((;
(1)

Wi
J w®
d
f3()
(3) ‘
w(z) (3) ()
2, 1
‘A fil.) f20)
/\ e 2D pe O ¥

(D
W34

(2)
W (2) wi?

* Note: computation of the derivative requires intermediate
and final output values of the network in response to the
iInput

96

BP: Scalar Formulation

* The network again

Wl
A\,‘/L A\?‘/A
WO O
A AR

PP
SN/t N/ g

Vi

o

)

Setting yi(o = x; for notational convenience

Assuming wéf) = bj(k) and yék) = 1 -- assuming the bias is a weight and extending
the output of every layer by a constant 1, to account for the biases

7
AL (7 AN AN
AN AN

M~ IO

oY

(1) _ (1), (0)
Z; = Zwil Y

l

(M
@<
A
)

oy % Expanding it out
/ Z1)

Va2A VsV

WL
4 gy /N (%) /AN
/i W W
N~ N o N
/ . y

P-()4

(1) _ (1), .(0)
Z; —ZWU Y;
i

yO = x %

/ z4! y o 2 70
ValavaOay

WOV ®y
AN AN

ON o

NI TN
AV AN
)~ :) |

' y 20 vy Z0)
WM
A\!I/L/ e A,’,I \ @ A@/A
OOy
AN (7 AN (%) AN
'l[;},v Y i\

N

A %'
AN) //A
y = /-

\m“\m

‘M ‘M
‘/»‘/A / »‘/A

i ﬂ
N

y(o) = X

,/ z(1) yo z@
VACAV

Y

AR

O O<p
PN PN PN

Y

) "
N

I iy
N

%

N

Y = x Forward Computation

/ 2(1) v 72 y© S(N-1) y(N-1)

v z(3)

Vi

\\" \" \" z(N) yiN)
(o (2 e @A‘V‘

IIA‘

ITERATE FOR k= 1IN g, j= 1°1ayer width

0 (k) (k=1)
yi(= Xi ZWU Yi

yj(= fk(J'(k))

-

N\ /

\ /\ AN
“v @ //'«;9\ @

m@mama

Forward “Pass”

Input: D dimensional vectorx = [x;, j =1...D]

Set:

— Dy = D, is the width of the 0" (input) layer

0 . k=1..N
—yj()=xj,]=1...D; y(g)=x0=1

Forlayerk =1..N
— Forj = 1..D;, | D,is the size of the kth layer

o () _ yDPk-1 (K) (k-1)
2z = Xizo Wi ¥,

c ¥ =fi (Zj(k))

Output:

N) .
—Y=yj(),] = 1..Dy

108

Computing derivatives

y(N-Z)

y(1)

We have computed all these intermediate values in the
forward computation

We must remember them - we will need them to compute
the derivatives

Computing derivatives

y(N-Z)

Div(Y,d)

First, we compute the divergence between the output of the net y = y) and the
desired output d

Computing derivatives
yN-2) A—

Div(Y,d)

We then compute V,) div(.) the derivative of the divergence w.r.t. the final output of the
network yN)

Computing derivatives

y(N-Z)

y(1)

Div(Y,d)

We then compute V,) div(.) the derivative of the divergence w.r.t. the final output of the
network yN)

We then compute V7, v)div(.) the derivative of the divergence w.r.t. the pre-activation affine
combination zN) using the chain rule

Computing derivatives

y(N-Z)

Div(Y,d)

Continuing on, we will compute V;,,)div(.) the derivative of the divergence with respect
to the weights of the connections to the output layer

Computing derivatives

y(N-2) l

y(1)

Div(Y,d)

Continuing on, we will compute V;,,)div(.) the derivative of the divergence with respect
to the weights of the connections to the output layer

Then continue with the chain rule to compute V, w-1)div(.) the derivative of the
divergence w.r.t. the output of the N-1th layer

Computing derivatives

y(N-2) i
N-1

Div(Y,d)

Div(Y,d)

Div(Y,d)

Div(Y,d)

Div(Y,d)

We continue our way backwards in the order shown

Backward Gradient Computation

* Lets actually see the math..

122

Computing derivatives

Div(Y,d)

Computing derivatives

y(N-Z)

y(1)

The derivative w.r.t the actual output of the
network is simply the derivative w.r.t to the
output of the final layer of the network

aDiv(Y,d) aDiw(Y,d)

dy; 0 y.(N)

l

Div(Y,d)

Computing derivatives

y(N-Z)

y(1)

Div(Y,d)

oD ay") D
N) N N
azf) azf >ay1()

Computing derivatives

y(1)

Div(Y,d)

Already computed

dDiv 6y1(N)ﬁ)iv
(N) o (M5 (V)
0z, 0z, \le

N

Computing derivatives

y(N-Z)

z(N-2) 2(N-1) y(N-1) l

Div(Y,d)

fi(4")

Derivative of

™) activation function
dDiv [0y, \giv
0

Computing derivatives

y(N-Z)

z(N-2) 2(N-1) y(N-1) l

Div(Y,d)

A

V
Derivative of
™) activation function
dDiv [0y, \giv TR
Computed in forwar
3, jym ol

Computing derivatives

Div(Y,d)

Computing derivatives

Div(Y,d)

Computing derivatives

y(N-Z)

y(1)

Div(Y,d)

obiv 9z aDiv

ﬁwl(llv) - ﬁwl(llv) asz)

Computing derivatives

y(N-Z)

y(1)

Div(Y,d)

oDiv _ 9z"(oDiv
awl(’l") - awl(llv azl(N) Just computed

Computing derivatives

y(N-Z)

y(1)

Div(Y,d)

Because
dDiv 5Z§N) Div yl(N_l) ZfN) = Wl(llv)yl(N_l) + other terms
(V) V) {,, (V)
dw,,” \ 0w, Pz,

Computing derivatives

y(N-Z)

y(1)

Div(Y,d)
—
Because
dDiv 5Z§N) Div yl(N_l) ZfN) = Wl(llv)yl(N_l) + other terms
(N) N) j_ (V)
ow, ow, .’ Pz,

Computed in forward pass

Computing derivatives

Div(Y,d)

Computing derivatives
yN-2) <

y(1)

For the bias term yéN_l) =1

Computing derivatives

Div(Y,d)

Computing derivatives

y(1)

Div(Y,d)

~
dDiv z HZJ-(N)@W >\’
1 _ Alread ted
(N 1) . (N 1 aZ(N) reagy compu

Computing derivatives

y(N-2) l

Div(Y,d)

dDi 0z W\f_\ Because
v J i Wl(j-v) zM = Wl(l.v)yl(N_l) + other terms
(N-1) (N=-1))5,_,(N) ! !
TR 9%

Computing derivatives

y(N-2) l
N-1 N-

Div(Y,d)

Computing derivatives

y(N-2) l
N-1 N-

Div(Y,d)

Computing derivatives

-

y(N-Z)
z(N-2) 2(N-1) y(N-1)
N—2 fn-1
z(N) yN
fy _
fn-2 fn-1 Div(Y,d)
. div() >
fn—2 fn-1 fy
d
fn—2 fn-1

We continue our way backwards in the order shown

aDlv . ’ ((N—l)) aDlU
-1y ~ JN-1] —
azi(N 1) i ayi(zv 1)

y(N-Z)
z(N-2) 2(N-1) y(N-1)
N-2 frn-1
z(N) y(N)
fy -
fn—2 fn-1 Div(Y,d)
. div() >
fn—2 fn-1 fi
d
fn—2 fn-1
We continue our way backwards in the order shown
dDiv _ ., (N-2) dDiv For the bias term yéN_z) =1

y(N-Z)
z(N-2) 2(N-1) y(N-1)
N—-2 fr-1
z(N) yN
Uiy _
fn—2 fn-1 Div(Y,d)
. div() >
fn—2 fn-1 fi
d
fn-2 fn-1

We continue our way backwards in the order shown

aDlU (N—l) aDlU
= E W S —

(N=-2) Lj (N-1)
ay; > 0z

l y(N-2)

z(N-2) 2(N-1) y(N-1)
N-2 fn-1
z(N) y(N)
Uiy _
fn—2 fn-1 Div(Y,d)
.o div() >
fn—2 fn-1 fy
d
fn—2 fr-1

We continue our way backwards in the order shown

aDlv . ’ ((N—Z)) aDlv
-2y~ JN-2] —
azi(N 2) i ayi(zv 2)

y(N-Z)
z(N-2) 2(N-1) y(N-1)
N-2 frn-1
z(N) yN
Uiy _
fn—2 fn-1 Div(Y,d)
. div() >
fn—2 fn-1 fi
d
fn—2 fn-1

We continue our way backwards in the order shown

dDiv Z (2) dDiv
- = w -
J

d yl(l) Y azj@

y(N-Z)

z(N-2) 2(N-1) y(N-1)
N-2 fn-1
z(N) y(N)
Uiy _
fn—2 fn-1 Div(Y,d)
.o div() >
fn—2 fn-1 fy
d
fn—2 fr-1

We continue our way backwards in the order shown

dDiv e (Z(l)) dDiv
(D) —J1 [
0z;

y(N-Z)
z(N-2) 2(N-1) y(N-1)
N-2 frn-1
2(N) yiN
Uiy _
fn—2 fn-1 Div(Y,d)
.o div() >
fn—2 fn-1 fi
d
fn—2 fn-1

dDiv (0) dDiv
We continue our way backwards in the order shown aw(l) l azj(l)

tj

Gradients: Backward Computation

7(k-1) y(k) - (k) yik o Z(N-1) y(N-1)

Ne N

\ / z(N) Yy

‘A\%%/A‘ ‘AQY& S o
1\ e)

OO0

Q/‘\Q (L

Initialize: Gradient |Fork = N-1.0
Fori = 1:layer width
w.r.t network output

dDiv dDiv | dDiv dDiv
. . _ (k+1) _ e (k)
0y oy Vi j j i Vi

dDiv (Z(N)) dDiv

W = fi ™)
0z; ay;

i

Backward Pass

* Output layer (N) :

— Fori =1..Dy
, 9biv _ dDiv(Y,d)
dyi ayi(N)

oDiv _ 9Di ay(N)

i

azi(N) T ayi(N) azi(N)

e Forlayerk = N — 1 downto 0
— Fori=1..D

. 9Div _y (k+1) 0Di
ayi(k) J Vi aZ](_k+1)

d0Div d0Div ,((k))
[J —_— Z
aZi(k) ayi(k) fk i

obiv (k) OdDiv .
¢ (k+1) - y] (k+1) for] - 1 as Dk+1
aWji aZi

150

Backward Pass

. : Called "Backpropagation” because
Output layer (N) : the derivative of the loss is

— Fori=1..Dy propagated “"backwards” through
., 9Div _ aDiv(v,d) the network
oy ayf"’)

, 0Div _ dDiv ayi(N)

0z ay™ 9z Very analogous to the forward pass:
* Forlayerk =N —1downto 0
— Fori=1..D Backward weighted combination

oDiv (k+1) 0Div / of next layer

o =) .W..
ay(k) z:J ij aZ](_k+1)

i

_ /
aZi(k) ayi(k) fk i

obiv (k) OdDiv .
* ®k+D — Vj e Torj=1..Dpyq
awji azi

151

OPW¥A) ot (overdot represents derivative of Div w.r.t variable)

Using notation y =

dy
. . Called "Backpropagation” because
Output layer (N) : the derivative of the loss is
— Fori =1..Dy propagated "backwards” through
the network
. . _ 0Div(v,d)
= Tom

()

(N)
= Vi (N)

Very analogous to the forward pass:

 Forlayerk = N —1downto 0

— Fori=1..Dy Backward weighted combination

o K+ (e+1) / of next layer
Yi _ZJ ij]

309 = 3O 51 (2 —

. dDiv
o (k+1)

Backward equivalent of activation

y(k) (et)for] =1..Dp4q

For comparison: the forward pass

again
Input: D dimensional vectorx = [x;, j =1...D]

Set:

— Dy = D, is the width of the 0" (input) layer

0 . k=1..N
—yj()=xj,]=1...D; y(g)=x0=1

Forlayerk =1..N
— Forj=1..D;

o B _ yNe (K (k=1)
27 = Yito Wy Y

c ¥ =fi (Zj(k))

Output:

N) .
—Y=yj(),] = 1..Dy

153

Special cases

e Have assumed so far that

1. The computation of the output of one neuron does not directly affect
computation of other neurons in the same (or previous) layers

2. Outputs of neurons only combine through weighted addition
3. Activations are actually differentiable
— All of these conditions are frequently not applicable

* Will not dwell on the topic in class, but explained in slides

— Will appear in quiz. Please read the slides -

