
Neural Networks
Learning the network: Backprop

part 2
11-785, Spring 2020

Lecture 4

1

Computing the gradient

• What is:

2

Forward Computation

ITERATE FOR k = 1:N for j = 1:layer-width

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

1

Forward “Pass”
• Input: dimensional vector
• Set:

– , is the width of the 0th (input) layer

– ;

• For layer
– For

• ௝
(௞)

௜,௝
(௞)

௜
(௞ିଵ)஽ೖషభ

௜ୀ଴

• ௝
(௞)

௞ ௝
(௞)

• Output:

–
4

Dk is the size of the kth layer

Gradients: Backward Computation

Div(Y,d)

fN

fN

Initialize: Gradient
w.r.t network output

y(N)z(N)

y(N-1)z(N-1)y(k)z(k)y(k-1)z(k-1)

௜
(௞) ௞

ᇱ
௜
(௞)

௜
(௞)

௜
(௞) ௜௝

(௞ାଵ)

௝ ௝
(௞ାଵ)

௜௝
(௞ାଵ) ௜

(௞)

௝
(௞ାଵ)

Div(Y,d)

௜
௜
(ே)

Figure assumes, but does not show
the “1” bias nodes

௜
(ே) ௞

ᇱ
௜
(ே)

௜
(ே)

Special cases

• Have assumed so far that
1. The computation of the output of one neuron does not directly

affect computation of other neurons in the same (or previous) layers
2. Outputs of neurons only combine through weighted addition
3. Activations are actually differentiable
– All of these conditions are frequently not applicable

6

Special Case 1. Vector activations

• Vector activations: all outputs are functions of
all inputs

7

z(k)y(k-1) y(k) z(k)y(k-1) y(k)

Special Case 1. Vector activations

8

z(k)y(k-1)

y(k)

Scalar activation: Modifying a
only changes corresponding

Vector activation: Modifying a
potentially changes all,

z(k)y(k-1)

y(k)

“Influence” diagram

9

z(k)y(k-1)
y(k) z(k) y(k)

Scalar activation: Each
influences one

Vector activation: Each
influences all,

y(k-1)

The number of outputs

10

z(k) y(k)

• Note: The number of outputs (y(k)) need not be the
same as the number of inputs (z(k))
• May be more or fewer

z(k) y(k)y(k-1) y(k-1)

Scalar Activation: Derivative rule

• In the case of scalar activation functions, the
derivative of the error w.r.t to the input to the
unit is a simple product of derivatives

11

z(k)y(k-1) y(k)

Derivatives of vector activation

• For vector activations the derivative of the error w.r.t.
to any input is a sum of partial derivatives

– Regardless of the number of outputs
12

z(k)y(k-1) y(k)

Div
Note: derivatives of scalar activations
are just a special case of vector

activations:
డ௬ೕ

(ೖ)

డ௭
೔
(ೖ)

Example Vector Activation: Softmax

13

z(k)y(k-1) y(k)

௜
(௞) ௜

(௞)

௝
(௞)

௝

Div

Example Vector Activation: Softmax

14

z(k)y(k-1) y(k)

௜
(௞) ௜

(௞)

௝
(௞)

௝

௜
(௞)

௝
(௞)

௝
(௞)

௜
(௞)

௝Div

Example Vector Activation: Softmax

15

z(k)y(k-1) y(k)

௜
(௞) ௜

(௞)

௝
(௞)

௝

௜
(௞)

௝
(௞)

௝
(௞)

௜
(௞)

௝

௝
(௞)

௜
(௞)

௜
(௞)

௜
(௞)

௜
௞

௝
௞

Div

Example Vector Activation: Softmax

• For future reference

• is the Kronecker delta: 16

z(k)y(k-1) y(k)

௜
(௞) ௜

(௞)

௝
(௞)

௝

௜
(௞)

௝
(௞)

௝
(௞)

௜
(௞)

௝

௝
(௞)

௜
(௞)

௜
(௞)

௜
(௞)

௜
௞

௝
௞

௜
(௞)

௝
(௞) ௜

(௞)
௜௝ ௝

(௞)

௝

Div

Special cases

• Examples of vector activations and other
special cases on slides
– Please look up
– Will appear in quiz!

17

Vector Activations

• In reality the vector combinations can be anything
– E.g. linear combinations, polynomials, logistic (softmax),

etc.
18

z(k)y(k-1) y(k)

Special Case 2: Multiplicative
networks

• Some types of networks have multiplicative combination
– In contrast to the additive combination we have seen so far

• Seen in networks such as LSTMs, GRUs, attention models,
etc.

z(k-1) y(k-1)

o(k)

W(k)

Forward:)1()1()( k
l

k
j

k
i yyo

Backpropagation: Multiplicative
Networks

• Some types of networks have multiplicative
combination

z(k-1) y(k-1)

o(k)

W(k)

Forward:
)1()1()( k

l
k
j

k
i yyo

Backward:

)(
)1(

)()1(

)(

)1(k
i

k
lk

i
k
j

k
i

k
j o

Div
y

o

Div

y

o

y

Div













 

)(
)1(

)1(k
i

k
jk

l o

Div
y

y

Div






 



௜
(௞) ௜௝

(௞ାଵ)

௝ ௝
(௞ାଵ)

Multiplicative combination as a case
of vector activations

• A layer of multiplicative combination is a special case of vector activation
21

z(k)y(k-1) y(k)

Multiplicative combination: Can be
viewed as a case of vector activations

• A layer of multiplicative combination is a special case of vector activation
22

z(k)y(k-1) y(k)

೗೔
(ೖ)

ೕ೔
(ೖ)

೗೔
(ೖ)

Y, Div

Gradients: Backward Computation

Div(Y,d)

fN

fN

Div

y(N)z(N)

y(N-1)z(N-1)y(k)z(k)y(k-1)z(k-1)

௝
(௞)

For k = N…1
For i = 1:layer width

௜
(௞)

௝
(௞)

௝
(௞)

௜
(௞)

௝

௜
(௞ିଵ) ௜௝

(௞)

௝ ௝
(௞)

௜௝
(௞) ௜

(௞ିଵ)

௝
(௞)

௜
(௞)

௜
(௞)

௜
(௞)

௜
(௞)

If layer has vector activation Else if activation is scalar

Backward Pass for softmax output
layer

• Output layer (N) :
– For

•
డ஽௜௩

డ௬೔

డ஽௜௩(௒,ௗ)

డ௬
೔
(ಿ)

•
డ஽௜௩

డ௭
೔
(ಿ)

డ஽௜௩(௒,ௗ)

డ௬
ೕ
(ಿ) ௜

(ே)
௜௝ ௝

(ே)
௝

• For layer
– For

•
డ஽௜௩

డ௬
೔
(ೖ) ௜௝

(௞ାଵ)
௝

డ஽௜௩

డ௭
ೕ
(ೖశభ)

•
డ஽௜௩

డ௭
೔
(ೖ) ௞

ᇱ
௜
(௞) డ஽௜௩

డ௬
೔
(ೖ)

•
డ஽௜௩

డ௪
ೕ೔
(ೖశభ) ௝

(௞) డ஽௜௩

డ௭
೔
(ೖశభ) for ௞ାଵ

24

z(N)
y(N)

KL Div

d

Div

so
ft

m
ax

Special Case 3: Non-differentiable
activations

• Activation functions are sometimes not actually differentiable
– E.g. The RELU (Rectified Linear Unit)

• And its variants: leaky RELU, randomized leaky RELU

– E.g. The “max” function

• Must use “subgradients” where available
– Or “secants” 25

+.
.
.
.
.

xଵ

xଶ

xଷ

xே

𝑧
𝑦

𝑤ଵ

𝑤ଶ

𝑤ଷ

𝑤ே

𝑓(𝑧)

xேିଵ

𝑤ேିଵ

𝑤ேାଵ1

𝑧

𝑓(𝑧) = 𝑧

𝑓(𝑧) = 0

z1

y

௝
௝

z2

z3

z4

The subgradient

• A subgradient of a function at a point ଴ is any vector such that

଴
்

଴

– Any direction such that moving in that direction increases the function

• Guaranteed to exist only for convex functions
– “bowl” shaped functions
– For non-convex functions, the equivalent concept is a “quasi-secant”

• The subgradient is a direction in which the function is guaranteed to increase
• If the function is differentiable at ଴, the subgradient is the gradient

– The gradient is not always the subgradient though
26

Subgradients and the RELU

• Can use any subgradient
– At the differentiable points on the curve, this is the

same as the gradient
– Typically, will use the equation given

27

Subgradients and the Max

• Vector equivalent of subgradient
– 1 w.r.t. the largest incoming input

• Incremental changes in this input will change the output

– 0 for the rest
• Incremental changes to these inputs will not change the output

28

z1

y

௝
௝

z2

zN

Subgradients and the Max

• Multiple outputs, each selecting the max of a different subset of
inputs
– Will be seen in convolutional networks

• Gradient for any output:
– 1 for the specific component that is maximum in corresponding input

subset
– 0 otherwise 29

ೕ

ೕ

z1 y1

z2

zN

y2

y3

yM

Backward Pass: Recap
• Output layer (N) :

– For ே

•
డ஽௜௩

డ௒೔

డ஽௜௩(௒,ௗ)

డ௬
೔
(ಿ)

•
డ஽௜

డ௭
೔
(ಿ)

డ஽௜௩

డ௬
೔
(ಿ)

డ௬೔
(ಿ)

డ௭
೔
(ಿ)

డ஽௜௩

డ௬
ೕ
(ಿ)

డ௬ೕ
(ಿ)

డ௭
೔
(ಿ)

௝ (vector activation)

• For layer
– For ௞

•
డ஽௜௩

డ௬
೔
(ೖ) ௜௝

(௞ାଵ)
௝

డ஽௜௩

డ௭
ೕ
(ೖశభ)

•
డ஽௜௩

డ௭
೔
(ೖ)

డ஽௜

డ௬
೔
(ೖ)

డ௬೔
(ೖ)

డ௭
೔
(ೖ)

డ஽௜௩

డ௬
ೕ
(ೖ)

డ௬ೕ
(ೖ)

డ௭
೔
(ೖ)

௝ (vector activation)

•
డ஽௜

డ௪
ೕ೔
(ೖశభ) ௝

(௞) డ஽௜௩

డ௭
೔
(ೖశభ) for ௞ାଵ

30

These may be subgradients

T

Overall Approach
• For each data instance

– Forward pass: Pass instance forward through the net. Store all
intermediate outputs of all computation

– Backward pass: Sweep backward through the net, iteratively compute
all derivatives w.r.t weights

• Actual loss is the sum of the divergence over all training instances

• Actual gradient is the sum or average of the derivatives computed
for each training instance

–

Training by BackProp
• Initialize weights ௞ for all layers
• Do:

– Initialize ; For all , initialize ௗ௅௢௦

ௗ௪
೔,ೕ
(ೖ)

– For all (Loop over training instances)
• Forward pass: Compute

– Output 𝒀𝒕

– 𝐿𝑜𝑠𝑠 += 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

• Backward pass: For all 𝑖, 𝑗, 𝑘:

– Compute ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕)

ௗ௪
೔,ೕ
(ೖ)

– Compute
ௗ௅௢௦

ௗ௪
೔,ೕ
(ೖ) +=

ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕)

ௗ௪
೔,ೕ
(ೖ)

– For all update:

𝑤௜,௝
(௞)

= 𝑤௜,௝
(௞)

−
𝜂

𝑇

𝑑𝐿𝑜𝑠𝑠

𝑑𝑤௜,௝
(௞)

• Until has converged 32

Vector formulation

• For layered networks it is generally simpler to
think of the process in terms of vector operations
– Simpler arithmetic
– Fast matrix libraries make operations much faster

• We can restate the entire process in vector terms
– On slides, please read
– This is what is actually used in any real system
– Will appear in quiz

33

Vector formulation

• Arrange all inputs to the network in a vector
• Arrange the inputs to neurons of the kth layer as a vector 𝒌

• Arrange the outputs of neurons in the kth layer as a vector 𝒌

• Arrange the weights to any layer as a matrix ௞

– Similarly with biases
34

ଵ

ଶ

஽

ଵଵ
(ଵ)

஽భ஽
(ଵ)

஽ଵ
(ଵ)

𝒌

ଵ
(௞)

ଶ
(௞)

஽ೖ

(௞)

ଵ
(ଵ)

ଶ
(ଵ)

஽భ

(ଵ)

ଵ
(ଵ)

ଶ
(ଵ)

஽భ

(ଵ)

𝒌

ଵ
(௞)

ଶ
(௞)

஽ೖ

(௞)

ଵ

ଶ

஽

𝒌

ଵ
(௞)

ଶ
(௞)

஽ೖ

(௞)

௞

ଵଵ
(௞) ଶଵ

(௞) ஽ೖషభଵ
(௞)

ଵଶ
(௞)

ଶଶ
(௞)

஽ೖషభଶ
(௞)

ଵ஽ೖ

(௞)
ଶ஽ೖ

(௞)
஽ೖషభ஽ೖ

(௞)

Vector formulation

• The computation of a single layer is easily expressed in matrix
notation as (setting 𝟎):

35

ଵ

௞

ଵଵ
(௞) ଶଵ

(௞) ஽ೖషభଵ
(௞)

ଵଶ
(௞)

ଶଶ
(௞)

஽ೖషభଶ
(௞)

ଵ஽ೖ

(௞)
ଶ஽ೖ

(௞)
஽ೖషభ஽ೖ

(௞)

ଶ

஽

ଵଵ
(ଵ)

஽஽
(ଵ)

஽ଵ
(ଵ)

𝒌

ଵ
(௞)

ଶ
(௞)

஽ೖ

(௞)

ଵ
(ଵ)

ଶ
(ଵ)

஽భ

(ଵ)

ଵ
(ଵ)

ଶ
(ଵ)

஽భ

(ଵ)

𝒌

ଵ
(௞)

ଶ
(௞)

஽ೖ

(௞)

ଵ

ଶ

஽

𝒌

ଵ
(௞)

ଶ
(௞)

஽ೖ

(௞)

𝒌 𝒌 𝒌ି𝟏 𝒌 𝒌 ௞ 𝒌

The forward pass: Evaluating the
network

36

𝟎

The forward pass

37

𝟏 𝟏 ଵ

𝟏
ଵ ଵ

38

ଵ ଵ 1

𝟏 𝟏

The forward pass
ଵ ଵ

ଵ ଵ ଵ ଵ

The Complete computation

The forward pass

39

ଶ 2 ଵ ଶ

𝟏 𝟏 𝟐
ଵ ଵ ଶ ଶ

ଵ ଵ ଵ ଵ

The Complete computation

The forward pass

40

𝟏 𝟐
ଵ ଵ ଶ ଶ

𝟐

ଶ ଶ 2

ଶ ଶ ଶ ଵ ଵ ଵ ଶ

The Complete computation

𝟏

The forward pass

41

𝟏
ଵ ଵ ଶ ଶ

𝟐 ேିଵ

N

ே ே

ே N ேିଵ ே

ଶ ଶ ଶ ଵ ଵ ଵ ଶ

The Complete computation

𝟐𝟏

The forward pass

42

𝟏
ଵ ଵ

𝟐 ேିଵ

N

ே ே

ே 𝑁

ே ே ேିଵ ଶ ଶ ଵ ଵ ଵ ଶ ே

The Complete computation

𝟐𝟏

Forward pass

Div(Y,d)

Forward pass:

For k = 1 to N:

Initialize

Output

The Forward Pass
• Set

• Recursion through layers:
– For layer k = 1 to N:

• Output:

44

The backward pass

• The network is a nested function

ே ே ேିଵ ଶ ଶ ଵ ଵ ଵ ଶ ே

ଵ ଵ ଶ ଶ

ே ே

ே ே ேିଵ ଶ ଶ ଵ ଵ ଵ ଶ ே

• The error for any is also a nested function

Calculus recap 2: The Jacobian

46

Using vector notation

Check:

• The derivative of a vector function w.r.t. vector input is called
a Jacobian

• It is the matrix of partial derivatives given below

Jacobians can describe the derivatives
of neural activations w.r.t their input

• For Scalar activations
– Number of outputs is identical to the number of inputs

• Jacobian is a diagonal matrix
– Diagonal entries are individual derivatives of outputs w.r.t inputs
– Not showing the superscript “(k)” in equations for brevity 47

z y

• For scalar activations (shorthand notation):
– Jacobian is a diagonal matrix
– Diagonal entries are individual derivatives of outputs w.r.t inputs

48

z y

Jacobians can describe the derivatives
of neural activations w.r.t their input

For Vector activations

• Jacobian is a full matrix
– Entries are partial derivatives of individual outputs

w.r.t individual inputs
49

z y

Special case: Affine functions

• Matrix and bias operating on vector to
produce vector

• The Jacobian of w.r.t is simply the matrix
50

Vector derivatives: Chain rule
• We can define a chain rule for Jacobians
• For vector functions of vector inputs:

51

Check

Note the order: The derivative of the outer function comes first

Vector derivatives: Chain rule
• The chain rule can combine Jacobians and Gradients
• For scalar functions of vector inputs (is vector):

52

Check

Note the order: The derivative of the outer function comes first

Special Case

• Scalar functions of Affine functions

53

Note reversal of order. This is in fact a simplification
of a product of tensor terms that occur in the right order

Derivatives w.r.t
parameters

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

In the following slides we will also be using the notation 𝐳 to represent
the Jacobian 𝐘 to explicitly illustrate the chain rule

In general 𝐚 represents a derivative of w.r.t. and could be a the transposed gradient
(for scalar) or a Jacobian (for vector)

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

First compute the gradient of the divergence w.r.t. .
The actual gradient depends on the divergence function.

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿ

ಿ ಿ

Already computed New term

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿ

ಿ

Already computed New term

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ே

ಿషభ ಿ ಿషభ

Already computed New term

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభಿషభ ಿ

ே

Already computed New term

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ಿషభ ಿ
ಿ ಿ

ಿ ಿ

ே

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ே

ேିଵ

ಿషభ ಿషభ ಿషభ

Already computed New term

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ಿషభ ಿషభ ಿషభ

ே

ேିଵ

The Jacobian will be a diagonal
matrix for scalar activations

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషమ

ಿషమ ಿషభ ಿషమ

ே

ேିଵேିଵ

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషమ

ಿషమ ಿషభ

ே

ேିଵேିଵ

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషమ

ಿషమ ಿషభ

ே

ಿషభ ಿషభ

ಿషభ ಿషభ

ேିଵேିଵ

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

భ భ భ

ே

ேିଵேିଵ

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ே

ேିଵேିଵ

భ భ

భ భ

In some problems we will also want to compute
the derivative w.r.t. the input

ଵ

The Backward Pass
• Set ,
• Initialize: Compute

ಿ

• For layer k = N downto 1:
– Compute

ೖ

• Will require intermediate values computed in the forward pass

– Backward recursion step:

ೖ ೖ ೖ

ೖషభ ೖ

– Gradient computation:

ೖ ೖ

ೖ ೖ

68

The Backward Pass
• Set ,
• Initialize: Compute

ಿ

• For layer k = N downto 1:
– Compute

ೖ

• Will require intermediate values computed in the forward pass

– Backward recursion step:

ೖ ೖ ೖ

ೖషభ ೖ

– Gradient computation:

ೖ ೖ

ೖ ೖ

69

Note analogy to forward pass

For comparison: The Forward Pass
• Set

• For layer k = 1 to N :
– Forward recursion step:

• Output:

70

Neural network training algorithm
• Initialize all weights and biases ଵ ଵ ଶ ଶ ே ே

• Do:
–

– For all , initialize 𝐖ೖ
, 𝐛ೖ

– For all # Loop through training instances
• Forward pass : Compute

– Output 𝒀(𝑿𝒕)

– Divergence 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– 𝐿𝑜𝑠𝑠 += 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

• Backward pass: For all 𝑘 compute:
– 𝛻𝐲ೖ

𝐷𝑖𝑣 = 𝛻𝐳ೖାଵ𝐷𝑖𝑣 𝐖௞ାଵ

– 𝛻𝐳ೖ
𝐷𝑖𝑣 = 𝛻𝐲ೖ

𝐷𝑖𝑣 𝐽𝐲ೖ
𝐳௞

– 𝛻𝐖ೖ
𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕) = 𝐲௞ିଵ𝛻𝐳ೖ

𝐷𝑖𝑣; 𝛻𝐛ೖ
𝑫𝒊𝒗 𝒀𝒕, 𝒅𝒕 = 𝛻𝐳ೖ

𝐷𝑖𝑣

– 𝛻𝐖ೖ
𝐿𝑜𝑠𝑠 += 𝛻𝐖ೖ

𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕); 𝛻𝐛ೖ
𝐿𝑜𝑠𝑠 += 𝛻𝐛ೖ

𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– For all update:

𝐖௞ = 𝐖௞ −
ఎ

்
𝛻𝐖ೖ

𝐿𝑜𝑠𝑠
்

; 𝐛௞ = 𝐛௞ −
ఎ

்
𝛻𝐖ೖ

𝐿𝑜𝑠𝑠
்

• Until has converged
71

Setting up for digit recognition

• Simple Problem: Recognizing “2” or “not 2”
• Single output with sigmoid activation

–

–

• Use KL divergence
• Backpropagation to learn network parameters 72

(, 0)
(, 1)
(, 0)

(, 1)
(, 0)
(, 1)

Training data

Sigmoid output
neuron

Recognizing the digit

• More complex problem: Recognizing digit
• Network with 10 (or 11) outputs

– First ten outputs correspond to the ten digits
• Optional 11th is for none of the above

• Softmax output layer:
– Ideal output: One of the outputs goes to 1, the others go to 0

• Backpropagation with KL divergence to learn network 73

(, 5)
(, 2)
(, 0)

(, 2)
(, 4)
(, 2)

Training data

Y1 Y2 Y3 Y4 Y0

Issues

• Convergence: How well does it learn
– And how can we improve it

• How well will it generalize (outside training
data)

• What does the output really mean?
• Etc..

74

Next up

• Convergence and generalization

75

