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Computing the gradient

• What is: 
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Forward Computation
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Forward “Pass”
• Input: dimensional vector 
• Set:

– ,  is the width of the 0th (input) layer

– ;       

• For layer 
– For 
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• Output:

–
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Dk is the size of the kth layer



Gradients: Backward Computation
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Special cases

• Have assumed so far that
1. The computation of the output of one neuron does not directly 

affect computation of other neurons in the same (or previous) layers
2. Outputs of neurons only combine through weighted addition
3. Activations are actually differentiable
– All of these conditions are frequently not applicable
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Special Case 1. Vector activations

• Vector activations: all outputs are functions of 
all inputs
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Special Case 1. Vector activations
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z(k)y(k-1)
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Scalar activation: Modifying a 
only changes corresponding 

Vector activation: Modifying a
potentially changes all, 
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“Influence” diagram
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Scalar activation: Each  
influences one 

Vector activation: Each 
influences all, 
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The number of outputs

10

z(k) y(k)

• Note:  The number of outputs (y(k)) need not be the 
same as the number of inputs (z(k))
• May be more or fewer

z(k) y(k)y(k-1) y(k-1)



Scalar Activation: Derivative rule

• In the case of scalar activation functions, the 
derivative of the error w.r.t to the input to the 
unit is a simple product of derivatives
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Derivatives of vector activation

• For vector activations the derivative of the error w.r.t. 
to any input is a sum of partial derivatives

– Regardless of the number of outputs 
12
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Div
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Example Vector Activation: Softmax
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Example Vector Activation: Softmax
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Example Vector Activation: Softmax
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Example Vector Activation: Softmax

• For future reference

• is the Kronecker delta: 16
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Special cases

• Examples of vector activations and other 
special cases on slides
– Please look up
– Will appear in quiz!
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Vector Activations

• In reality the vector combinations can be anything
– E.g. linear combinations, polynomials, logistic (softmax), 

etc. 
18
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Special Case 2: Multiplicative 
networks

• Some types of networks have multiplicative combination
– In contrast to the additive combination we have seen so far 

• Seen in networks such as LSTMs, GRUs, attention models, 
etc.
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Backpropagation: Multiplicative 
Networks

• Some types of networks have multiplicative 
combination
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Multiplicative combination as a case 
of vector activations

• A layer of multiplicative combination is a special case of vector activation
21
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Multiplicative combination: Can be 
viewed as a case of vector activations

• A layer of multiplicative combination is a special case of vector activation
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Gradients: Backward Computation

Div(Y,d)

fN

fN

Div

y(N)z(N)

y(N-1)z(N-1)y(k)z(k)y(k-1)z(k-1)

௝
(௞)

For k = N…1
For i = 1:layer width

௜
(௞)

௝
(௞)

௝
(௞)

௜
(௞)

 

௝

௜
(௞ିଵ) ௜௝

(௞)

 

௝ ௝
(௞)

௜௝
(௞) ௜

(௞ିଵ)

௝
(௞)

௜
(௞)

௜
(௞)

௜
(௞)

௜
(௞)

If layer has vector activation Else if activation is scalar



Backward Pass for softmax output 
layer

• Output layer (N) :
– For 
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Special Case 3: Non-differentiable 
activations

• Activation functions are sometimes not actually differentiable
– E.g. The RELU (Rectified Linear Unit)

• And its variants: leaky RELU, randomized leaky RELU

– E.g.  The “max” function

• Must use “subgradients” where available
– Or “secants” 25
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The subgradient

• A subgradient of a function at a point ଴ is any vector such that

଴
்

଴

– Any direction such that moving in that direction increases the function

• Guaranteed to exist only for convex functions
– “bowl” shaped functions
– For non-convex functions, the equivalent concept is a “quasi-secant”

• The subgradient is a direction in which the function is guaranteed to increase
• If the function is differentiable at ଴, the subgradient is the gradient

– The gradient is not always the subgradient though
26



Subgradients and the RELU

• Can use any subgradient
– At the differentiable points on the curve, this is the 

same as the gradient
– Typically, will use the equation given
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Subgradients and the Max

• Vector equivalent of subgradient
– 1 w.r.t. the largest incoming input

• Incremental changes in this input will change the output

– 0 for the rest
• Incremental changes to these inputs will not change the output

28
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Subgradients and the Max

• Multiple outputs, each selecting the max of a different subset of 
inputs
– Will be seen in convolutional networks

• Gradient for any output: 
– 1 for the specific component that is maximum in corresponding input 

subset
– 0 otherwise 29
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Backward Pass: Recap
• Output layer (N) :

– For ே
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T

Overall Approach
• For each data instance

– Forward pass:  Pass instance forward through the net. Store all 
intermediate outputs of all computation

– Backward pass: Sweep backward through the net, iteratively compute 
all derivatives w.r.t weights

• Actual loss is the sum of the divergence over all training instances

• Actual gradient is the sum or average of the derivatives computed 
for each training instance

–



Training by  BackProp
• Initialize weights ௞ for all layers 
• Do:

– Initialize ;  For all ,  initialize ௗ௅௢௦

ௗ௪
೔,ೕ
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– For all (Loop over training instances)
• Forward pass: Compute 

– Output 𝒀𝒕

– 𝐿𝑜𝑠𝑠 += 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

• Backward pass: For all 𝑖, 𝑗, 𝑘:
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• Until has converged 32



Vector formulation

• For layered networks it is generally simpler to 
think of the process in terms of vector operations
– Simpler arithmetic
– Fast matrix libraries make operations much faster

• We can restate the entire process in vector terms
– On slides, please read
– This is what is actually used in any real system
– Will appear in quiz
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Vector formulation

• Arrange all inputs to the network in a vector 
• Arrange the inputs to neurons of the kth layer as a vector 𝒌

• Arrange the outputs of neurons in the kth layer as a vector 𝒌

• Arrange the weights to any layer as a matrix ௞

– Similarly with biases
34
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Vector formulation

• The computation of a single layer is easily expressed in matrix 
notation as  (setting 𝟎 ):
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The forward pass: Evaluating the 
network
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The forward pass
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The forward pass
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The forward pass
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The forward pass
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The forward pass
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Forward pass

Div(Y,d)

Forward pass:

For k = 1 to N:

Initialize

Output



The Forward Pass
• Set 

• Recursion through layers:
– For layer k = 1 to N:

• Output:
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The backward pass

• The network is a nested function

ே ே ேିଵ ଶ ଶ ଵ ଵ ଵ ଶ ே

ଵ ଵ ଶ ଶ

ே ே

ே ே ேିଵ ଶ ଶ ଵ ଵ ଵ ଶ ே

• The error for any is also a nested function



Calculus recap 2: The Jacobian

46

Using vector notation

Check:  

• The derivative of a vector function w.r.t. vector input is called 
a Jacobian

• It is the matrix of partial derivatives given below



Jacobians can describe the derivatives 
of neural activations w.r.t their input

• For Scalar activations
– Number of outputs is identical to the number of inputs

• Jacobian is a diagonal matrix
– Diagonal entries are individual derivatives of outputs w.r.t inputs
– Not showing the superscript “(k)” in equations for brevity 47
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• For scalar activations (shorthand notation):
– Jacobian is a diagonal matrix
– Diagonal entries are individual derivatives of outputs w.r.t inputs

48

z y

Jacobians can describe the derivatives 
of neural activations w.r.t their input



For Vector activations

• Jacobian is a full matrix
– Entries are partial derivatives of individual outputs 

w.r.t individual inputs
49
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Special case: Affine functions

• Matrix and bias operating on vector to 
produce vector 

• The Jacobian of w.r.t is simply the matrix 
50



Vector derivatives: Chain rule
• We can define a chain rule for Jacobians
• For vector functions of vector inputs:

51

Check

Note the order: The derivative of the outer function comes first



Vector derivatives: Chain rule
• The chain rule can combine Jacobians and Gradients
• For scalar functions of vector inputs ( is vector):
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Check

Note the order: The derivative of the outer function comes first



Special Case

• Scalar functions of Affine functions

53

Note reversal of order.  This is in fact a simplification
of a product of tensor terms that occur in the right order

Derivatives w.r.t
parameters



The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

In the following slides we will also be using the notation 𝐳 to represent
the Jacobian 𝐘 to explicitly illustrate the chain rule

In general 𝐚 represents a derivative of w.r.t. and could be a the transposed gradient
(for scalar ) or a Jacobian (for vector ) 



The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

First compute the gradient of the divergence w.r.t. .  
The actual gradient depends on the divergence function.



The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿ

ಿ ಿ

Already computed New term



The backward pass
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The backward pass
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The backward pass
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The backward pass
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The backward pass
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The backward pass
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The Jacobian will be a diagonal 
matrix for scalar activations



The backward pass
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The backward pass
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The backward pass
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The backward pass
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The backward pass
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In some problems we will also want to compute
the derivative w.r.t. the input

ଵ



The Backward Pass
• Set , 
• Initialize:  Compute 

ಿ

• For layer k = N downto 1:
– Compute 

ೖ

• Will require intermediate values computed in the forward pass

– Backward recursion step:

ೖ ೖ ೖ

ೖషభ ೖ

– Gradient computation:

ೖ ೖ

ೖ ೖ

68



The Backward Pass
• Set , 
• Initialize:  Compute 

ಿ

• For layer k = N downto 1:
– Compute 

ೖ

• Will require intermediate values computed in the forward pass

– Backward recursion step:

ೖ ೖ ೖ

ೖషభ ೖ

– Gradient computation:

ೖ ೖ

ೖ ೖ

69

Note analogy to forward pass



For comparison: The Forward Pass
• Set 

• For layer k = 1 to N :
– Forward recursion step:

• Output:
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Neural network training algorithm
• Initialize all weights and biases ଵ ଵ ଶ ଶ ே ே

• Do:
–

– For all ,  initialize 𝐖ೖ
, 𝐛ೖ

– For all # Loop through training instances
• Forward pass : Compute 

– Output 𝒀(𝑿𝒕)

– Divergence 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– 𝐿𝑜𝑠𝑠 += 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

• Backward pass: For all 𝑘 compute:
– 𝛻𝐲ೖ

𝐷𝑖𝑣 = 𝛻𝐳ೖାଵ𝐷𝑖𝑣 𝐖௞ାଵ

– 𝛻𝐳ೖ
𝐷𝑖𝑣 = 𝛻𝐲ೖ

𝐷𝑖𝑣 𝐽𝐲ೖ
𝐳௞

– 𝛻𝐖ೖ
𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕) = 𝐲௞ିଵ𝛻𝐳ೖ

𝐷𝑖𝑣;  𝛻𝐛ೖ
𝑫𝒊𝒗 𝒀𝒕, 𝒅𝒕 = 𝛻𝐳ೖ

𝐷𝑖𝑣

– 𝛻𝐖ೖ
𝐿𝑜𝑠𝑠 += 𝛻𝐖ೖ

𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕);   𝛻𝐛ೖ
𝐿𝑜𝑠𝑠 += 𝛻𝐛ೖ

𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– For all update:

𝐖௞ = 𝐖௞ −
ఎ

்
𝛻𝐖ೖ

𝐿𝑜𝑠𝑠
்

;        𝐛௞ = 𝐛௞ −
ఎ

்
𝛻𝐖ೖ

𝐿𝑜𝑠𝑠
்

• Until has converged
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Setting up for digit recognition

• Simple Problem: Recognizing “2” or “not 2”
• Single output with sigmoid activation 

–

–

• Use KL divergence
• Backpropagation to learn network parameters 72

(   , 0)
(   , 1)
(   , 0)

(   , 1)
(   , 0)
(   , 1)

Training data

Sigmoid output
neuron



Recognizing the digit

• More complex problem: Recognizing digit
• Network with 10 (or 11) outputs

– First ten outputs correspond to the ten digits
• Optional 11th is for none of the above

• Softmax output layer:
– Ideal output: One of the outputs goes to 1, the others go to 0

• Backpropagation with KL divergence to learn network 73

(   , 5)
(   , 2)
(   , 0)

(   , 2)
(   , 4)
(   , 2)

Training data
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Issues

• Convergence: How well does it learn
– And how can we improve it

• How well will it generalize (outside training 
data)

• What does the output really mean?
• Etc..
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Next up

• Convergence and generalization
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