
Training Neural Networks: 
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Quick Recap: Training a network

• Define a total “loss” over all training instances
– Quantifies the difference between desired output and the actual 

output, as a function of weights

• Find the weights that minimize the loss

Total loss

Average over all
training instances

Divergence between desired output and 
actual output of net for a given input 

Output of net in 
response to input 

Desired output
in response to input 
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Quick Recap: Training networks by 
gradient descent

Solved through
gradient descent as

Computed using
backpropagation
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Quick recap: Problem with gradient 
descent

• The loss is a function of many weights (and biases)
– Has different eccentricities w.r.t different weights

• A fixed step size for all weights in the network can result in 
the convergence of one weight, while causing a divergence 
of another

ଶ

ଵ

ଶ

ଵ
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Recap: Derivative-inspired algorithms

• Algorithms that obtain separate updates for each 
dimension
– Use derivative information for trends, but do not follow 

them absolutely

• Rprop
• Quick prop

• Can be more effective than gradient descent, but lose 
the dependence among components
– And thus some efficiency
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Recap:  momentum methods
• Maintain a running average of all 

past steps
– In directions in which the 

convergence is smooth, the 
average will have a large value

– In directions in which the 
estimate swings, the positive and 
negative swings will cancel out in 
the average

• Update with the running 
average, rather than the current 
gradient 
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Recap: Incremental methods
• Batch methods that consider all training points before making an update 

to the parameters can be terribly inefficient

• Online methods that present training instances incrementally make 
quicker updates
– “Stochastic Gradient Descent” updates parameters after each instance
– “Mini batch descent” updates them after batches of instances
– Both of them have greater variance than batch methods
– Potentially leading to worse minima

• Both batch and online methods are critically dependent on proper choice 
of learning rates (or learning rate schedules) for convergence to good 
optima
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Training and minibatches

• Convergence depends on learning rate
– Simple technique:  fix learning rate until the error 

plateaus, then reduce learning rate by a fixed 
factor (e.g. 10)

– Advanced methods:  Adaptive updates, where the 
learning rate is itself determined as part of the 
estimation
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Moving on: Topics for the day

• Incremental updates
• Revisiting “trend” algorithms
• Generalization
• Tricks of the trade

– Divergences..
– Activations
– Normalizations
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Recall: Momentum

• The momentum method

 

• Updates using a running average of the gradient
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Momentum and incremental updates

• The momentum method

 

• Incremental SGD and mini-batch gradients tend to have 
high variance

• Momentum smooths out the variations
– Smoother and faster convergence
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Incremental Update: Mini-batch 
update

• Given ଵ ଵ , ଶ ଶ ,…, ் ்

• Initialize all weights ଵ ଶ ௄;   , ௞

• Do:
– Randomly permute ଵ ଵ , ଶ ଶ ,…, ் ்

– For 
• 𝑗 = 𝑗 + 1

• For every layer k:
– 𝛻ௐೖ

𝐿𝑜𝑠𝑠 = 0

• For t’ = t : t+b-1
– For every layer 𝑘:

» Compute  𝛻ௐೖ
𝐷𝑖𝑣(𝑌௧, 𝑑௧)

» 𝛻ௐೖ
𝐿𝑜𝑠𝑠 +=

ଵ

௕
𝛻ௐೖ

𝑫𝒊𝒗(𝑌௧, 𝑑௧)

• Update
– For every layer k:

Δ𝑊௞ = 𝛽Δ𝑊௞ − 𝜂௝(𝛻ௐೖ
𝐿𝑜𝑠𝑠)்

𝑊௞ = 𝑊௞ + ∆𝑊௞

• Until has converged
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Nestorov’s Accelerated Gradient

• At any iteration, to compute the current step:
– First extend the previous step
– Then compute the gradient at the resultant position
– Add the two to obtain the final step

• This also applies directly to incremental update methods
– The accelerated gradient smooths out the variance in the 

gradients
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Nestorov’s Accelerated Gradient

• Nestorov’s method
 ( )
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Incremental Update: Mini-batch 
update

• Given ଵ ଵ , ଶ ଶ ,…, ் ்

• Initialize all weights ଵ ଶ ௄ ;   𝑗 = 0, ∆𝑊௞ = 0

• Do:
– Randomly permute 𝑋ଵ, 𝑑ଵ , 𝑋ଶ, 𝑑ଶ ,…, 𝑋், 𝑑்

– For 𝑡 =  1: 𝑏: 𝑇

• 𝑗 = 𝑗 + 1

• For every layer k:
– 𝑊௞ = 𝑊௞ + 𝛽Δ𝑊௞

– 𝛻ௐೖ
𝐿𝑜𝑠𝑠 = 0

• For t’ = t : t+b-1
– For every layer 𝑘:

» Compute  𝛻ௐೖ
𝐷𝑖𝑣(𝑌௧, 𝑑௧)

» 𝛻ௐೖ
𝐿𝑜𝑠𝑠 +=

ଵ

௕
𝛻ௐೖ

𝑫𝒊𝒗(𝑌௧, 𝑑௧)

• Update
– For every layer k:

𝑊௞ = 𝑊௞ − 𝜂௝𝛻ௐೖ
𝐿𝑜𝑠𝑠𝑇

Δ𝑊௞ = 𝛽Δ𝑊௞ − 𝜂௝𝛻ௐೖ
𝐿𝑜𝑠𝑠𝑇

• Until has converged
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Still higher-order methods
• Momentum and Nestorov’s method improve 

convergence by normalizing the mean (first moment) 
of the derivatives

• More recent methods take this one step further by also 
considering their second moments
– RMS Prop
– Adagrad
– AdaDelta
– ADAM: very popular in practice
– …

• All roughly equivalent in performance
16



Smoothing the trajectory

• Simple gradient and momentum methods still demonstrate oscillatory 
behavior in some directions
– Depends on magic step size parameters

• Observation:  Steps in “oscillatory” directions show large total movement
– In the example, total motion in the vertical direction is much greater than in 

the horizontal direction

• Improvement:  Dampen step size in directions with high motion
– Second order term 17

1 2
3

4
5

Step X component Y component

1 1 +2.5

2 1 -3

3 3 +2.5

4 1 -2

5 2 1.5



Normalizing steps by second moment

• In recent past
– Total movement in Y component of updates is high
– Movement in X components is lower

• Current update, modify usual gradient-based update:
– Scale down Y component
– Scale up X component
– According to their variation (and not just their average)

• A variety of algorithms have been proposed on this premise
– We will see a popular example
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RMS Prop
• Notation:

– Updates are by parameter

– Sum derivative of divergence w.r.t any individual parameter is 
shown as ௪

– The squared derivative is ௪
ଶ

௪
ଶ

• Short-hand notation represents the squared derivative, not the 
second derivative

– The mean squared derivative is a running estimate of the 
average squared derivative. We will show this as ௪

ଶ

• Modified update rule:  We want to 
– scale down updates with large mean squared derivatives
– scale up updates with small mean squared derivatives
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RMS Prop
• This is a variant on the basic mini-batch SGD algorithm

• Procedure:
– Maintain a running estimate of the mean squared value of 

derivatives for each parameter
– Scale update of the parameter by the inverse of the root mean 

squared derivative

௞ାଵ ௞
௪
ଶ

௞
  ௪
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RMS Prop
• This is a variant on the basic mini-batch SGD algorithm

• Procedure:
– Maintain a running estimate of the mean squared value of 

derivatives for each parameter
– Scale update of the parameter by the inverse of the root mean 

squared derivative

௞ାଵ ௞
௪
ଶ

௞
  ௪

21
Note similarity to RPROP
The magnitude of the derivative is being normalized out



RMS Prop (updates are for each 
weight of each layer)

• Do:
– Randomly shuffle inputs to change their order
– Initialize:  ; for all weights in all layers, ௪

ଶ
௞

– For all (incrementing in blocks of inputs)
• For all weights in all layers initialize 𝜕௪𝐷 ௞ = 0

• For 𝑏 = 0: 𝐵 − 1
– Compute 

» Output 𝒀(𝑿𝒕ା𝒃)

» Compute gradient  𝒅𝑫𝒊𝒗(𝒀(𝑿𝒕శ𝒃),𝒅𝒕శ𝒃)

𝒅𝒘

» Compute 𝜕௪𝐷 ௞ +=
ଵ

஻

𝒅𝑫𝒊𝒗(𝒀(𝑿𝒕శ𝒃),𝒅𝒕శ𝒃)

𝒅𝒘

• update:
𝑬 𝝏𝒘

𝟐 𝑫
𝒌

= 𝜸𝑬 𝝏𝒘
𝟐 𝑫

𝒌ି𝟏
+ 𝟏 − 𝜸 𝝏𝒘

𝟐 𝑫
𝒌

𝒘𝒌ା𝟏 = 𝒘𝒌 −
𝜼

𝑬 𝝏𝒘
𝟐 𝑫 𝒌 + 𝝐

 
𝝏𝒘𝑫

• 𝑘 = 𝑘 + 1

• Until ଵ ଶ ௄ has converged
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ADAM: RMSprop with momentum
• RMS prop only considers a second-moment normalized version of the 

current gradient
• ADAM utilizes a smoothed version of  the momentum-augmented gradient

– Considers both first and second moments

• Procedure:
– Maintain a running estimate of the mean derivative for each parameter
– Maintain a running estimate of the mean squared value of derivatives for each 

parameter
– Scale update of the parameter by the inverse of the root mean squared 

derivative

௞ ௞ିଵ ௪  ௞

௞ ௞ିଵ ௪
ଶ

௞

௞
௞

௞ ௞
௞

௞

௞ାଵ ௞
௞

  ௞
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ADAM: RMSprop with momentum
• RMS prop only considers a second-moment normalized version of the 

current gradient
• ADAM utilizes a smoothed version of  the momentum-augmented gradient

• Procedure:
– Maintain a running estimate of the mean derivative for each parameter
– Maintain a running estimate of the mean squared value of derivatives for each 

parameter
– Scale update of the parameter by the inverse of the root mean squared 

derivative

௞ ௞ିଵ ௪  ௞

௞ ௞ିଵ ௪
ଶ

௞

௞
௞

௞ ௞
௞

௞

௞ାଵ ௞
௞

  ௞
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Ensures that the 
and terms do 

not dominate in 
early

iterations



Other variants of the same theme

• Many: 
– Adagrad
– AdaDelta
– ADAM
– AdaMax
– …

• Generally no explicit learning rate schedule to optimize
– But come with other hyper parameters to be optimized
– Typical params:

• RMSProp: , 
• ADAM: , , 
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Visualizing the optimizers: Beale’s Function

• http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
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Visualizing the optimizers: Long Valley

• http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
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Visualizing the optimizers: Saddle Point

• http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
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Story so far

• Gradient descent can be sped up by incremental 
updates
– Convergence is guaranteed under most conditions

• Learning rate must shrink with time for convergence

– Stochastic gradient descent: update after each 
observation. Can be much faster than batch learning

– Mini-batch updates:  update after batches.  Can be more 
efficient than SGD

• Convergence can be improved using smoothed updates
– RMSprop and more advanced techniques
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Moving on: Topics for the day

• Incremental updates
• Revisiting “trend” algorithms
• Generalization
• Tricks of the trade

– Divergences..
– Activations
– Normalizations
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Tricks of the trade..

• To make the network converge better
– The Divergence
– Dropout
– Batch normalization
– Other tricks

• Gradient clipping
• Data augmentation
• Other hacks..
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Training Neural Nets by Gradient Descent: 
The Divergence

• The convergence of the gradient descent 
depends on the divergence
– Ideally, must have a shape that results in a 

significant gradient in the right direction outside 
the optimum
• To “guide” the algorithm to the right solution

32

Total training loss:



Desiderata for a good divergence

• Must be smooth and not have many poor local optima
• Low slopes far from the optimum == bad

– Initial estimates far from the optimum will take forever to 
converge

• High slopes near the optimum == bad
– Steep gradients
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Desiderata for a good divergence

• Functions that are shallow far from the optimum will result in very small steps during optimization
– Slow convergence of gradient descent

• Functions that are steep near the optimum will result in large steps and overshoot during 
optimization
– Gradient descent will not converge easily

• The best type of divergence is steep far from the optimum, but shallow at the optimum
– But not too shallow: ideally quadratic in nature
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Choices for divergence

• Most common choices: The L2 divergence and 
the KL divergence 35

Desired output:   Desired output:

L2

KL

ଶ

1 2 3 4 0

Softmax

௜ ௜
ଶ

 

௜

௜ ௜

 

௜

௜ ௜

 

௜



L2 or KL?

• The L2 divergence has long been favored in most 
applications

• It is particularly appropriate when attempting to 
perform regression
– Numeric prediction

• The KL divergence is better when the intent is 
classification
– The output is a probability vector
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L2 or KL

• Plot of L2 and KL divergences for a single perceptron, as 
function of weights
– Setup:  2-dimensional input
– 100 training examples randomly generated
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L2 or KL

• Plot of L2 and KL divergences for a single perceptron, as 
function of weights
– Setup:  2-dimensional input
– 100 training examples randomly generated

38

NOTE:  L2 divergence is not convex while KL is convex

However, L2 also has a unique global minimum



A note on derivatives

• Note: For L2 divergence the derivative w.r.t. 
the pre-activation of the output layer is:

• We literally “propagate” the error 
backward
– Which is why the method is sometimes called 

“error backpropagation”
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Story so far

• Gradient descent can be sped up by 
incremental updates

• Convergence can be improved using 
smoothed updates

• The choice of divergence affects both the 
learned network and results
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The problem of covariate shifts

• Training assumes the training data are all similarly distributed
– Minibatches have similar distribution

• In practice, each minibatch may have a different distribution
– A “covariate shift”

• Covariate shifts can affect training badly
41



The problem of covariate shifts

• Training assumes the training data are all similarly distributed
– Minibatches have similar distribution

• In practice, each minibatch may have a different distribution
– A “covariate shift”
– Which may occur in each layer of the networkg badly
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The problem of covariate shifts

• Training assumes the training data are all similarly distributed
– Minibatches have similar distribution

• In practice, each minibatch may have a different distribution
– A “covariate shift”

• Covariate shifts can be large!
– All covariate shifts can affect training badly
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• “Move” all batches to have a mean of 0 and unit 
standard deviation
– Eliminates covariate shift between batches

Solution: Move all subgroups to a “standard” 
location
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Solution: Move all subgroups to a “standard” 
location

• “Move” all batches to have a mean of 0 and unit 
standard deviation
– Eliminates covariate shift between batches
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Solution: Move all subgroups to a “standard” 
location

• “Move” all batches to have a mean of 0 and unit 
standard deviation
– Eliminates covariate shift between batches
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Solution: Move all subgroups to a “standard” 
location

• “Move” all batches to have a mean of 0 and unit 
standard deviation
– Eliminates covariate shift between batches
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Solution: Move all subgroups to a “standard” 
location

• “Move” all batches to have a mean of 0 and unit 
standard deviation
– Eliminates covariate shift between batches
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Solution: Move all subgroups to a “standard” 
location

• “Move” all batches to have a mean of 0 and unit 
standard deviation
– Eliminates covariate shift between batches
– Then move the entire collection to the appropriate location
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Batch normalization

• Batch normalization is a covariate adjustment unit that happens 
after the weighted addition of inputs but before the application of 
activation
– Is done independently for each unit, to simplify computation

• Training: The adjustment occurs over individual minibatches

+

+

+

+

+
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Batch normalization

• BN aggregates the statistics over a minibatch and normalizes the 
batch by them

• Normalized instances are “shifted” to a unit-specific location

+  

௝ ௝

 

௝

ଵ

ଶ

ே

ேିଵ

௜
௜ ஻

஻
 ௜ ௜

Batch normalization

Covariate shift to 
standard position

Shift to right
position

Neuron-specific terms

51

Batch mean
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Batch normalization: Training

• BN aggregates the statistics over a minibatch and normalizes the 
batch by them

• Normalized instances are “shifted” to a unit-specific location

+  

௝ ௝

 

௝

ଵ

ଶ

ே

ேିଵ

௜
௜ ஻

஻
ଶ   ௜ ௜

Batch normalization

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ
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Batch normalization: Training

• BN aggregates the statistics over a minibatch and normalizes the 
batch by them

• Normalized instances are “shifted” to a unit-specific location

+  

௝ ௝

 

௝

ଵ

ଶ

ே

ேିଵ

௜
௜ ஻

஻
ଶ   ௜ ௜

Minibatch size Minibatch mean

Batch normalization

Minibatch standard deviation

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ
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Batch normalization: Training

• BN aggregates the statistics over a minibatch and normalizes the 
batch by them

• Normalized instances are “shifted” to a unit-specific location

+  

௝ ௝

 

௝

ଵ

ଶ

ே

ேିଵ

௜
௜ ஻

஻
ଶ   ௜ ௜

Normalize minibatch to 
zero-mean unit variance

Shift to right
position

Batch normalization

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ
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A better picture for batch norm

+  

ଵ

ଶ

ே

ேିଵ

Batch normalization

+  

ଵ

ଶ

ே

ேିଵ

+
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A note on derivatives
• In conventional learning, we attempt to compute the 

derivative of the divergence for individual training instances 
w.r.t. parameters

• This is based on the following relations

• If we use Batch Norm, the above relation gets a little 
complicated
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A note on derivatives
• The outputs are now functions of and 

which are functions of the entire minibatch

• The Divergence for each depends on all the 
within the minibatch

• Specifically, within each layer, we get the 
relationship in the following slide
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Batchnorm is a vector function over 
the minibatch

• Batch normalization is really a vector function applied over all the inputs from a 
minibatch
– Every 𝑧௜ affects every 𝑧̂௝

– Shown on the next slide

• To compute the derivative of the divergence w.r.t any ௜, we must consider all ௝

in the batch
58
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Batchnorm

• The complete dependency figure for Batchnorm
• Note : inputs and outputs are different instances in a minibatch

– The diagram represents BN occurring at a single neuron

• You can use vector function differentiation rules to compute the derivatives
– But the equations in the following slides summarize them for you
– The actual derivation uses the simplified diagram shown in the next slide, but you could do it 

directly off the figure above and arrive at the same answers
59

ଵ

஻
ଶ

஻

ଵ

ଶଶ

஻ ஻

Batch norm



Batchnorm

• Simplified diagram for a single input in a 
minibatch

60
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Batch normalization: 
Backpropagation

+  

ଵ

ଶ

ே

ேିଵ

௜
௜ ஻

஻
ଶ   ௜ ௜

Batch normalization

 

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ
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Batch normalization: 
Backpropagation

+  

ଵ

ଶ

ே

ேିଵ

௜
௜ ஻

஻
ଶ   ௜ ௜

Batch normalization

 

 
Parameters to be
learned

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ
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Batch normalization: 
Backpropagation

+  

ଵ

ଶ

ே

ேିଵ

௜
௜ ஻

஻
ଶ   ௜ ௜

Batch normalization

 

 
Parameters to be
learned

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ
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Batch normalization: 
Backpropagation

+  

ଵ

ଶ

ே

ேିଵ

௜
௜ ஻

஻
ଶ   ௜ ௜

Batch normalization

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ
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• Final step of backprop: compute 



Batch normalization: 
Backpropagation

+  

ଵ

ଶ

ே

ேିଵ

௜
௜ ஻

஻
ଶ   ௜ ௜

Batch normalization

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ
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Batch normalization: 
Backpropagation

 
 

஻
ଶ

௜஻

Influence diagram

௜

Dotted lines show
dependence through
other ௝s because
Divergence is computed
over a minibatch

௝ஷ௜

௜ ௜

௜

௜ ஻
ଶ

஻
ଶ

௜ ஻

஻

௜



௜ ௜

௜

௜ ஻
ଶ

஻
ଶ

௜ ஻

஻

௜

Batch normalization: 
Backpropagation

 
 

஻
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௜
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Batch normalization: 
Backpropagation
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Batch normalization: 
Backpropagation
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Batch normalization: 
Backpropagation
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Batch normalization: 
Backpropagation
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Batch normalization: 
Backpropagation
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Batch normalization: 
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Batch normalization: 
Backpropagation
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Batch normalization: 
Backpropagation
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The rest of backprop continues from డ஽௜௩
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Batch normalization: Inference

• On test data, BN requires 𝜇஻ and 𝜎஻
ଶ.

• We will use the average over all training minibatches

𝜇஻ே =
1

𝑁𝑏𝑎𝑡𝑐ℎ𝑒𝑠
෍ 𝜇஻(𝑏𝑎𝑡𝑐ℎ)

 

௕௔௧

𝜎஻ே
ଶ =

𝐵

(𝐵 − 1)𝑁𝑏𝑎𝑡𝑐ℎ𝑒𝑠
෍ 𝜎஻

ଶ(𝑏𝑎𝑡𝑐ℎ)

 

௕௔௧௖௛

• Note: these are neuron-specific
– 𝜇஻(𝑏𝑎𝑡𝑐ℎ) and 𝜎஻

ଶ(𝑏𝑎𝑡𝑐ℎ) here are obtained from the final converged network
– The 𝐵/(𝐵 − 1) term gives us an unbiased estimator for the variance

+  

ଶ

ே

ேିଵ
௜

௜ ஻ே

஻ே
ଶ   ௜ ௜

Batch normalization
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Batch normalization

• Batch normalization may only be applied to some layers 
– Or even only selected neurons in the layer

• Improves both convergence rate and neural network performance
– Anecdotal evidence that BN eliminates the need for dropout
– To get maximum benefit from BN, learning rates must be increased 

and learning rate decay can be faster
• Since the data generally remain in the high-gradient regions of the activations

– Also needs better randomization of training data order

+

+

+

+
+
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Batch Normalization: Typical result

• Performance on Imagenet, from Ioffe and Szegedy,  JMLR 
2015
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Story so far

• Gradient descent can be sped up by incremental 
updates

• Convergence can be improved using smoothed updates

• The choice of divergence affects both the learned 
network and results

• Covariate shift between training and test may cause 
problems and may be handled by batch normalization
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The problem of data 
underspecification

• The figures shown to illustrate the learning 
problem so far were fake news..
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Learning the network

• We attempt to learn an entire function from just 
a few snapshots of it
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General approach to training

• Define an error between the actual network output for 
any parameter value and the desired output
– Error typically defined as the sum of the squared error over 

individual training instances

Blue lines: error when
function is below desired
output

Black lines: error when
function is above desired
output

௜ ௜
ଶ

 

௜
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Overfitting

• Problem:  Network may just learn the values at 
the inputs
– Learn the red curve instead of the dotted blue one

• Given only the red vertical bars as inputs
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Data under-specification

• Consider a binary 100-dimensional input
• There are 2100=1030 possible inputs
• Complete specification of the function will require specification of 1030 output 

values
• A training set with only  1015 training instances will be off by a factor of 1015
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Data under-specification in learning

• Consider a binary 100-dimensional input
• There are 2100=1030 possible inputs
• Complete specification of the function will require specification of 1030 output 

values
• A training set with only  1015 training instances will be off by a factor of 1015

85
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Need “smoothing” constraints

• Need additional constraints that will “fill in” 
the missing regions acceptably
– Generalization

86



Smoothness through weight 
manipulation

• Illustrative example: Simple binary classifier
– The “desired” output is generally smooth
– The “overfit” model has fast changes

x

y
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Smoothness through weight 
manipulation

• Illustrative example: Simple binary classifier
– The “desired” output is generally smooth

• Capture statistical or average trends
– An unconstrained model will model individual instances 

instead

x

y
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The unconstrained model

• Illustrative example: Simple binary classifier
– The “desired” output is generally smooth

• Capture statistical or average trends
– An unconstrained model will model individual instances 

instead

x

y
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Why overfitting

x

y

These sharp changes happen because ..

..the perceptrons in the network are individually capable of sharp changes 
in output
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The individual perceptron

• Using a sigmoid activation
– As increases, the response becomes steeper
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Smoothness through weight 
manipulation

x

y

• Steep changes that enable overfitted responses are 
facilitated by perceptrons with large 

• Constraining the weights to be low will force slower 
perceptrons and smoother output response
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Smoothness through weight 
manipulation

x

y

• Steep changes that enable overfitted responses are 
facilitated by perceptrons with large 

• Constraining the weights to be low will force slower 
perceptrons and smoother output response

93



Objective function for neural 
networks

• Conventional training: minimize the total loss:

Desired output of network: 

Error on i-th training input:    

ଵ ଶ ௄

Batch training loss:

94
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Smoothness through weight 
constraints

• Regularized training: minimize the loss while also minimizing the 
weights

• is the regularization parameter whose value depends on how 
important it is for us to want to minimize the weights

• Increasing assigns greater importance to shrinking the weights
– Make greater error on training data, to obtain a more acceptable network

95
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Regularizing the weights

ଵ ଶ ௄ ௧ ௧

 

௧

௞ ଶ
ଶ

 

௞

• Batch mode:

௞ ௐೖ ௧ ௧
𝑇

 

௧

௞

• SGD:
௞ ௐೖ ௧ ௧

𝑇
௞

• Minibatch:

௞ ௐೖ ఛ ఛ
𝑇

௧ା௕ିଵ

ఛୀ௧

௞

• Update rule:
௞ ௞ ௞
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Incremental Update: Mini-batch 
update

• Given ଵ ଵ , ଶ ଶ ,…, ் ்

• Initialize all weights ଵ ଶ ௄;   

• Do:
– Randomly permute ଵ ଵ , ଶ ଶ ,…, ் ்

– For 
• 𝑗 = 𝑗 + 1

• For every layer k:
– ∆𝑊௞ = 0

• For t’ = t : t+b-1
– For every layer 𝑘:

» Compute  𝛻ௐೖ
𝐷𝑖𝑣(𝑌௧, 𝑑௧)

» ∆𝑊௞ = ∆𝑊௞ + 𝛻ௐೖ
𝐷𝑖𝑣 𝑌௧, 𝑑௧

𝑇

• Update
– For every layer k:

𝑊௞ = 𝑊௞ − 𝜂௝ ∆𝑊௞ + 𝜆𝑊௞

• Until has converged 97



Smoothness through network 
structure

• MLPs naturally impose constraints

• MLPs are universal approximators
– Arbitrarily increasing size can give 

you arbitrarily wiggly functions
– The function will remain ill-defined 

on the majority of the space

• For a given number of parameters deeper networks impose 
more smoothness than shallow ones
– Each layer works on the already smooth surface output by the 

previous layer
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• Typical results (varies with initialization)
• 1000 training points – orders of magnitude more than you 

usually get
• All the training tricks known to mankind 99

Even when we get it all right



But depth and training data help

• Deeper networks seem to learn better, for the same 
number of total neurons
– Implicit smoothness constraints

• As opposed to explicit constraints from more conventional 
classification models

• Similar functions not learnable using more usual 
pattern-recognition models!! 100

6 layers 11 layers

3 layers 4 layers

6 layers 11 layers

3 layers 4 layers

10000 training instances



Regularization..

• Other techniques have been proposed to 
improve the smoothness of the learned 
function
– L1 regularization of network activations
– Regularizing with added noise..

• Possibly the most influential method has been 
“dropout”
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Story so far

• Gradient descent can be sped up by incremental updates
• Convergence can be improved using smoothed updates

• The choice of divergence affects both the learned network 
and results

• Covariate shift between training and test may cause 
problems and may be handled by batch normalization

• Data underspecification can result in overfitted models and 
must be handled by regularization and more constrained 
(generally deeper) network architectures
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A brief detour..  Bagging

• Popular method proposed by Leo Breiman:
– Sample training data and train several different classifiers
– Classify test instance with entire ensemble of classifiers
– Vote across classifiers for final decision
– Empirically shown to improve significantly over training a single 

classifier from combined data

• Returning to our problem….
103



Dropout

• During training: For each input, at each iteration, 
“turn off” each neuron with a probability 1-a

Input

Output
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Dropout

• During training: For each input, at each iteration, 
“turn off” each neuron with a probability 1-a
– Also turn off inputs similarly

Input

Output

X1 Y1
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Dropout

• During training: For each input, at each iteration, “turn off” 
each neuron (including inputs) with a probability 1-a
– In practice, set them to 0 according to the success of a Bernoulli 

random number generator with success probability 1-a

Input

Output

X1 Y1
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Dropout

• During training: For each input, at each iteration, “turn off” 
each neuron (including inputs) with a probability 1-a
– In practice, set them to 0 according to the success of a Bernoulli 

random number generator with success probability 1-a

The pattern of dropped nodes
changes for each input
i.e. in every pass through the net

Input

Output

X1 Y1

Input

Output

X2 Y2

Input

Output

X3 Y3
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Dropout

• During training: Backpropagation is effectively performed only over the remaining 
network
– The effective network is different for different inputs
– Gradients are obtained only for the weights and biases from “On” nodes to “On” nodes

• For the remaining, the gradient is just 0

The pattern of dropped nodes
changes for each input
i.e. in every pass through the net

Input

Output

X1 Y1

Input

Output

X2 Y2

Output

X3 Y3

Input
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Statistical Interpretation

• For a network with a total of N neurons, there are 2N

possible sub-networks
– Obtained by choosing different subsets of nodes
– Dropout samples over all 2N possible networks
– Effectively learns a network that averages over all possible 

networks
• Bagging

Input

Output
X1 Y1

Input

Output
X2 Y2

Output
X3 Y3

Input

Output

X1 Y1
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Dropout as a mechanism to increase 
pattern density

• Dropout forces the neurons to 
learn “rich” and redundant 
patterns

• E.g. without dropout, a non-
compressive layer may just 
“clone” its input to its output
– Transferring the task of learning 

to the rest of the network 
upstream

• Dropout forces the neurons to 
learn denser patterns
– With redundancy
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The forward pass
• Input: dimensional vector ௝

• Set:
– ଴ ,  is the width of the 0th (input) layer

– ௝
(଴)

௝ ;       ଴
(௞ୀଵ…ே)

଴

• For layer 
– For ௞

• 𝑧௝
(௞)

= ∑ 𝑤௜,௝
(௞)

𝑦௜
(௞ିଵ)

+
ேೖ
௜ୀ଴ 𝑏௝

(௞)

• 𝑦௝
(௞)

= 𝑓௞ 𝑧௝
(௞)

• If (𝑘 =  𝑑𝑟𝑜𝑝𝑜𝑢𝑡 𝑙𝑎𝑦𝑒𝑟) : 
– 𝑚𝑎𝑠𝑘 𝑘, 𝑗 =  𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝛼

– If  𝑚𝑎𝑠𝑘 𝑘, 𝑗 == 0

» 𝑦௝
(௞)

= 0

• Output:

– ௝
(ே)

ே
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Backward Pass
• Output layer (N) :

–
డ஽௜௩

డ௒೔

డ஽௜௩(௒,ௗ)

డ௬
೔
(ಿ)

–
డ஽௜௩

డ௭
೔
(ೖ) ௞

ᇱ
௜
(௞) డ஽௜௩

డ௬
೔
(ೖ)

• For layer 
– For ௞

• If (not dropout layer OR )

–
డ஽௜௩

డ௬
೔
(ೖ) = ∑ 𝑤௜௝

௞ାଵ 
௝

డ஽௜௩

డ௭ೕ
ೖశభ 𝑚𝑎𝑠𝑘(𝑘 + 1, 𝑗)

–
డ஽௜௩

డ௭
೔
(ೖ) = 𝑓௞

ᇱ 𝑧௜
(௞) డ஽௜௩

డ௬
೔
(ೖ)

–
డ஽௜௩

డ௪
೔ೕ
(ೖశభ) = 𝑦௜

௞ డ஽௜௩

డ௭ೕ
ೖశభ 𝑚𝑎𝑠𝑘(𝑘 + 1, 𝑗) for 𝑗 = 1 … 𝐷௞ାଵ

• Else

–
డ஽௜௩

డ௭
೔
(ೖ) = 0
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What each neuron computes

• Each neuron actually has the following activation:

௜
(௞)

௝௜
(௞)

௝
(௞ିଵ)

 

௝

௜
(௞)

– Where is a Bernoulli variable that takes a value 1 with probability a

• may be switched on or off for individual sub networks, but over 
the ensemble, the expected output of the neuron is 

௜
(௞) a ௝௜

(௞)
௝
(௞ିଵ)

 

௝

௜
(௞)

• During test time, we will use the expected output of the neuron
– Which corresponds to the bagged average output
– Consists of simply scaling the output of each neuron by a
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Dropout during  test: implementation

• Instead of multiplying every output by , multiply 
all weights by 

Input

Output

X1 Y1

apply a here (to the output of the neuron) OR..

Push the a to all outgoing weights

𝑧௜
(௞)

= ෍ 𝑤௝௜
(௞)

𝑦௝
(௞ିଵ)

+

 

௝

𝑏௜
(௞)

         = ෍ 𝑤௝௜
(௞)a𝜎 𝑧௝

(௞ିଵ)
+

 

௝

𝑏௜
(௞)

         = ෍ a𝑤௝௜
(௞)

𝜎 𝑧௝
(௞ିଵ)

+

 

௝

𝑏௜
(௞)
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Dropout : alternate implementation

• Alternately, during training, replace the activation 
of all neurons in the network by a
– This does not affect the dropout procedure itself

– We will use as the activation during testing, and not 
modify the weights

Input

Output

X1 Y1
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The forward pass (testing)
• Input: dimensional vector ௝

• Set:
– 𝐷଴ = 𝐷,  is the width of the 0th (input) layer

– 𝑦௝
(଴)

= 𝑥௝, 𝑗 = 1 … 𝐷;       𝑦଴
(௞ୀଵ…ே)

= 𝑥଴ = 1

• For layer 
– For 𝑗 = 1 … 𝐷௞

• 𝑧௝
(௞)

= ∑ 𝑤௜,௝
(௞)

𝑦௜
(௞ିଵ)

+
ேೖ
௜ୀ଴ 𝑏௝

(௞)

• 𝑦௝
(௞)

= 𝑓௞ 𝑧௝
(௞)

• If (𝑘 =  𝑑𝑟𝑜𝑝𝑜𝑢𝑡 𝑙𝑎𝑦𝑒𝑟) : 

» 𝑦௝
(௞)

= 𝑦௝
(௞)

/𝛼

– Else

» 𝑦௝
(௞)

= 0

• Output:

– 𝑌 = 𝑦௝
(ே)

, 𝑗 = 1. . 𝐷ே
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Dropout: Typical results

• From Srivastava et al., 2013.  Test error for different 
architectures on MNIST with and without dropout
– 2-4 hidden layers with 1024-2048 units 117



Variations on dropout

• Zoneout: For RNNs
– Randomly chosen units remain unchanged across a time transition

• Dropconnect
– Drop individual connections, instead of nodes

• Shakeout
– Scale up the weights of randomly selected weights

• 𝑤 → 𝛼 𝑤 + 1 − 𝛼 𝑐

– Fix remaining weights to a negative constant
• 𝑤 → −𝑐

• Whiteout
– Add or multiply weight-dependent Gaussian noise to the signal on 

each connection 
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Story so far
• Gradient descent can be sped up by incremental updates
• Convergence can be improved using smoothed updates

• The choice of divergence affects both the learned network and 
results

• Covariate shift between training and test may cause problems and 
may be handled by batch normalization

• Data underspecification can result in overfitted models and must be 
handled by regularization and more constrained (generally deeper) 
network architectures

• “Dropout” is a stochastic data/model erasure method that 
sometimes forces the network to learn more robust models
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Other heuristics: Early stopping

• Continued training can result in over fitting to 
training data
– Track performance on a held-out validation set
– Apply one of several early-stopping criterion to 

terminate training when performance on validation 
set degrades significantly

error

epochs

training

validation
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Additional heuristics: Gradient 
clipping

• Often the derivative will be too high
– When the divergence has a steep slope
– This can result in instability

• Gradient clipping: set a ceiling on derivative value

– Typical value is 5

121
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Additional heuristics: Data 
Augmentation

• Available training data will often be small
• “Extend” it by distorting examples in a variety of 

ways to generate synthetic labelled examples
– E.g. rotation, stretching, adding noise, other distortion
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Other tricks

• Normalize the input:
– Apply covariate shift to entire training data to make it 0 

mean, unit variance
– Equivalent of batch norm on input

• A variety of other tricks are applied
– Initialization techniques

• Typically initialized randomly
• Key point:  neurons with identical connections that are identically 

initialized will never diverge

– Practice makes man perfect
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Setting up a problem
• Obtain training data

– Use appropriate representation for inputs and outputs

• Choose network architecture
– More neurons need more data
– Deep is better, but harder to train

• Choose the appropriate divergence function
– Choose regularization

• Choose heuristics (batch norm, dropout, etc.) 
• Choose optimization algorithm

– E.g. Adagrad

• Perform a grid search for hyper parameters (learning rate, regularization 
parameter, …) on held-out data

• Train
– Evaluate periodically on validation data, for early stopping if required
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In closing

• Have outlined the process of training neural 
networks
– Some history
– A variety of algorithms
– Gradient-descent based techniques
– Regularization for generalization
– Algorithms for convergence
– Heuristics

• Practice makes perfect..
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