
Deep Neural Networks
Scanning for patterns

(aka convolutional networks)

Bhiksha Raj
11-785, Spring 2020

1

Story so far

• MLPs are universal function approximators
– Boolean functions, classifiers, and regressions

• MLPs can be trained through variations of
gradient descent
– Gradients can be computed by backpropagation

2

input
layer

output layer

The model so far

• Can recognize patterns in data
– E.g. digits
– Or any other vector data

Or, more generally
a vector input

An important observation

• The lowest layers of the network capture simple patterns
– The linear decision boundaries in this example

• The next layer captures more complex patterns
– The polygons

• The next one captures still more complex patterns.. 4

x2

AND AND

OR

x1 x1 x2

An important observation

• The neurons in an MLP build up complex patterns from simple pattern
hierarchically
– Each layer learns to “detect” simple combinations of the patterns detected by

earlier layers

• This is because the basic units themselves are simple
– Typically linear classifiers or thresholding units
– Incapable of individually holding complex patterns 5

x2

AND AND

OR

x1 x1 x2

What do the neurons capture?

• What do the weights tell us?
– Using example of threshold activation

• The perceptron “fires” if the correlation between the weights and
the inputs exceeds a threshold
– The perceptron fires if the input pattern looks like pattern of weights

6

x1

x2

x3

xN

௜ ௜

௜

்

The weights as a correlation filter

• The green pattern looks more like the weights
pattern (black) than the red pattern
– The green pattern is more correlated with the weights

7

W X X

Correlation = 0.57 Correlation = 0.82
𝑦 = ൞

1 𝑖𝑓 ෍ 𝑤௜x௜ ≥ 𝑇

௜

0 𝑒𝑙𝑠𝑒

The MLP as a function over feature
detectors

• The input layer comprises “feature detectors”
– Detect if certain patterns have occurred in the input

• The network is a function over the feature detectors
• I.e. it is important for the first layer to capture relevant patterns 8

DIGIT OR NOT?

Distributed representations: The MLP
as a cascade of feature detectors

• The network is a cascade of feature detectors
– Higher level neurons compose complex templates from

features represented by lower-level neurons 9

DIGIT OR NOT?

Story so far
• Perceptrons are correlation filters

– They detect patterns in the input

• Layers in an MLP are detectors of increasingly complex patterns
– Patterns of lower-complexity patterns
– The representation of “acceptable” input patterns is distributed over the

layers of the network

• MLP in classification
– The network will fire if the combination of the detected basic features

matches an “acceptable” pattern for a desired class of signal
• E.g. Appropriate combinations of (Nose, Eyes, Eyebrows, Cheek, Chin)  Face

– If the final complex pattern detected “matches” a desired pattern

10

Changing gears..

11

A problem

• Does this signal contain the word “Welcome”?
• Compose an MLP for this problem.

– Assuming all recordings are exactly the same length..
12

Finding a Welcome

• Trivial solution: Train an MLP for the entire
recording

13

Finding a Welcome

• Problem with trivial solution: Network that finds a “welcome” in
the top recording will not find it in the lower one
– Unless trained with both
– Will require a very large network and a large amount of training data

to cover every case
14

Finding a Welcome

• Need a simple network that will fire regardless
of the location of “Welcome”
– and not fire when there is none

15

Flowers

• Is there a flower in any of these images

16

A problem

• Will an MLP that recognizes the left image as a flower
also recognize the one on the right as a flower?

input
layer

output layer

17

A problem

• Need a network that will “fire” regardless of
the precise location of the target object

18

The need for shift invariance

• In many problems the location of a pattern is not important
– Only the presence of the pattern

• Conventional MLPs are sensitive to the location of the
pattern
– Moving it by one component results in an entirely different

input that the MLP wont recognize

• Requirement: Network must be shift invariant
19

The need for shift invariance

• In many problems the location of a pattern is not important
– Only the presence of the pattern

• Conventional MLPs are sensitive to the location of the
pattern
– Moving it by one component results in an entirely different

input that the MLP wont recognize

• Requirement: Network must be shift invariant
20

Solution: Scan

• Scan for the target word
– The spectral time-frequency components in a

“window” are input to a “welcome-detector” MLP

21

Solution: Scan

• Scan for the target word
– The spectral time-frequency components in a

“window” are input to a “welcome-detector” MLP

22

Solution: Scan

• Scan for the target word
– The spectral time-frequency components in a

“window” are input to a “welcome-detector” MLP

23

Solution: Scan

• Scan for the target word
– The spectral time-frequency components in a

“window” are input to a “welcome-detector” MLP

24

Solution: Scan

• Scan for the target word
– The spectral time-frequency components in a

“window” are input to a “welcome-detector” MLP

25

Solution: Scan

• Scan for the target word
– The spectral time-frequency components in a

“window” are input to a “welcome-detector” MLP

26

Solution: Scan

• “Does welcome occur in this recording?”
– We have classified many “windows” individually
– “Welcome” may have occurred in any of them

27

Solution: Scan

• “Does welcome occur in this recording?”
– Maximum of all the outputs (Equivalent of Boolean OR)

MAX

28

Solution: Scan

• “Does welcome occur in this recording?”
– Maximum of all the outputs (Equivalent of Boolean OR)
– Or a proper softmax/logistic

• Finding a welcome in adjacent windows makes it more likely that we didn’t find
noise

Perceptron

29

Solution: Scan

• “Does welcome occur in this recording?”
– Maximum of all the outputs (Equivalent of Boolean OR)
– Or a proper softmax/logistic

• Adjacent windows can combine their evidence

– Or even an MLP 30

Scanning with an MLP

• K = width of “patch” evaluated by MLP

For t = 1:T-K+1
XSegment = x(:, t:t+K-1)

y(t) = MLP(XSegment)

Y = softmax(y(1)..y(T-K+1))

31

Its actually just one giant network

• The entire operation can be viewed as one giant
network
– With many subnetworks, one per window
– Restriction: All subnets are identical 32

Scanning with an MLP

• K = width of “patch” evaluated by MLP

For t = 1:T-K+1
XSegment = x(:, t:t+K-1)

y(t) = MLP(XSegment)

Y = softmax(y(1)..y(T-K+1))

33

Just the final layer of the overall
MLP

Scanning with an MLP

Y = giantMLP(x)

34

The 2-d analogue: Does this picture
have a flower?

• Scan for the desired object
– “Look” for the target object at each position 35

Solution: Scan

• Scan for the desired object

36

Flower detector MLP

Solution: Scan

• Scan for the desired object

37

Flower detector MLP

Solution: Scan

• Scan for the desired object

38

Flower detector MLP

Solution: Scan

• Scan for the desired object

39

Flower detector MLP

Solution: Scan

• Scan for the desired object

40

Flower detector MLP

Solution: Scan

• Scan for the desired object

41

Flower detector MLP

Solution: Scan

• Scan for the desired object

42

Flower detector MLP

Solution: Scan

• Scan for the desired object

43

Flower detector MLP

Solution: Scan

• Scan for the desired object

44

Flower detector MLP

Solution: Scan

• Scan for the desired object

45

Flower detector MLP

Solution: Scan

• Scan for the desired object

46

Flower detector MLP

Solution: Scan

• Scan for the desired object

47

Flower detector MLP

Solution: Scan

• Scan for the desired object

48

Flower detector MLP

Solution: Scan

• Scan for the desired object

49

Flower detector MLP

Scanning

• Scan for the desired object

• At each location, the entire region is sent
through an MLP

Input
(the pixel data)

50

Scanning the picture to find a flower

• Determine if any of the locations had a flower
– We get one classification output per scanned location

• Each dot in the right represents the output of the MLP when it classifies one location in the
input figure

– The score output by the MLP

– Look at the maximum value
• If the picture has a flower, the location with the flower will result in high output value

max

51

Scanning the picture to find a flower

• Determine if any of the locations had a flower
• Each dot in the right represents the output of the MLP when it

classifies one location in the input figure
– The score output by the MLP

– Look at the maximum value
– Or pass it through a softmax or even an MLP 52

Scanning with an MLP

• KxK = size of “patch” evaluated by MLP
• W is width of image
• H is height of image

For i = 1:W-K+1
For j = 1:H-K+1

ImgSegment = Img(i:i+K-1, j:j+K-1)
y(i,j) = MLP(ImgSegment)

Y = softmax(y(1,1)..y(W-K+1,H-K+1))

53

Its just a giant network with common
subnets

• The entire operation can be viewed as a single
giant network
– Composed of many “subnets” (one per window)
– With one key feature: all subnets are identical 54

Scanning with an MLP

• KxK = size of “patch” evaluated by MLP
• W is width of image
• H is height of image

For i = 1:W-K+1
For j = 1:H-K+1

ImgSegment = Img(i:i+K-1, j:j+K-1)
y(i,j) = MLP(ImgSegment)

Y = softmax(y(1,1)..y(W-K+1,H-K+1))

55

Just the final layer of the overall
MLP

Scanning with an MLP

Y = giantMLP(img)

56

Regular networks vs. scanning networks

• In a regular MLP every neuron in a layer is connected by a unique weight
to every unit in the previous layer
– All entries in the weight matrix are unique
– The weight matrix is (generally) full 57

time

M
or

e
la

ye
rs

Regular network

• Consider the first layer
– Assume inputs and outputs

• The weights matrix is a full matrix
– Requiring unique parameters 58

(ଵ) (ଵ)

ଵଵ ଵଶ ଵଷ ଵସ ଵெ

ଶଵ ଶଶ ଶଷ ଶସ ଶெ

ଷଵ ଷଶ ଷଷ ଷସ ଷெ

ସଵ ସଶ ସଷ ସସ ସெ

ேଵ ேଶ ேଷ ேସ ேெ

Scanning networks

• In a scanning MLP each neuron is connected to a subset of neurons in the
previous layer
– The weights matrix is sparse
– The weights matrix is block structured with identical blocks

59

M
or

e
la

ye
rs

Scanning with 2-step “stride”
for illustration

time

Scanning networks

• In a scanning MLP each neuron is connected to a subset of neurons in the
previous layer
– The weights matrix is sparse
– The weights matrix is block structured with identical blocks

60

M
or

e
la

ye
rs

Scanning with 2-step “stride”
for illustration

time

Scanning networks

• In a scanning MLP each neuron is connected to a subset of neurons
in the previous layer
– The weights matrix is sparse
– The weights matrix is block structured with identical blocks
– The network is a shared parameter model 61

(ଵ)

ଵଵ ଵଶ

ଶଵ ଶଶ

ଷଵ ଷଶ

ଵଵ ଵଶ

ଶଵ ଶଶ

ଷଵ ଷଶ

ଵଵ ଵଶ

ଷଵ ଷଶ

(ଵ)

time

Scanning networks

• In a scanning MLP each neuron is connected to a subset of neurons in the
previous layer

– The weights matrix is sparse
– The weights matrix is block structured with identical blocks
– The network is a shared-parameter model

• Also, far fewer parameters (we return to this topic shortly) 62

(ଵ)

ଵଵ ଵଶ

ଶଵ ଶଶ

ଷଵ ଷଶ

ଵଵ ଵଶ

ଶଵ ଶଶ

ଷଵ ଷଶ

ଵଵ ଵଶ

ଷଵ ଷଶ

(ଵ)

Effective in any situation where the data are expected to be composed of
similar structures at different locations

time

Scanning networks

• Modifying the visualization for intuition..
– Will still be the same network

63

time

M
or

e
la

ye
rs

Scanning with 2-step “stride”
for illustration

Scanning networks

64

time
• A modified drawing

– Indicates progression of time/space
• The progression of “bars” of neurons is indicative of time
• Note: bars at the lowest level are also vectors of inputs

– More appropriate
• Since vertical bars are vectors

Scanning networks

65

time

• A modified drawing
– Indicates progression of time/space
– An arrow from one bar to another implies connections from every node in the

source bar to every node in the destination bar
• For N source-bar nodes and M destination-bar nodes, NxM connections

Scanning networks

66

time

• A modified drawing
– Indicates progression of time/space
– An arrow from one bar to another implies connections from every node in the

source bar to every node in the destination bar
• For N source-bar nodes and M destination-bar nodes, NxM connections

Visualizing scanning with a stride of 1

Training the network

• These are really just large networks
• Can just use conventional backpropagation to learn the parameters

– Provide many training examples
• Images with and without flowers
• Speech recordings with and without the word “welcome”

– Gradient descent to minimize the total divergence between predicted and
desired outputs

• Backprop learns a network that maps the training inputs to the target binary
outputs 67

Training the network: constraint

• These are shared parameter networks
– All lower-level subnets are identical

• Are all searching for the same pattern

– Any update of the parameters of one copy of the
subnet must equally update all copies

68

Learning in shared parameter
networks

• Consider a simple network with
shared weights

– A weight ௜௝
௞ is required to be

identical to the weight ௠௡
௟

• For any training instance , a small
perturbation of perturbs both

and identically
– Each of these perturbations will

individually influence the
divergence

Div

69

Computing the divergence of shared
parameters

𝒮
௜௝
௞

௜௝
௞

𝒮
௠௡
௟

௠௡
௟

𝒮

௜௝
௞

௠௡
௟

• Each of the individual terms can be computed
via backpropagation

Influence diagram

௜௝
௞

௠௡
௟

𝒮

Div

70

Computing the divergence of shared
parameters

• More generally, let be any set of edges that have a common value, and 𝒮 be
the common weight of the set

– E.g. the set of all red weights in the figure

𝒮 ௘

௘∈𝒮

• The individual terms in the sum can be computed via backpropagation

ଵ ଵ ே

71

Training networks with shared
parameters

• Gradient descent algorithm:
• Initialize all weights
• Do:

– For every set :
• Compute:

𝒮 𝒮

𝒮 𝒮
𝒮

𝑇

• For every update:
𝑤௜,௝

(௞)
= 𝑤𝒮

• Until has converged
72

Training networks with shared
parameters

• Gradient descent algorithm:
• Initialize all weights
• Do:

– For every set :
• Compute:

𝒮 𝒮

𝒮 𝒮
𝒮

𝑇

• For every update:
𝑤௜,௝

(௞)
= 𝑤𝒮

• Until has converged
73

Training networks with shared
parameters

• Gradient descent algorithm:
• Initialize all weights
• Do:

– For every set :
• Compute:

𝒮 𝒮

𝒮 𝒮
𝒮

𝑇

• For every update:
𝑤௜,௝

(௞)
= 𝑤𝒮

• Until has converged
74

• For every training instance
• For every set :

• For every :

𝒮

௜,௝
(௞)

• 𝒮 𝒮

Training networks with shared
parameters

• Gradient descent algorithm:
• Initialize all weights
• Do:

– For every set :
• Compute:

𝒮 𝒮

𝒮 𝒮
𝒮

𝑇

• For every update:
𝑤௜,௝

(௞)
= 𝑤𝒮

• Until has converged
75

• For every training instance
• For every set :

• For every :

𝒮

௜,௝
(௞)

• 𝒮 𝒮

Computed by
Backprop

Story so far
• Position-invariant pattern classification can be performed by

scanning
– 1-D scanning for sound
– 2-D scanning for images
– 3-D and higher-dimensional scans for higher dimensional data

• Scanning is equivalent to composing a large network with repeating
subnets
– The large network has shared subnets

• Learning in scanned networks: Backpropagation rules must be
modified to combine gradients from parameters that share the
same value
– The principle applies in general for networks with shared parameters

76

Scanning: A closer look

• The entire MLP operates on each “window” of
the input

77

Scanning

• At each location, each neuron computes a value based on its
inputs
– Which may either be the input image or the outputs of the

previous layer 78

Scanning

• At each location, each neuron computes a value based on its inputs
– Which may either be the input image

– 79

Scanning

• At each location, each neuron computes a value based on its inputs
– Which may either be the input image or the outputs of the previous

layer
80

Scanning

• At each location, each neuron computes a value based on its inputs
– Which may either be the input image or the outputs of the previous

layer
81

Scanning

• The same sequence of computations is performed at each location
– Producing similar sets of values

• One value per neuron in each layer

82

Scanning

• The same sequence of computations is performed at each location
– Producing similar sets of values

• One value per neuron in each layer

83

Scanning

• The same sequence of computations is performed at each location
– Producing similar sets of values

• One value per neuron in each layer

84

Scanning

• The same sequence of computations is performed at each location
– Producing similar sets of values

• One value per neuron in each layer

85

Scanning

• The same sequence of computations is performed at each location
– Producing similar sets of values

• One value per neuron in each layer

86

Scanning the input

• We get a complete set of values (represented as
a column) at each location evaluated by the
MLP during the scan 87

Scanning the input

• We get a complete set of values (represented as a column) at each
location evaluated by the MLP during the scan
– Which we put through our final softmax to decide if the recording

includes the word “Welcome” 88

Softmax

Lets do it in an different order

• Let us do the computation in a different order
• The first neuron evaluates each image first

– “Scans” the input 89

Lets do it in an different order

• Let us do the computation in a different order
• The first neuron evaluates each image first

– “Scans” the input 90

Lets do it in an different order

• Let us do the computation in a different order
• The first neuron evaluates each image first

– “Scans” the input 91

Lets do it in an different order

• Let us do the computation in a different order
• The first neuron evaluates each image first

– “Scans” the input 92

Lets do it in an different order

• Let us do the computation in a different order
• The first neuron evaluates each image first

– “Scans” the input 93

Lets do it in an different order

• Let us do the computation in a different order
• The first neuron evaluates each image first

– “Scans” the input 94

Lets do it in an different order

• Subsequently the rest of the neurons in the first layer operate on the first block
– And the downstream layers as well

• Would the output of the MLP at the first block be different?
– The fact that the first neuron has already evaluated the future blocks does not affect the output

of that neuron, or the network itself, at the current block 95

Lets do it in an different order

• Subsequently the rest of the neurons in the first layer operate on the first block
– And the downstream layers as well

• Would the output of the MLP at the first block be different?
– The fact that the first neuron has already evaluated the future blocks does not affect the output

of that neuron, or the network itself, at the current block 96

Lets do it in an different order

• What about now?
• The second neuron too has fully evaluated the entire input before the rest of

the network evaluates the first block
– This too should not change the output of the network for the first block 97

Lets do it in an different order

• In fact if all of the neurons in the first layer fully evaluate the entire
input before the rest of the network evaluates the first block, this will
not change the output of the network at the first block

98

Lets do it in an different order

99

• But now, since the first layer neurons have already produced outputs for
every location, each neuron in the second layer can go ahead and produce
outputs for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

Lets do it in an different order

100

• But now, since the first layer neurons have already produced outputs for
every location, each neuron in the second layer can go ahead and produce
outputs for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

Lets do it in an different order

101

• But now, since the first layer neurons have already produced outputs for
every location, each neuron in the second layer can go ahead and produce
outputs for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

Lets do it in an different order

102

• But now, since the first layer neurons have already produced outputs for
every location, each neuron in the second layer can go ahead and produce
outputs for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

Lets do it in an different order

103

• But now, since the first layer neurons have already produced outputs for
every location, each neuron in the second layer can go ahead and produce
outputs for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

Lets do it in an different order

• But now, since the first layer neurons have already produced outputs for
every location, each neuron in the second layer can go ahead and produce
outputs for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

104

Lets do it in an different order

105

• But now, since the first layer neurons have already produced outputs for
every location, each neuron in the second layer can go ahead and produce
outputs for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

Lets do it in an different order

106

• But now, since the first layer neurons have already produced outputs for
every location, each neuron in the second layer can go ahead and produce
outputs for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

Lets do it in an different order

107

• But now, since the first layer neurons have already produced outputs for
every location, each neuron in the second layer can go ahead and produce
outputs for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

Lets do it in an different order

108

• But now, since the first layer neurons have already produced outputs for
every location, each neuron in the second layer can go ahead and produce
outputs for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

Lets do it in an different order

109

• But now, since the first layer neurons have already produced outputs for
every location, each neuron in the second layer can go ahead and produce
outputs for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

Lets do it in an different order

110

• But now, since the first layer neurons have already produced outputs for
every location, each neuron in the second layer can go ahead and produce
outputs for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

Lets do it in an different order

• At each position the output layer neurons can now operate
on the outputs of the penultimate layer and produce the
correct classification for the corresponding block!

111

Lets do it in an different order

• At each position the output layer neurons can now operate
on the outputs of the penultimate layer and produce the
correct classification for the corresponding block!

112

Lets do it in an different order

• At each position the output layer neurons can now operate
on the outputs of the penultimate layer and produce the
correct classification for the corresponding block!

113

Lets do it in an different order

• At each position the output layer neurons can now operate
on the outputs of the penultimate layer and produce the
correct classification for the corresponding block!

114

Lets do it in an different order

• At each position the output layer neurons can now operate
on the outputs of the penultimate layer and produce the
correct classification for the corresponding block!

115

Lets do it in an different order

• At each position the output layer neurons can now operate
on the outputs of the penultimate layer and produce the
correct classification for the corresponding block!

116

Lets do it in an different order

• At each position the output layer neurons can now operate on the
outputs of the penultimate layer and produce the correct
classification for the corresponding block!
– The final softmax will give us the correct answer for the entire input 117

Softmax

Scanning with an MLP

• K = width of “patch” evaluated by MLP

For t = 1:T-K+1
XSegment = x(:, t:t+K-1)

y(t) = MLP(XSegment)

Y = softmax(y(1)..y(T-K+1))

118

Scanning with MLP
for t = 1:T-K+1

for l = 1:L # layers operate at location t

for j = 1:Dl
if (l == 1) #first layer operates on input

y(0,:,t) = x(:, t:t+K-1)

end

z(l,j,t) = 0

for i = 1:Dl-1
z(l,j,t) += w(l,i,j)y(l-1,i,t)

y(l,j,t) = activation(z(l,j,t))

Y = softmax(y(L,:,1)..y(L,:,T-K+1))

119

Scanning with MLP
for t = 1:T-K+1

for l = 1:L # layers operate at location t

for j = 1:Dl
if (l == 1) #first layer operates on input

y(0,:,t) = x(:, t:t+K-1)

end

z(l,j,t) = 0

for i = 1:Dl-1
z(l,j,t) += w(l,i,j)y(l-1,i,t)

y(l,j,t) = activation(z(l,j,t))

Y = softmax(y(L,:,1)..y(L,:,T-K+1))

120

Over time

Over layers

Scanning with MLP
for t = 1:T-K+1

for l = 1:L # layers operate at location t

for j = 1:Dl
if (l == 1) #first layer operates on input

y(0,:,t) = x(:, t:t+K-1)

end

z(l,j,t) = 0

for i = 1:Dl-1
z(l,j,t) += w(l,i,j)y(l-1,i,t)

y(l,j,t) = activation(z(l,j,t))

Y = softmax(y(L,:,1)..y(L,:,T-K+1))

121

Over time

Over layers

Scanning with MLP
for l = 1:L # layers operate at location t

for j = 1:Dl
for t = 1:T-K+1

if (l == 1) #first layer operates on input

y(0,:,t) = x(:, t:t+K-1)

end

z(l,j,t) = 0

for i = 1:Dl-1
z(l,j,t) += w(l,i,j)y(l-1,i,t)

y(l,j,t) = activation(z(l,j,t))

Y = softmax(y(L,:,1)..y(L,:,T-K+1))

122

Over time

Over layers

Scanning with MLP
for l = 1:L # layers operate at location t

for t = 1:T-K+1

for j = 1:Dl
if (l == 1) #first layer operates on input

y(0,:,t) = x(:, t:t+K-1)

end

z(l,j,t) = 0

for i = 1:Dl-1
z(l,j,t) += w(l,i,j)y(l-1,i,t)

y(l,j,t) = activation(z(l,j,t))

Y = softmax(y(L,:,1)..y(L,:,T-K+1))

123

Scanning with MLP: Vector notation

for l = 1:L # layers operate at location t

for t = 1:T-K+1

if (l == 1) #first layer operates on input

y(0, t) = x(:, t:t+K-1)

end

z(l,t) = W(l)y(l-1,t)

y(l,t) = activation(z(l,t))

Y = softmax(y(L,1)..y(L,T-K+1))

124

Scanning in 2D: A closer look

• Scan for the desired object

• At each location, the entire region is sent
through an MLP

Input
(the pixel data)

125

Scanning: A closer look

• The “input layer” is just the pixels in the image
connecting to the hidden layer

Input layer Hidden layer

126

Scanning: A closer look

• Consider a single neuron

127

Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating the part of

the picture in the box as part of the classification for that region
– We could arrange the outputs of the neurons for each position

correspondingly to the original picture

௜௝ ௜௝

௜,௝

128

Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating

the picture as part of the classification for that region
– We could arrange the outputs of the neurons for each position

correspondingly to the original picture
129

Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating

the picture as part of the classification for that region
– We could arrange the outputs of the neurons for each position

correspondingly to the original picture
130

Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating

the picture as part of the classification for that region
– We could arrange the outputs of the neurons for each position

correspondingly to the original picture
131

Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating

the picture as part of the classification for that region
– We could arrange the outputs of the neurons for each position

correspondingly to the original picture
132

Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating

the picture as part of the classification for that region
– We could arrange the outputs of the neurons for each position

correspondingly to the original picture
133

Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating

the picture as part of the classification for that region
– We could arrange the outputs of the neurons for each position

correspondingly to the original picture
134

Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating

the picture as part of the classification for that region
– We could arrange the outputs of the neurons for each position

correspondingly to the original picture
135

Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating

the picture as part of the classification for that region
– We could arrange the outputs of the neurons for each position

correspondingly to the original picture
136

Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating

the picture as part of the classification for that region
– We could arrange the outputs of the neurons for each position

correspondingly to the original picture
137

Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating

the picture as part of the classification for that region
– We could arrange the outputs of the neurons for each position

correspondingly to the original picture
138

Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating

the picture as part of the classification for that region
– We could arrange the outputs of the neurons for each position

correspondingly to the original picture
139

Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating

the picture as part of the classification for that region
– We could arrange the outputs of the neurons for each position

correspondingly to the original picture
140

Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating the picture as

part of the classification for that region
– We could arrange the outputs of the neurons for each position

correspondingly to the original picture

• Eventually, we can arrange the outputs from the response at the scanned
positions into a rectangle that’s proportional in size to the original picture141

Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating the picture as

part of the classification for that region
– We could arrange the outputs of the neurons for each position

correspondingly to the original picture

• Eventually, we can arrange the outputs from the response at the scanned
positions into a rectangle that’s proportional in size to the original picture142

Scanning: A closer look

• Similarly, each first-layer perceptron’s outputs
from the scanned positions can be arranged as
a rectangular pattern

143

Scanning: A closer look

• To classify a specific “patch” in the image, we
send the first level activations from the
positions corresponding to that position to the
next layer

144

Scanning: A closer look

• We can recurse the logic
– The second level neurons too are “scanning” the rectangular outputs

of the first-level neurons
– (Un)like the first level, they are jointly scanning multiple “pictures”

• Each location in the output of the second level neuron considers the
corresponding locations from the outputs of all the first-level neurons

145

Scanning: A closer look

• We can recurse the logic
– The second level neurons too are “scanning” the rectangular outputs

of the first-level neurons
– (Un)like the first level, they are jointly scanning multiple “pictures”

• Each location in the output of the second level neuron considers the
corresponding locations from the outputs of all the first-level neurons

146

Scanning: A closer look

• We can recurse the logic
– The second level neurons too are “scanning” the rectangular outputs

of the first-level neurons
– (Un)like the first level, they are jointly scanning multiple “pictures”

• Each location in the output of the second level neuron considers the
corresponding locations from the outputs of all the first-level neurons

147

Scanning: A closer look

• We can recurse the logic
– The second level neurons too are “scanning” the rectangular outputs

of the first-level neurons
– (Un)like the first level, they are jointly scanning multiple “pictures”

• Each location in the output of the second level neuron considers the
corresponding locations from the outputs of all the first-level neurons

148

Scanning: A closer look

• We can recurse the logic
– The second level neurons too are “scanning” the rectangular outputs

of the first-level neurons
– (Un)like the first level, they are jointly scanning multiple “pictures”

• Each location in the output of the second level neuron considers the
corresponding locations from the outputs of all the first-level neurons

149

Scanning: A closer look

• We can recurse the logic
– The second level neurons too are “scanning” the rectangular outputs

of the first-level neurons
– (Un)like the first level, they are jointly scanning multiple “pictures”

• Each location in the output of the second level neuron considers the
corresponding locations from the outputs of all the first-level neurons

150

Scanning: A closer look

• We can recurse the logic
– The second level neurons too are “scanning” the rectangular outputs

of the first-level neurons
– (Un)like the first level, they are jointly scanning multiple “pictures”

• Each location in the output of the second level neuron considers the
corresponding locations from the outputs of all the first-level neurons

151

Scanning: A closer look

• We can recurse the logic
– The second level neurons too are “scanning” the rectangular outputs

of the first-level neurons
– (Un)like the first level, they are jointly scanning multiple “pictures”

• Each location in the output of the second level neuron considers the
corresponding locations from the outputs of all the first-level neurons

152

Scanning: A closer look

• To detect a picture at any location in the original
image, the output layer must consider the
corresponding outputs of the last hidden layer

153

Detecting a picture anywhere in the
image?

• Recursing the logic, we can create a map for
the neurons in the next layer as well
– The map is a flower detector for each location of

the original image
154

Detecting a picture anywhere in the
image?

• To detect a picture at any location in the original image,
the output layer must consider the corresponding output of
the last hidden layer

• Actual problem? Is there a flower in the image
– Not “detect the location of a flower”

155

Detecting a picture anywhere in the
image?

• To detect a picture at any location in the original image,
the output layer must consider the corresponding output of
the last hidden layer

• Actual problem? Is there a flower in the image
– Not “detect the location of a flower”

156

Detecting a picture anywhere in the
image?

• Is there a flower in the picture?
• The output of the almost-last layer is also a grid/picture
• The entire grid can be sent into a final neuron that performs a logical “OR”

to detect a flower in the full picture
– Finds the max output from all the positions
– Or a softmax, or a full MLP..

157

Detecting a picture in the image

• Redrawing the final layer
– “Flatten” the output of the neurons into a single

block, since the arrangement is no longer important

– Pass that through a max/softmax/MLP
158

Scanning with an MLP

• KxK = size of “patch” evaluated by MLP
• W is width of image
• H is height of image

for x = 1:W-K+1
for y = 1:H-K+1

ImgSegment = Img(*, x:x+K-1, y:y+K-1)
Y(x,y) = MLP(ImgSegment)

Y = softmax(Y(1,1)..Y(W-K+1,H-K+1))

159

Scanning with MLP
for x = 1:W-K+1

for y = 1:H-K+1

First layer operates on the input

Unwrap WxW patch at (x,y) into a D0x1 vector

ImgSegment = Img(1:C, x:x+K-1, y:y+K-1)

Y(0,:,x,y) = ImgSegment

for l = 1:L # layers operate on vector at (x,y)

for j = 1:Dl
z(l,j,x,y) = 0

for i = 1:Dl-1
z(l,j,x,y) += w(l,i,j)Y(l-1,i,x,y)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))
160

Scanning with MLP
for x = 1:W-K+1

for y = 1:H-K+1

for l = 1:L # layers operate on vector at (x,y)

for j = 1:Dl
if (l == 1) #first layer operates on input

Y(0,:,x,y) = Img(1:C, x:x+K-1, y:y+K-1)

end

z(l,j,x,y) = 0

for i = 1:Dl-1
z(l,j,x,y) += w(l,i,j)Y(l-1,i,x,y)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))

161

Scanning with MLP
for x = 1:W-K+1

for y = 1:H-K+1

for l = 1:L # layers operate on vector at (x,y)

for j = 1:Dl
if (l == 1) #first layer operates on input

Y(0,:,x,y) = Img(1:C, x:x+K-1, y:y+K-1)

end

z(l,j,x,y) = 0

for i = 1:Dl-1
z(l,j,x,y) += w(l,i,j)Y(l-1,i,x,y)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))

162

Scanning with MLP
for l = 1:L

for j = 1:Dl
for x = 1:W-K+1

for y = 1:H-K+1

if (l == 1) #first layer operates on input

Y(0,:,x,y) = Img(1:C, x:x+K-1, y:y+K-1)

end

z(l,j,x,y) = 0

for i = 1:Dl-1
z(l,j,x,y) += w(l,i,j)Y(l-1,i,x,y)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))

163

Scanning with MLP
for l = 1:L

for j = 1:Dl
for x = 1:W-K+1

for y = 1:H-K+1

if (l == 1) #first layer operates on input

Y(0,:,x,y) = Img(1:C, x:x+K-1, y:y+K-1)

end

z(l,j,x,y) = 0

for i = 1:Dl-1
z(l,j,x,y) += w(l,i,j)Y(l-1,i,x,y)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))

164

Reordering the computation:
Vector notation

for l = 1:L # layers operate on vector at (x,y)

for x = 1:W-K+1

for y = 1:H-K+1

if (l == 1) #first layer operates on input

Y(0,x,y) = Img(1:C, x:x+K-1, y:y+K-1)

end

z(l,x,y) = W(l)Y(l-1,x,y)

Y(l,x,y) = activation(z(l,x,y))

Y = softmax(Y(L,1,1)..Y(L,W-K+1,H-K+1))

165

Recall: What does an MLP learn?

• The lowest layers of the network capture simple patterns
– The linear decision boundaries in this example

• The next layer captures more complex patterns
– The polygons

• The next one captures still more complex patterns.. 166

x2

AND AND

OR

x1 x1 x2

Recall: How does an MLP represent
patterns

• The neurons in an MLP build up complex patterns
from simple pattern hierarchically
– Each layer learns to “detect” simple combinations of the

patterns detected by earlier layers 167

DIGIT OR NOT?

Returning to our problem:
What does the network learn?

• The entire MLP looks for a flower-like pattern
at each location

168

The behavior of the layers

• The first layer neurons “look” at the entire “block” to extract block-level
features
– Subsequent layers only perform classification over these block-level features

• The first layer neurons is responsible for evaluating the entire block of
pixels
– Subsequent layers only look at a single pixel in their input maps

169

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer

170

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer

171

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer

172

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer

173

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer

174

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer

175

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer

176

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer

177

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer

178

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer

179

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer

180

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer
– This effectively evaluates the larger block of the original image

181

Distributing the scan

• The higher layer implicitly learns the
arrangement of sub patterns that represents
the larger pattern (the flower in this case)

182

This is still just scanning with a shared
parameter network

• With a minor modification…

183

This is still just scanning with a shared
parameter network

• The network that analyzes individual blocks is
now itself a shared parameter network..

Colors indicate neurons
with shared parameters Layer 1

Each arrow represents an entire set
of weights over the smaller cell

The pattern of weights going out of
any cell is identical to that from any
other cell.

184

This is still just scanning with a shared
parameter network

• The network that analyzes individual blocks is
now itself a shared parameter network..

Colors indicate neurons
with shared parameters Layer 1

Layer 2

No sharing at this level
within a block

185

This logic can be recursed

• Building the pattern over 3 layers

186

This logic can be recursed

• Building the pattern over 3 layers

187

This logic can be recursed

• Building the pattern over 3 layers

188

This logic can be recursed

• Building the pattern over 3 layers

189

This logic can be recursed

• Building the pattern over 3 layers

190

Does the picture have a flower

• Building the pattern over 3 layers

• The final classification for the entire image views the
outputs from all locations, as seen in the final map

191

The 3-layer shared parameter net

• Building the pattern over 3 layers

192

Showing a simpler 2x2x1
network to fit on the slide

The 3-layer shared parameter net

• Building the pattern over 3 layers

All weights shown are unique

193

The 3-layer shared parameter net

• Building the pattern over 3 layers
Colors indicate
shared parameters

194

The 3-layer shared parameter net

• Building the pattern over 3 layers
Colors indicate
shared parameters

195

This logic can be recursed

We are effectively evaluating the
yellow block with the shared parameter
net to the right

Every block is evaluated using the same
net in the overall computation

196

Using hierarchical build-up of features

• The individual blocks are now themselves shared-parameter
networks

• We scan the figure using the shared parameter network
• The entire operation can be viewed as a single giant network

– Where individual subnets are themselves shared-parameter nets
197

Scanning without distribution

• Non-distributed scan of 8-time-step wide patterns with a
stride of two time steps

time

softmaxA simpler 1D visualization

Scanning without distribution

• Non-distributed scan of 8-time-step wide patterns with a
stride of two time steps

time

softmaxA simpler 1D visualization

Scanning without distribution

• Non-distributed scan of 8-time-step wide patterns with a
stride of two time steps

time

softmax
Simplifying figure a bit.
Each bar represents an entire
layer of neurons

Distributed scanning

• Scan of 8-time-step wide patterns with a stride of two time
steps distributed over two layers

time

softmaxEach bar represents an entire
layer of neurons

Identical blocks

Distributed scanning

• Scan of 8-time-step wide patterns with a stride of two time
steps distributed over two layers

time

softmaxEach bar represents an entire
layer of neurons

Scanning with an MLP

• KxK = size of “patch” evaluated by MLP
• W is width of image
• H is height of image

for x = 1:W-K+1
for y = 1:H-K+1

ImgSegment = Img(*, x:x+W-1, y:y+W-1)
Y(x,y) = MLP(ImgSegment)

Y = softmax(Y(1,1)..Y(W-K+1,H-K+1))

203

Scanning with an MLP

for x = 1:W-K+1

for y = 1:H-K+1

for l = 1:L # layers

for j = 1:Dl
Compute z(l,j,x,y) [not expanded]

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))

204

Reordering the computation

for l = 1:L # layers

for j = 1:Dl
for x = 1:W-K+1

for y = 1:H-K+1

Compute z(l,j,x,y) [not expanded]

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))

205

Reordering the computation

for l = 1:L # layers

for j = 1:Dl
for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

Compute z(l,j,x,y) [not expanded]

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))

206

Each layer’s map is now a different
size: Maps scan progressively by Kl
in each layer

Reordering the computation
Y(0,:,:,:) = Image

for l = 1:L # layers operate on vector at (x,y)

for j = 1:Dl
for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

z(l,j,x,y) = 0

for i = 1:Dl-1
for x’ = 1:Kl

for y’ = 1:Kl
z(l,j,x,y) += w(l,i,j,x’,y’)

Y(l-1,i,x+x’-1,y+y’-1)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))
207

Reordering the computation
Y(0,:,:,:) = Image

for l = 1:L # layers operate on vector at (x,y)

for j = 1:Dl
for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

z(l,j,x,y) = 0

for i = 1:Dl-1
for x’ = 1:Kl

for y’ = 1:Kl
z(l,j,x,y) += w(l,i,j,x’,y’)

Y(l-1,i,x+x’-1,y+y’-1)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))
208

This operation is a “convolution”

“Convolutional Neural Network”
(aka scanning with an MLP)

Y(0,:,:,:) = Image

for l = 1:L # layers operate on vector at (x,y)

for j = 1:Dl
for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

z(l,j,x,y) = 0

for i = 1:Dl-1
for x’ = 1:Kl

for y’ = 1:Kl
z(l,j,x,y) += w(l,i,j,x’,y’)

Y(l-1,i,x+x’-1,y+y’-1)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))
209

Convolutional neural net:
Vector notation

The weight W(l,j)is now a 3D Dl-1xKlxKl tensor (assuming
square receptive fields)

The product in blue is a tensor inner product with a
scalar output

Y(0) = Image

for l = 1:L # layers operate on vector at (x,y)

for j = 1:Dl
for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

segment = Y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor

z(l,j,x,y) = W(l,j).segment #tensor inner prod.

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L))
210

Why distribute?

• Distribution forces localized patterns in lower
layers
– More generalizable

• Number of parameters…

211

Scanning without distribution

• Total parameters: ଵ ଵ ଶ ଶ ଷ ଷ

– 𝐷 is dimensionality of input
– More generally: 𝐿𝐷𝑁ଵ + 𝑁ଵ𝑁ଶ + 𝑁ଶ𝑁ଷ + 𝑁ଷ

– Ignoring bias terms in computation

• Only need to count parameters for one column, since other columns are identical

time

softmax
Simplifying figure a bit.
Each bar represents an entire
layer of neurons

ଵ

ଶ

ଷ

௞ is the number of neurons in a block in the kth layer

Scanning without distribution

• Total parameters: ଵ ଵ ଶ ଶ ଷ ଷ

– 𝐷 is dimensionality of input
– More generally: 𝐿𝐷𝑁ଵ + 𝑁ଵ𝑁ଶ + 𝑁ଶ𝑁ଷ + 𝑁ଷ

– Ignoring bias terms in computation

• Only need to count parameters for one column, since other columns are identical

time

softmax
Simplifying figure a bit.
Each bar represents an entire
layer of neurons

ଵ

ଶ

ଷ

Distributed scanning

• Total parameters: ଵ ଵ ଶ ଶ ଷ ଷ

– More generally: 𝐾଴𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝑁ଶ𝑁ଷ + 𝑁ଷ

– Fewer parameters than a non-distributed net with identical number of neurons

time

softmaxEach bar represents an entire
layer of neurons

଴

ଵ

ଶ

ଷ
Identical blocks

Equivalent non-distributed net has
ଵ ଵ ଶ ଶ ଷ ଷ

parameters (not including bias terms)

Distributed scanning

• Total parameters: ଵ ଵ ଶ ଶ ଷ ଷ

– More generally: 𝐾଴𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝑁ଶ𝑁ଷ + 𝑁ଷ

– Fewer parameters than a non-distributed net with identical number of neurons
– Actual benefit arises from the fact that neighboring positions share the computation of

lower-level blocks!

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଶ

ଷ

Distributed scanning

• Total parameters: ଵ ଵ ଶ ଶ ଷ ଷ

– More generally: 𝐾଴𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝑁ଶ𝑁ଷ + 𝑁ଷ

– Fewer parameters than a non-distributed net with identical number of neurons
– Large additional benefit from the fact that scans at neighboring positions share the computation

of lower-level blocks!

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଶ

ଷ

Reuses the outputs of three
of the layer-1 blocks in the
first location

Distributed scanning: 3 levels

• Total parameters: ଵ ଵ ଶ ଶ ଷ ଷ

– More generally: 𝐾଴𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝐾ଶ𝑁ଶ𝑁ଷ + 𝑁ଷ

– Far fewer parameters than non-distributed scan with network with identical no. of neurons

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଵ

ଶ

ଷ

Equivalent non-distributed net has
ଵ ଵ ଶ ଶ ଷ ଷ

neurons

Identical blocks

Distributed scanning: 3 levels

• Total parameters: ଵ ଵ ଶ ଶ ଷ ଷ

– More generally: 𝐾଴𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝐾ଶ𝑁ଶ𝑁ଷ + 𝑁ଷ

– Far fewer parameters than non-distributed scan with network with identical no. of neurons

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଵ

ଶ

ଷ

Equivalent non-distributed net has
ଵ ଵ ଶ ଶ ଷ ଷ

neurons

Identical blocks

Unique parameters highlighted

Distributed scanning: 3 levels

• Total parameters: ଵ ଵ ଶ ଶ ଷ ଷ

– More generally: 𝐾଴𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝐾ଶ𝑁ଶ𝑁ଷ + 𝑁ଷ

– Far fewer parameters than non-distributed scan with network with identical no. of neurons
– Large additional gains from reuse of computation!!

time

softmaxEach bar represents an entire
layer of neurons

଴

ଵ

ଶ

ଷ

Distributed scanning: 3 levels

• Total parameters: ଵ ଵ ଶ ଶ ଷ ଷ

– More generally: 𝐾ଵ𝐷𝑁ଵ + 𝐾ଶ𝑁ଵ𝑁ଶ + (
௅

௄భ௄మ
)𝑁ଶ𝑁ଷ + 𝑁ଷ

– Far fewer parameters than non-distributed scan by network with identical no. of neurons
– Large additional gains from reuse of computation!!

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଵ

ଶ

ଷ All the circled blocks directly
reuse some of the computation
performed for scanning the
first location

Distributed scanning

• Total parameters: ଵ ଵ ଶ ଶ ଷ ଷ

– More generally: 𝐾ଵ𝐷𝑁ଵ + 𝐾ଶ𝑁ଵ𝑁ଶ + 𝐾ଷ𝑁ଶ𝑁ଷ + 𝑁ଷ

– Will have fewer parameters than a non-distributed structure with identical numbers of neurons

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଵ

ଶ

ଷ

Distributed scanning

• Total parameters: ଵ ଵ ଶ ଶ ଷ ଷ

– More generally: 𝐾ଵ𝐷𝑁ଵ + 𝐾ଶ𝑁ଵ𝑁ଶ + 𝐾ଷ𝑁ଶ𝑁ଷ + 𝑁ଷ

– Can end up being more parameters than for non-distributed scanning

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଵ

ଶ

ଷ

Distributed scanning

• Total parameters: ଵ ଵ ଶ ଶ ଷ ଷ

– More generally: 𝐾ଵ𝐷𝑁ଵ + 𝐾ଶ𝑁ଵ𝑁ଶ + 𝐾ଷ𝑁ଶ𝑁ଷ + 𝑁ଷ

– Can end up being more parameters than for non-distributed scanning
– But still benefit much more from shared computation in the scans of adjacent locations

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଵ

ଶ

ଷ

Which adjacent-location scans
reuse computations from scanning
the first location?

Parameters in Undistributed network

• Only need to consider what happens in one block
– All other blocks are scanned by the same net

• ଶ
ଵ weights in first layer

• ଵ ଶweights in second layer
– ௜ିଵ ௜weights in subsequent ith layer

• Total parameters: ଶ
ଵ ଵ ଶ ଶ ଷ

– Ignoring the bias term

N1 units

N2 unitsblock

224

2-D version

When distributed over 2 layers

• First layer: 𝑁ଵ lower-level units, each looks at 𝐿ଶ pixels
– 𝑁ଵ(𝐿ଶ + 1) weights

• Second layer needs (௄

௅

ଶ
𝑁ଵ + 1)𝑁ଶ weights

• Subsequent layers needs 𝑁௜ିଵ𝑁௜ when distributed over 2 layers only

– Total parameters: 𝒪 𝐿ଶ𝑁ଵ +
௄

௅

ଶ
𝑁ଵ𝑁ଶ + 𝑁ଶ𝑁ଷ …

Colors indicate neurons
with shared parameters N1 groups

Layer 2

No sharing at this level
within a block

block

cell

225

2-D version

When distributed over 2 layers

• First layer: 𝑁ଵ lower-level units, each looks at 𝐿ଶ pixels
– 𝑁ଵ(𝐿ଶ + 1) weights

• Second layer needs (௄

௅

ଶ
𝑁ଵ + 1)𝑁ଶ weights

• Subsequent layers needs 𝑁௜ିଵ𝑁௜ when distributed over 2 layers only

– Total parameters: 𝒪 𝐿ଶ𝑁ଵ +
௄

௅

ଶ
𝑁ଵ𝑁ଶ + 𝑁ଶ𝑁ଷ …

Colors indicate neurons
with shared parameters N1 groups

Layer 2

No sharing at this level
within a block

block

cell

226

2-D version

When distributed over 2 layers

• First layer: 𝑁ଵ lower-level units, each looks at 𝐿ଶ pixels
– 𝑁ଵ(𝐿ଶ + 1) weights

• Second layer needs (௄

௅

ଶ
𝑁ଵ + 1)𝑁ଶ weights

• Subsequent layers needs 𝑁௜ିଵ𝑁௜ when distributed over 2 layers only

– Total parameters: 𝒪 𝐿ଶ𝑁ଵ +
௄

௅

ଶ
𝑁ଵ𝑁ଶ + 𝑁ଶ𝑁ଷ …

Colors indicate neurons
with shared parameters N1 groups

Layer 2

No sharing at this level
within a block

block

cell

227

2-D version

When distributed over 2 layers

• First layer: 𝑁ଵ lower-level units, each looks at 𝐿ଶ pixels
– 𝑁ଵ(𝐿ଶ + 1) weights

• Second layer needs (௄

௅

ଶ
𝑁ଵ + 1)𝑁ଶ weights

• Subsequent layers needs 𝑁௜ିଵ𝑁௜ when distributed over 2 layers only

– Total parameters: 𝒪 𝐿ଶ𝑁ଵ +
௄

௅

ଶ
𝑁ଵ𝑁ଶ + 𝑁ଶ𝑁ଷ …

Colors indicate neurons
with shared parameters N1 groups

Layer 2

No sharing at this level
within a block

block

cell

228

2-D version

When distributed over 3 layers

• First layer: 𝑁ଵ lower-level (groups of) units, each looks at 𝐿ଵ
ଶ pixels

– 𝑁ଵ(𝐿ଵ
ଶ + 1) weights

• Second layer: 𝑁ଶ (groups of) units looking at groups of 𝐿ଶ × 𝐿ଶ connections from each of 𝑁ଵ first-level
neurons

– (𝐿ଶ
ଶ 𝑁ଵ + 1)𝑁ଶ weights

• Third layer:

– (௄

௅భ௅మ

ଶ
𝑁ଶ + 1)𝑁ଷ weights

• Subsequent layers need 𝑁௜ିଵ𝑁௜ neurons

– Total parameters: 𝒪 𝐿ଵ
ଶ𝑁ଵ + 𝐿ଶ

ଶ 𝑁ଵ𝑁ଶ +
௄

௅భ௅మ

ଶ
𝑁ଶ𝑁ଷ + ⋯ 229

Comparing Number of Parameters

• ଶ
ଵ ଵ ଶ ଶ ଷ

• For this example, let
ଵ ଶ ଷ

• Total 1034 weights

Conventional MLP, not distributed
Distributed (3 layers)

• ଵ
ଶ

ଵ ଶ
ଶ

ଵ ଶ

௄

௅భ௅మ

ଶ

ଶ ଷ

• Here, let ଵ ,
ଶ ଵ , ଶ ଷ

• Total 64+128+8 = 160 weights

230

Comparing Number of Parameters

•

Conventional MLP, not distributed
Distributed (3 layers)

• ଵ
ଶ

ଵ

௜
ଶ

௜ ௜ାଵ

௜ழ௡௖௢௡௩ିଵ

௄

∏ ௛௢௣೔

೔

ଶ

௡௖௢௡௩ିଵ ௡௖௢௡௩

௜ ௜ାଵ

௜∈௙௟௔௧

These terms dominate..

231

Why distribute?
• Distribution forces localized patterns in lower layers

– More generalizable

• Number of parameters…
– Large (sometimes order of magnitude) reduction in parameters

• Gains increase as we increase the depth over which the blocks are distributed

– Significant gains from shared computation

• Key intuition: Regardless of the distribution, we can view the
network as “scanning” the picture with an MLP
– The only difference is the manner in which parameters are shared in

the MLP

232

Story so far

• Position-invariant pattern classification can be performed by scanning
the input for a target pattern
– Scanning is equivalent to composing a large network with shared subnets

• The operations in scanning the input with a full network can be
equivalently reordered as
– scanning the input with individual neurons in the first layer to produce

scanned “maps” of the input
– Jointly scanning the “map” of outputs by all neurons in the previous layers

by neurons in subsequent layers

• The scanning block can be distributed over multiple layers of the
network
– Results in significant reduction in the total number of parameters

233

Hierarchical composition: A different
perspective

• The entire operation can be redrawn as before
as maps of the entire image

234

Building up patterns

• The first layer looks at small sub regions of the
main image
– Sufficient to detect, say, petals

235

Some modifications

• The first layer looks at sub regions of the main image
– Sufficient to detect, say, petals

• The second layer looks at regions of the output of the first layer
– To put the petals together into a flower
– This corresponds to looking at a larger region of the original input image

236

Some modifications

• The first layer looks at sub regions of the main image
– Sufficient to detect, say, petals

• The second layer looks at regions of the output of the first layer
– To put the petals together into a flower
– This corresponds to looking at a larger region of the original input image

237

Some modifications

• The first layer looks at sub regions of the main image
– Sufficient to detect, say, petals

• The second layer looks at regions of the output of the first layer
– To put the petals together into a flower
– This corresponds to looking at a larger region of the original input image

• We may have any number of layers in this fashion
238

Some modifications

• The first layer looks at sub regions of the main image
– Sufficient to detect, say, petals

• The second layer looks at regions of the output of the first layer
– To put the petals together into a flower
– This corresponds to looking at a larger region of the original input image

• We may have any number of layers in this fashion
239

Terminology

• Each of the scanning neurons is generally called a
“filter”
– Its really a correlation filter as we saw earlier

– Each filter scans for a pattern in the map it operates
on 240

Terminology

• The pattern in the input image that each filter sees is its “Receptive Field”
– The squares show the sizes of the receptive fields for the first, second and third-layer neurons

• The actual receptive field for a first layer filter is simply its arrangement of weights
• For the higher level filters, the actual receptive field is not immediately obvious

and must be calculated
– What patterns in the input do the filters actually respond to?
– Will not actually be simple, identifiable patterns like “petal” and “inflorescence”

241

Some modifications

• The final layer may feed directly into a multi layer
perceptron rather than a single neuron

• This is exactly the shared parameter net we just
saw

242

Modification 1: Convolutional “Stride”

• The scans of the individual “filters” may advance by more than one pixel at a time
– The “stride” may be greater than 1
– Effectively increasing the granularity of the scan

• Saves computation, sometimes at the risk of losing information

• This will result in a reduction of the size of the resulting maps
– They will shrink by a factor equal to the stride

• This can happen at any layer
243

Convolutional neural net
The weight W(l,j)is now a 3D Dl-1xKlxKl tensor (assuming
square receptive fields)
Y(0) = Image
for l = 1:L # layers operate on vector at (x,y)
for j = 1:Dl

m = 1
for x = 1:stride:Wl-1-Kl+1

n = 1
for y = 1:stride:Hl-1-Kl+1

segment = Y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor
z(l,j,m,n) = W(l,j).segment #tensor inner prod.
Y(l,j,m,n) = activation(z(l,j,m,n))
n++

m++

Y = softmax(Y(L))

244

Accounting for jitter

• We would like to account for some jitter in the
first-level patterns
– If a pattern shifts by one pixel, is it still a petal?

245

Accounting for jitter

• We would like to account for some jitter in the first-level patterns
– If a pattern shifts by one pixel, is it still a petal?
– A small jitter is acceptable

• Replace each value by the maximum of the values within a small region
around it

– Max filtering or Max pooling

Max

Max

Max

Max

246

Accounting for jitter

• We would like to account for some jitter in the first-level patterns
– If a pattern shifts by one pixel, is it still a petal?
– A small jitter is acceptable

• Replace each value by the maximum of the values within a small region
around it

– Max filtering or Max pooling

Max

1 1

5 6

Max 6

247

The max operation is just a neuron

• The max operation is just another neuron

• Instead of applying an activation to the weighted
sum of inputs, each neuron just computes the
maximum over all inputs

Max layer

248

The max operation is just a neuron

• The max operation is just another neuron

• Instead of applying an activation to the weighted
sum of inputs, each neuron just computes the
maximum over all inputs 249

Max layer

Accounting for jitter

• The max filtering can also be performed as a
scan

Max

1 1

5 6

Max 6

250

Accounting for jitter

• The “max filter” operation too “scans” the
picture

Max

1 3

6 5
Max

6 6

251

Accounting for jitter

Max

3 2

5 7
Max

6 6 7

• The “max filter” operation too “scans” the
picture

252

Accounting for jitter

Max

• The “max filter” operation too “scans” the
picture

253

Accounting for jitter

Max

• The “max filter” operation too “scans” the
picture

254

Accounting for jitter

Max

• The “max filter” operation too “scans” the
picture

255

Max pooling “Strides”

• The “max” operations may “stride” by more
than one pixel

Max

256

Max pooling “Strides”

• The “max” operations may “stride” by more
than one pixel

Max

257

Max pooling “Strides”

• The “max” operations may “stride” by more
than one pixel

Max

258

Max pooling “Strides”

• The “max” operations may “stride” by more
than one pixel

Max

259

Max pooling “Strides”

• The “max” operations may “stride” by more
than one pixel

Max

260

Max pooling “Strides”

• The “max” operations may “stride” by more than one pixel
– This will result in a shrinking of the map
– The operation is usually called “pooling”

• Pooling a number of outputs to get a single output
• When stride is greater than 1, also called “Down sampling”

Max

261

Shrinking with a max

• In this example we shrank the image after the
max
– Adjacent “max” operators did not overlap

– The stride was the size of the max filter itself

Max layer

262

Non-overlapped strides

• Non-overlapping strides: Partition the output of the
layer into blocks

• Within each block only retain the highest value
– If you detect a petal anywhere in the block, a petal is

detected..
263

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters
and stride 2 6 8

3 4

Max Pooling

Higher layers

• The next layer works on the max-pooled maps

Max
pool

265

The overall structure

• In reality we can have many layers of “convolution” (scanning) followed by
max pooling (and reduction) before the final MLP
– The individual perceptrons at any “scanning” or “convolutional” layer are

called “filters”
• They “filter” the input image to produce an output image (map)

– The individual max operations are also called max pooling or max filters

266

The overall structure

• This entire structure is called a Convolutional
Neural Network

267

Convolutional Neural Network

Input image First layer filters

First layer maxpooling Second layer filters

Second layer maxpooling

268

1-D convolution

• The 1-D scan version of the convolutional neural
network is the time-delay neural network
– Used primarily for speech recognition 269

1-D scan version

• The 1-D scan version of the convolutional
neural network

270

1-D scan version

• The 1-D scan version of the convolutional
neural network

The spectrographic time-frequency components are
the input layer

271

1-D scan version

• The 1-D scan version of the convolutional
neural network

272

1-D scan version

• The 1-D scan version of the convolutional
neural network

273

1-D scan version

• The 1-D scan version of the convolutional neural network
– Max pooling optional

• Not generally done for speech
274

1-D scan version

• The 1-D scan version of the convolutional neural network
– Max pooling optional

• Not generally done for speech
275

1-D scan version

• The 1-D scan version of the convolutional neural network
– Max pooling optional

• Not generally done for speech
276

1-D scan version

• The 1-D scan version of the convolutional neural network
– Max pooling optional

• Not generally done for speech
277

1-D scan version

• The 1-D scan version of the convolutional neural network
– Max pooling optional

• Not generally done for speech
278

1-D scan version

• The 1-D scan version of the convolutional neural network
• A final perceptron (or MLP) to aggregate evidence

– “Does this recording have the target word”
279

Time-Delay Neural Network

• This structure is called the Time-Delay Neural
Network

280

Story so far
• Neural networks learn patterns in a hierarchical manner

– Simple to complex

• Pattern classification tasks such as “does this picture contain a cat” are best
performed by scanning for the target pattern

• Scanning for patterns can be viewed as classification with a large shared-
parameter network

• Scanning an input with a network and combining the outcomes is equivalent to
scanning with individual neurons

– First level neurons scan the input
– Higher-level neurons scan the “maps” formed by lower-level neurons
– A final “decision” layer (which may be a max, a perceptron, or an MLP) makes the final

decision

• The scanned “block” can be distributed over multiple layers for efficiency
• At each layer, a scan by a neuron may optionally be followed by a “max” (or any

other) “pooling” operation to account for deformation

• For 2-D (or higher-dimensional) scans, the structure is called a convnet
• For 1-D scan along time, it is called a Time-delay neural network 281

