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Story so far

• MLPs are universal function approximators
– Boolean functions, classifiers, and regressions

• MLPs can be trained through variations of 
gradient descent
– Gradients can be computed by backpropagation

2



input 
layer

output layer

The model so far

• Can recognize patterns in data
– E.g. digits
– Or any other vector data

Or, more generally
a vector input



An important observation

• The lowest layers of the network capture simple patterns
– The linear decision boundaries in this example

• The next layer captures more complex patterns
– The polygons

• The next one captures still more complex patterns.. 4
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An important observation

• The neurons in an MLP build up complex patterns from simple pattern 
hierarchically
– Each layer learns to “detect” simple combinations of the patterns detected by 

earlier layers

• This is because the basic units themselves are simple
– Typically linear classifiers or thresholding units
– Incapable of individually holding complex patterns 5
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What do the neurons capture?

• What do the weights tell us?
– Using example of threshold activation

• The perceptron “fires” if the correlation between the weights and 
the inputs exceeds a threshold
– The perceptron fires if the input pattern looks like pattern of weights
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The weights as a correlation filter

• The green pattern looks more like the weights 
pattern (black) than the red pattern
– The green pattern is more correlated with the weights
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The MLP as a function over feature 
detectors

• The input layer comprises “feature detectors”
– Detect if certain patterns have occurred in the input

• The network is a function over the feature detectors
• I.e. it is important for the first layer to capture relevant patterns 8
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Distributed representations: The MLP 
as a cascade of feature detectors

• The network is a cascade of feature detectors
– Higher level neurons compose complex templates from 

features represented by lower-level neurons 9

DIGIT OR NOT?



Story so far
• Perceptrons are correlation filters

– They detect patterns in the input

• Layers in an MLP are detectors of increasingly complex patterns
– Patterns of lower-complexity patterns
– The representation of “acceptable” input patterns is distributed over the 

layers of the network

• MLP in classification
– The network will fire if the combination of  the detected basic features 

matches an “acceptable” pattern for a desired class of signal
• E.g.  Appropriate combinations of (Nose, Eyes, Eyebrows, Cheek, Chin)  Face

– If the final complex pattern detected “matches” a desired pattern
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Changing gears..
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A problem

• Does this signal contain the word “Welcome”?
• Compose an MLP for this problem.

– Assuming all recordings are exactly the same length..
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Finding a Welcome

• Trivial solution:  Train an MLP for the entire 
recording
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Finding a Welcome

• Problem with trivial solution: Network that finds a “welcome” in 
the top recording will not find it in the lower one
– Unless trained with both
– Will require a very large network and a large amount of training data 

to cover every case
14



Finding a Welcome

• Need a simple network that will fire regardless 
of the location of “Welcome”
– and not fire when there is none
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Flowers

• Is there a flower in any of these images
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A problem

• Will an MLP that recognizes the left image as a flower 
also recognize the one on the right as a flower?

input 
layer

output layer
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A problem

• Need a network that will “fire” regardless of 
the precise location of the target object
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The need for shift invariance

• In many problems the location of a pattern is not important
– Only the presence of the pattern

• Conventional MLPs are sensitive to the location of the 
pattern
– Moving it by one component results in an entirely different 

input that the MLP wont recognize

• Requirement:  Network must be shift invariant
19
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Solution: Scan

• Scan for the target word
– The spectral time-frequency components in a 

“window” are input to a “welcome-detector” MLP
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Solution: Scan

• Scan for the target word
– The spectral time-frequency components in a 

“window” are input to a “welcome-detector” MLP
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Solution: Scan

• “Does welcome occur in this recording?”
– We have classified many “windows” individually
– “Welcome” may have occurred in any of them
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Solution: Scan

• “Does welcome occur in this recording?”
– Maximum of all the outputs (Equivalent of Boolean OR)

MAX

28



Solution: Scan

• “Does welcome occur in this recording?”
– Maximum of all the outputs (Equivalent of Boolean OR)
– Or a proper softmax/logistic

• Finding a welcome in adjacent windows makes it more likely that we didn’t find 
noise

Perceptron
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Solution: Scan

• “Does welcome occur in this recording?”
– Maximum of all the outputs (Equivalent of Boolean OR)
– Or a proper softmax/logistic

• Adjacent windows can combine their evidence

– Or even an MLP 30



Scanning with an MLP

• K = width of “patch” evaluated by MLP

For t = 1:T-K+1
XSegment = x(:, t:t+K-1)

y(t) = MLP(XSegment)

Y = softmax(y(1)..y(T-K+1))

31



Its actually just one giant network

• The entire operation can be viewed as one giant 
network
– With many subnetworks, one per window
– Restriction: All subnets are identical 32



Scanning with an MLP

• K = width of “patch” evaluated by MLP

For t = 1:T-K+1
XSegment = x(:, t:t+K-1)

y(t) = MLP(XSegment)

Y = softmax(y(1)..y(T-K+1))
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Just the final layer of the overall
MLP



Scanning with an MLP

Y = giantMLP(x)
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The 2-d analogue: Does this picture 
have a flower?

• Scan for the desired object
– “Look” for the target object at each position 35



Solution: Scan

• Scan for the desired object
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Solution: Scan

• Scan for the desired object
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Solution: Scan

• Scan for the desired object
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Solution: Scan
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47

Flower detector MLP



Solution: Scan

• Scan for the desired object
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Solution: Scan

• Scan for the desired object
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Scanning

• Scan for the desired object

• At each location, the entire region is sent 
through an MLP

Input 
(the pixel data)

50



Scanning the picture to find a flower

• Determine if any of the locations had a flower
– We get one classification output per scanned location

• Each dot in the right represents the output of the MLP when it classifies one location in the 
input figure

– The score output by the MLP

– Look at the maximum value
• If the picture has a flower, the location with the flower will result in high output value

max
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Scanning the picture to find a flower

• Determine if any of the locations had a flower
• Each dot in the right represents the output of the MLP when it 

classifies one location in the input figure
– The score output by the MLP

– Look at the maximum value
– Or pass it through a softmax or even an MLP 52



Scanning with an MLP

• KxK = size of “patch” evaluated by MLP
• W is width of image
• H is height of image

For i = 1:W-K+1 
For j = 1:H-K+1

ImgSegment = Img(i:i+K-1, j:j+K-1)
y(i,j) = MLP(ImgSegment)

Y = softmax( y(1,1)..y(W-K+1,H-K+1) )
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Its just a giant network with common 
subnets

• The entire operation can be viewed as a single 
giant network
– Composed of many “subnets” (one per window)
– With one key feature: all subnets are identical 54



Scanning with an MLP

• KxK = size of “patch” evaluated by MLP
• W is width of image
• H is height of image

For i = 1:W-K+1 
For j = 1:H-K+1

ImgSegment = Img(i:i+K-1, j:j+K-1)
y(i,j) = MLP(ImgSegment)

Y = softmax( y(1,1)..y(W-K+1,H-K+1) )
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Scanning with an MLP

Y = giantMLP(img)
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Regular networks vs. scanning networks

• In a regular MLP every neuron in a layer is connected by a unique weight 
to every unit in the previous layer
– All entries in the weight matrix are unique 
– The weight matrix is (generally) full 57
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Regular network

• Consider the first layer
– Assume inputs and outputs

• The weights matrix is a full matrix
– Requiring unique parameters 58
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Scanning networks

• In a scanning MLP each neuron is connected to a subset of neurons in the 
previous layer
– The weights matrix is sparse
– The weights matrix is block structured with identical blocks
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Scanning networks

• In a scanning MLP each neuron is connected to a subset of neurons in the 
previous layer
– The weights matrix is sparse
– The weights matrix is block structured with identical blocks
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Scanning networks

• In a scanning MLP each neuron is connected to a subset of neurons 
in the previous layer
– The weights matrix is sparse
– The weights matrix is block structured with identical blocks
– The network is a shared parameter model 61
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Scanning networks

• In a scanning MLP each neuron is connected to a subset of neurons in the 
previous layer

– The weights matrix is sparse
– The weights matrix is block structured with identical blocks
– The network is a shared-parameter model

• Also, far fewer parameters (we return to this topic shortly) 62
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Effective in any situation where the data are expected to be composed of 
similar structures at different locations
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Scanning networks

• Modifying the visualization for intuition..
– Will still be the same network
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Scanning networks

64

time
• A modified drawing

– Indicates progression of time/space
• The progression of “bars” of neurons is indicative of time
• Note:  bars at the lowest level are also vectors of inputs 

– More appropriate
• Since vertical bars are vectors



Scanning networks
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time

• A modified drawing
– Indicates progression of time/space
– An arrow from one bar to another implies connections from every node in the 

source bar to every node in the destination bar
• For N source-bar nodes and M destination-bar nodes,  NxM connections



Scanning networks
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time

• A modified drawing
– Indicates progression of time/space
– An arrow from one bar to another implies connections from every node in the 

source bar to every node in the destination bar
• For N source-bar nodes and M destination-bar nodes,  NxM connections

Visualizing scanning with a stride of 1



Training the network

• These are really just large networks
• Can just use conventional backpropagation to learn the parameters

– Provide many training examples
• Images with and without flowers
• Speech recordings with and without the word “welcome”

– Gradient descent to minimize the total divergence between predicted and 
desired outputs

• Backprop learns a network that maps the training inputs to the target binary 
outputs 67



Training the network: constraint

• These are shared parameter networks
– All lower-level subnets are identical

• Are all searching for the same pattern

– Any update of the parameters of one copy of the 
subnet must equally update all copies

68



Learning in shared parameter 
networks

• Consider a simple network with 
shared weights

– A weight ௜௝
௞ is required to be 

identical to the weight ௠௡
௟

• For any training instance , a small 
perturbation of perturbs both 

and identically
– Each of these perturbations will 

individually influence the 
divergence 

Div
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Computing the divergence of shared 
parameters

𝒮
௜௝
௞

௜௝
௞

𝒮
௠௡
௟

௠௡
௟

𝒮

௜௝
௞

௠௡
௟

• Each of the individual terms can be computed 
via backpropagation

Influence diagram

௜௝
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௟

𝒮

Div
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Computing the divergence of shared 
parameters

• More generally,  let be any set of edges that have a common value, and 𝒮 be 
the common weight of the set

– E.g. the set of all red weights in the figure 

𝒮 ௘

 

௘∈𝒮

• The individual terms in the sum can be computed via backpropagation

ଵ ଵ ே
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Training networks with shared 
parameters

• Gradient descent algorithm:
• Initialize all weights 
• Do:

– For every set :
• Compute:

𝒮 𝒮

𝒮 𝒮
𝒮

𝑇

• For every update:
𝑤௜,௝

(௞)
= 𝑤𝒮

• Until has converged
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Training networks with shared 
parameters

• Gradient descent algorithm:
• Initialize all weights 
• Do:

– For every set :
• Compute:

𝒮 𝒮

𝒮 𝒮
𝒮

𝑇

• For every update:
𝑤௜,௝

(௞)
= 𝑤𝒮

• Until has converged
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• For every set :

• For every :

𝒮
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• 𝒮 𝒮

Computed by
Backprop



Story so far
• Position-invariant pattern classification can be performed by 

scanning
– 1-D scanning for sound
– 2-D scanning for images
– 3-D and higher-dimensional scans for higher dimensional data

• Scanning is equivalent to composing a large network with repeating 
subnets
– The large network has shared subnets

• Learning in scanned networks: Backpropagation rules must be 
modified to combine gradients from parameters that share the 
same value
– The principle applies in general for networks with shared parameters
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Scanning: A closer look

• The entire MLP operates on each “window” of 
the input

77



Scanning

• At each location, each neuron computes a value based on its 
inputs
– Which may either be the input image or the outputs of the 

previous layer 78
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Scanning

• At each location, each neuron computes a value based on its inputs
– Which may either be the input image or the outputs of the previous 

layer
81



Scanning

• The same sequence of computations is performed at each location
– Producing similar sets of values

• One value per neuron in each layer

82



Scanning

• The same sequence of computations is performed at each location
– Producing similar sets of values

• One value per neuron in each layer

83



Scanning

• The same sequence of computations is performed at each location
– Producing similar sets of values

• One value per neuron in each layer

84



Scanning

• The same sequence of computations is performed at each location
– Producing similar sets of values

• One value per neuron in each layer

85



Scanning

• The same sequence of computations is performed at each location
– Producing similar sets of values

• One value per neuron in each layer
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Scanning the input

• We get a complete set of values (represented as 
a column) at each location evaluated by the 
MLP during the scan 87



Scanning the input

• We get a complete set of values (represented as a column) at each 
location evaluated by the MLP during the scan
– Which we put through our final softmax to decide if the recording 

includes the word “Welcome” 88

Softmax



Lets do it in an different order

• Let us do the computation in a different order
• The first neuron evaluates each image first

– “Scans” the input 89
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Lets do it in an different order

• Subsequently the rest of the neurons in the first layer operate on the first block
– And the downstream layers as well

• Would the output of the MLP at the first block be different?
– The fact that the first neuron has already evaluated the future blocks does not affect the output 

of that neuron, or the network itself, at the current block 95
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Lets do it in an different order

• What about now?
• The second neuron too has fully evaluated the entire input before the rest of 

the network evaluates the first block
– This too should not change the output of the network for the first block 97



Lets do it in an different order

• In fact if all of the neurons in the first layer fully evaluate the entire 
input before the rest of the network evaluates the first block, this will 
not change the output of the network at the first block

98



Lets do it in an different order

99

• But now, since the first layer neurons have already produced outputs for 
every location, each neuron in the second layer can go ahead and produce 
outputs for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons
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Lets do it in an different order
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Lets do it in an different order
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Lets do it in an different order

110

• But now, since the first layer neurons have already produced outputs for 
every location, each neuron in the second layer can go ahead and produce 
outputs for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons



Lets do it in an different order

• At each position the output layer neurons can now operate 
on the outputs of the penultimate layer and produce the 
correct  classification for the corresponding block!
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Lets do it in an different order

• At each position the output layer neurons can now operate on the 
outputs of the penultimate layer and produce the correct  
classification for the corresponding block!
– The final softmax will give us the correct answer for the entire input 117
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Scanning with an MLP

• K = width of “patch” evaluated by MLP

For t = 1:T-K+1
XSegment = x(:, t:t+K-1)

y(t) = MLP(XSegment)

Y = softmax(y(1)..y(T-K+1))
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Scanning with MLP
for t = 1:T-K+1 

for l = 1:L  # layers operate at location t

for j = 1:Dl
if (l == 1) #first layer operates on input

y(0,:,t) = x(:, t:t+K-1)

end

z(l,j,t) = 0

for i = 1:Dl-1
z(l,j,t) += w(l,i,j)y(l-1,i,t)

y(l,j,t) = activation(z(l,j,t))

Y = softmax( y(L,:,1)..y(L,:,T-K+1) )
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Scanning with MLP
for t = 1:T-K+1 

for l = 1:L  # layers operate at location t

for j = 1:Dl
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end

z(l,j,t) = 0

for i = 1:Dl-1
z(l,j,t) += w(l,i,j)y(l-1,i,t)

y(l,j,t) = activation(z(l,j,t))

Y = softmax( y(L,:,1)..y(L,:,T-K+1) )
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Over time

Over layers



Scanning with MLP
for t = 1:T-K+1 

for l = 1:L  # layers operate at location t

for j = 1:Dl
if (l == 1) #first layer operates on input      

y(0,:,t) = x(:, t:t+K-1)

end

z(l,j,t) = 0

for i = 1:Dl-1
z(l,j,t) += w(l,i,j)y(l-1,i,t)

y(l,j,t) = activation(z(l,j,t))

Y = softmax(y(L,:,1)..y(L,:,T-K+1) )

121

Over time

Over layers



Scanning with MLP
for l = 1:L   # layers operate at location t

for j = 1:Dl
for t = 1:T-K+1

if (l == 1) #first layer operates on input      

y(0,:,t) = x(:, t:t+K-1)

end

z(l,j,t) = 0

for i = 1:Dl-1
z(l,j,t) += w(l,i,j)y(l-1,i,t)

y(l,j,t) = activation(z(l,j,t))

Y = softmax(y(L,:,1)..y(L,:,T-K+1) )
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Scanning with MLP
for l = 1:L   # layers operate at location t

for t = 1:T-K+1

for j = 1:Dl
if (l == 1) #first layer operates on input

y(0,:,t) = x(:, t:t+K-1)

end

z(l,j,t) = 0

for i = 1:Dl-1
z(l,j,t) += w(l,i,j)y(l-1,i,t)

y(l,j,t) = activation(z(l,j,t))

Y = softmax(y(L,:,1)..y(L,:,T-K+1) )
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Scanning with MLP: Vector notation

for l = 1:L   # layers operate at location t

for t = 1:T-K+1

if (l == 1) #first layer operates on input

y(0, t) = x(:, t:t+K-1)

end

z(l,t) = W(l)y(l-1,t)

y(l,t) = activation(z(l,t))

Y = softmax( y(L,1)..y(L,T-K+1) )
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Scanning in 2D: A closer look

• Scan for the desired object

• At each location, the entire region is sent 
through an MLP

Input 
(the pixel data)
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Scanning: A closer look

• The “input layer” is just the pixels in the image 
connecting to the hidden layer

Input layer Hidden layer
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Scanning: A closer look

• Consider a single neuron
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Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating the part of 

the picture in the box as part of the classification for that region
– We could arrange the outputs of the neurons for each position 

correspondingly to the original picture

௜௝ ௜௝
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Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating 

the picture as part of the classification for that region
– We could arrange the outputs of the neurons for each position 

correspondingly to the original picture
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• Consider a single perceptron
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Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating 

the picture as part of the classification for that region
– We could arrange the outputs of the neurons for each position 

correspondingly to the original picture
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Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating 

the picture as part of the classification for that region
– We could arrange the outputs of the neurons for each position 

correspondingly to the original picture
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Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating 

the picture as part of the classification for that region
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Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating 

the picture as part of the classification for that region
– We could arrange the outputs of the neurons for each position 

correspondingly to the original picture
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Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating the picture as 

part of the classification for that region
– We could arrange the outputs of the neurons for each position 

correspondingly to the original picture

• Eventually, we can arrange the outputs from the response at the scanned 
positions into a rectangle that’s proportional in size to the original picture141



Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating the picture as 

part of the classification for that region
– We could arrange the outputs of the neurons for each position 

correspondingly to the original picture

• Eventually, we can arrange the outputs from the response at the scanned 
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Scanning: A closer look

• Similarly, each first-layer perceptron’s outputs 
from the scanned positions can be arranged as 
a rectangular pattern
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Scanning: A closer look

• To classify a specific “patch” in the image, we 
send the first level activations from the 
positions corresponding to that position to the 
next layer
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Scanning: A closer look

• We can recurse the logic
– The second level neurons too are “scanning” the rectangular outputs 

of the first-level neurons
– (Un)like the first level, they are jointly scanning multiple “pictures”

• Each location in the output of the second level neuron considers the 
corresponding locations from the outputs of all the first-level neurons
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Scanning: A closer look

• We can recurse the logic
– The second level neurons too are “scanning” the rectangular outputs 

of the first-level neurons
– (Un)like the first level, they are jointly scanning multiple “pictures”

• Each location in the output of the second level neuron considers the 
corresponding locations from the outputs of all the first-level neurons
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Scanning: A closer look

• To detect a picture at any location in the original 
image, the output layer must consider the 
corresponding outputs of the last hidden layer
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Detecting a picture anywhere in the 
image?

• Recursing the logic, we can create a map for 
the neurons in the next layer as well
– The map is a flower detector for each location of 

the original image
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Detecting a picture anywhere in the 
image?

• To detect a picture at any location in the original image, 
the output layer must consider the corresponding output of 
the last hidden layer

• Actual problem? Is there a flower in the image
– Not “detect the location of a flower”
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Detecting a picture anywhere in the 
image?

• To detect a picture at any location in the original image, 
the output layer must consider the corresponding output of 
the last hidden layer

• Actual problem? Is there a flower in the image
– Not “detect the location of a flower”
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Detecting a picture anywhere in the 
image?

• Is there a flower in the picture?
• The output of the almost-last layer is also a grid/picture
• The entire grid can be sent into a final neuron that performs a logical “OR” 

to detect a flower in the full picture
– Finds the max output from all the positions
– Or a softmax, or a full MLP..
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Detecting a picture in the image

• Redrawing the final layer
– “Flatten” the output of the neurons into a single 

block, since the arrangement is no longer important

– Pass that through a max/softmax/MLP
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Scanning with an MLP

• KxK = size of “patch” evaluated by MLP
• W is width of image
• H is height of image

for x = 1:W-K+1 
for y = 1:H-K+1

ImgSegment = Img(*, x:x+K-1, y:y+K-1)
Y(x,y) = MLP(ImgSegment)

Y = softmax( Y(1,1)..Y(W-K+1,H-K+1) )
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Scanning with MLP
for x = 1:W-K+1 

for y = 1:H-K+1

# First layer operates on the input

# Unwrap WxW patch at (x,y) into a D0x1 vector

ImgSegment = Img(1:C, x:x+K-1, y:y+K-1)

Y(0,:,x,y) = ImgSegment

for l = 1:L  # layers operate on vector at (x,y)

for j = 1:Dl
z(l,j,x,y) = 0

for i = 1:Dl-1
z(l,j,x,y) += w(l,i,j)Y(l-1,i,x,y)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1) )
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Scanning with MLP
for x = 1:W-K+1 

for y = 1:H-K+1

for l = 1:L  # layers operate on vector at (x,y)

for j = 1:Dl
if (l == 1) #first layer operates on input             

Y(0,:,x,y) = Img(1:C, x:x+K-1, y:y+K-1)

end

z(l,j,x,y) = 0

for i = 1:Dl-1
z(l,j,x,y) += w(l,i,j)Y(l-1,i,x,y)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1) )

161



Scanning with MLP
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end

z(l,j,x,y) = 0

for i = 1:Dl-1
z(l,j,x,y) += w(l,i,j)Y(l-1,i,x,y)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1) )

162



Scanning with MLP
for l = 1:L

for j = 1:Dl
for x = 1:W-K+1

for y = 1:H-K+1

if (l == 1) #first layer operates on input             

Y(0,:,x,y) = Img(1:C, x:x+K-1, y:y+K-1)

end

z(l,j,x,y) = 0

for i = 1:Dl-1
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Scanning with MLP
for l = 1:L

for j = 1:Dl
for x = 1:W-K+1

for y = 1:H-K+1

if (l == 1) #first layer operates on input             

Y(0,:,x,y) = Img(1:C, x:x+K-1, y:y+K-1)

end

z(l,j,x,y) = 0

for i = 1:Dl-1
z(l,j,x,y) += w(l,i,j)Y(l-1,i,x,y)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1) )
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Reordering the computation: 
Vector notation

for l = 1:L  # layers operate on vector at (x,y)

for x = 1:W-K+1 

for y = 1:H-K+1

if (l == 1) #first layer operates on input             

Y(0,x,y) = Img(1:C, x:x+K-1, y:y+K-1)

end

z(l,x,y) = W(l)Y(l-1,x,y)

Y(l,x,y) = activation(z(l,x,y))

Y = softmax( Y(L,1,1)..Y(L,W-K+1,H-K+1) )
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Recall: What does an MLP learn?

• The lowest layers of the network capture simple patterns
– The linear decision boundaries in this example

• The next layer captures more complex patterns
– The polygons

• The next one captures still more complex patterns.. 166

x2

AND AND

OR

x1 x1 x2



Recall: How does an MLP represent 
patterns

• The neurons in an MLP build up complex patterns 
from simple pattern hierarchically
– Each layer learns to “detect” simple combinations of the 

patterns detected by earlier layers 167
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Returning to our problem:
What does the network learn?

• The entire MLP looks for a flower-like pattern 
at each location
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The behavior of the layers

• The first layer neurons “look” at the entire “block” to extract block-level 
features
– Subsequent layers only perform classification over these block-level features

• The first layer neurons is responsible for evaluating the entire block of 
pixels
– Subsequent layers only look at a single pixel in their input maps 
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Distributing the scan

• We can distribute the pattern matching over two layers and 
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer
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Distributing the scan

• We can distribute the pattern matching over two layers and 
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer

178



Distributing the scan
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Distributing the scan

• We can distribute the pattern matching over two layers and 
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer
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Distributing the scan

• We can distribute the pattern matching over two layers and 
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer
– This effectively evaluates the larger block of the original image
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Distributing the scan

• The higher layer implicitly learns the 
arrangement of sub patterns that represents 
the larger pattern (the flower in this case)
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This is still just scanning with a shared 
parameter network

• With a minor modification…
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This is still just scanning with a shared 
parameter network

• The network that analyzes individual blocks is 
now itself a shared parameter network..

Colors indicate neurons
with shared parameters Layer 1

Each arrow represents an entire set
of weights over the smaller cell

The pattern of weights going out of
any cell is identical to that from any
other cell.
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This is still just scanning with a shared 
parameter network

• The network that analyzes individual blocks is 
now itself a shared parameter network..

Colors indicate neurons
with shared parameters Layer 1

Layer 2

No sharing at this level
within a block
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This logic can be recursed

• Building the pattern over 3 layers
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This logic can be recursed

• Building the pattern over 3 layers
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Does the picture have a flower

• Building the pattern over 3 layers

• The final classification for the entire image views the 
outputs from all locations, as seen in the final map
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The 3-layer shared parameter net

• Building the pattern over 3 layers

192

Showing a simpler 2x2x1 
network to fit on the slide



The 3-layer shared parameter net

• Building the pattern over 3 layers

All weights shown are unique
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The 3-layer shared parameter net

• Building the pattern over 3 layers
Colors indicate
shared parameters
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The 3-layer shared parameter net

• Building the pattern over 3 layers
Colors indicate
shared parameters

195



This logic can be recursed

We are effectively evaluating the
yellow block with the shared parameter
net to the right

Every block is evaluated using the same
net in the overall computation
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Using hierarchical build-up of features

• The individual blocks are now themselves shared-parameter 
networks

• We scan the figure using the shared parameter network
• The entire operation can be viewed as a single giant network

– Where individual subnets are themselves shared-parameter nets
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Scanning without distribution

• Non-distributed scan of 8-time-step wide patterns with a 
stride of two time steps

time

softmaxA simpler 1D visualization



Scanning without distribution

• Non-distributed scan of 8-time-step wide patterns with a 
stride of two time steps

time

softmaxA simpler 1D visualization



Scanning without distribution

• Non-distributed scan of 8-time-step wide patterns with a 
stride of two time steps

time

softmax
Simplifying figure a bit.
Each bar represents an entire
layer of neurons



Distributed scanning

• Scan of 8-time-step wide patterns with a stride of two time 
steps distributed over two layers

time

softmaxEach bar represents an entire
layer of neurons

Identical blocks



Distributed scanning

• Scan of 8-time-step wide patterns with a stride of two time 
steps distributed over two layers

time

softmaxEach bar represents an entire
layer of neurons



Scanning with an MLP

• KxK = size of “patch” evaluated by MLP
• W is width of image
• H is height of image

for x = 1:W-K+1 
for y = 1:H-K+1

ImgSegment = Img(*, x:x+W-1, y:y+W-1)
Y(x,y) = MLP(ImgSegment)

Y = softmax( Y(1,1)..Y(W-K+1,H-K+1) )
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Scanning with an MLP

for x = 1:W-K+1 

for y = 1:H-K+1

for l = 1:L  # layers

for j = 1:Dl
Compute z(l,j,x,y) [not expanded]

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1) )
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Reordering the computation

for l = 1:L  # layers

for j = 1:Dl
for x = 1:W-K+1 

for y = 1:H-K+1

Compute z(l,j,x,y) [not expanded]

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1) )

205



Reordering the computation

for l = 1:L  # layers

for j = 1:Dl
for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1

Compute z(l,j,x,y) [not expanded]

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1) )

206

Each layer’s map is now a different
size:  Maps scan progressively by Kl
in each layer



Reordering the computation
Y(0,:,:,:) = Image

for l = 1:L  # layers operate on vector at (x,y)

for j = 1:Dl
for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1

z(l,j,x,y) = 0

for i = 1:Dl-1
for x’ = 1:Kl

for y’ = 1:Kl
z(l,j,x,y) += w(l,i,j,x’,y’)

Y(l-1,i,x+x’-1,y+y’-1)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1) )
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Reordering the computation
Y(0,:,:,:) = Image

for l = 1:L  # layers operate on vector at (x,y)

for j = 1:Dl
for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1

z(l,j,x,y) = 0

for i = 1:Dl-1
for x’ = 1:Kl

for y’ = 1:Kl
z(l,j,x,y) += w(l,i,j,x’,y’)

Y(l-1,i,x+x’-1,y+y’-1)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1) )
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“Convolutional Neural Network”
(aka scanning with an MLP)

Y(0,:,:,:) = Image

for l = 1:L  # layers operate on vector at (x,y)

for j = 1:Dl
for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1

z(l,j,x,y) = 0

for i = 1:Dl-1
for x’ = 1:Kl

for y’ = 1:Kl
z(l,j,x,y) += w(l,i,j,x’,y’)

Y(l-1,i,x+x’-1,y+y’-1)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1) )
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Convolutional neural net: 
Vector notation

The weight W(l,j)is now a 3D Dl-1xKlxKl tensor (assuming 
square receptive fields)

The product in blue is a tensor inner product with a 
scalar output

Y(0) = Image

for l = 1:L  # layers operate on vector at (x,y)

for j = 1:Dl
for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1

segment = Y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor

z(l,j,x,y) = W(l,j).segment #tensor inner prod.

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( Y(L) )
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Why distribute?

• Distribution forces localized patterns in lower 
layers
– More generalizable

• Number of parameters…

211



Scanning without distribution

• Total parameters: ଵ ଵ ଶ ଶ ଷ ଷ

– 𝐷 is dimensionality of input
– More generally: 𝐿𝐷𝑁ଵ + 𝑁ଵ𝑁ଶ + 𝑁ଶ𝑁ଷ + 𝑁ଷ

– Ignoring bias terms in computation

• Only need to count parameters for one column, since other columns are identical

time

softmax
Simplifying figure a bit.
Each bar represents an entire
layer of neurons

ଵ

ଶ

ଷ

௞ is the number of neurons in a block in the kth layer



Scanning without distribution

• Total parameters: ଵ ଵ ଶ ଶ ଷ ଷ

– 𝐷 is dimensionality of input
– More generally: 𝐿𝐷𝑁ଵ + 𝑁ଵ𝑁ଶ + 𝑁ଶ𝑁ଷ + 𝑁ଷ

– Ignoring bias terms in computation

• Only need to count parameters for one column, since other columns are identical

time

softmax
Simplifying figure a bit.
Each bar represents an entire
layer of neurons

ଵ

ଶ

ଷ



Distributed scanning

• Total parameters: ଵ ଵ ଶ ଶ ଷ ଷ

– More generally: 𝐾଴𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝑁ଶ𝑁ଷ + 𝑁ଷ

– Fewer parameters than a non-distributed net with identical number of neurons

time

softmaxEach bar represents an entire
layer of neurons

଴

ଵ

ଶ

ଷ
Identical blocks

Equivalent non-distributed net has 
ଵ ଵ ଶ ଶ ଷ ଷ

parameters (not including bias terms)



Distributed scanning

• Total parameters: ଵ ଵ ଶ ଶ ଷ ଷ

– More generally: 𝐾଴𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝑁ଶ𝑁ଷ + 𝑁ଷ

– Fewer parameters than a non-distributed net with identical number of neurons
– Actual benefit arises from the fact that neighboring positions share the computation of 

lower-level blocks!

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଶ

ଷ



Distributed scanning

• Total parameters: ଵ ଵ ଶ ଶ ଷ ଷ

– More generally: 𝐾଴𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝑁ଶ𝑁ଷ + 𝑁ଷ

– Fewer parameters than a non-distributed net with identical number of neurons
– Large additional benefit from the fact that scans at neighboring positions share the computation 

of lower-level blocks!

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଶ

ଷ

Reuses the outputs of three
of the layer-1 blocks in the 
first location



Distributed scanning: 3 levels

• Total parameters: ଵ ଵ ଶ ଶ ଷ ଷ

– More generally: 𝐾଴𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝐾ଶ𝑁ଶ𝑁ଷ + 𝑁ଷ

– Far fewer parameters than non-distributed scan with network with identical no. of neurons

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଵ

ଶ

ଷ

Equivalent non-distributed net has 
ଵ ଵ ଶ ଶ ଷ ଷ

neurons

Identical blocks



Distributed scanning: 3 levels

• Total parameters: ଵ ଵ ଶ ଶ ଷ ଷ

– More generally: 𝐾଴𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝐾ଶ𝑁ଶ𝑁ଷ + 𝑁ଷ

– Far fewer parameters than non-distributed scan with network with identical no. of neurons

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଵ

ଶ

ଷ

Equivalent non-distributed net has 
ଵ ଵ ଶ ଶ ଷ ଷ

neurons

Identical blocks

Unique parameters highlighted



Distributed scanning: 3 levels

• Total parameters: ଵ ଵ ଶ ଶ ଷ ଷ

– More generally: 𝐾଴𝐷𝑁ଵ + 𝐾ଵ𝑁ଵ𝑁ଶ + 𝐾ଶ𝑁ଶ𝑁ଷ + 𝑁ଷ

– Far fewer parameters than non-distributed scan with network with identical no. of neurons
– Large additional gains from reuse of computation!!

time

softmaxEach bar represents an entire
layer of neurons

଴

ଵ

ଶ

ଷ



Distributed scanning: 3 levels

• Total parameters: ଵ ଵ ଶ ଶ ଷ ଷ

– More generally: 𝐾ଵ𝐷𝑁ଵ + 𝐾ଶ𝑁ଵ𝑁ଶ + (
௅

௄భ௄మ
)𝑁ଶ𝑁ଷ + 𝑁ଷ

– Far fewer parameters than non-distributed scan by network with identical no. of neurons
– Large additional gains from reuse of computation!!

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଵ

ଶ

ଷ All the circled blocks directly
reuse some of the computation 
performed for scanning the
first location



Distributed scanning

• Total parameters: ଵ ଵ ଶ ଶ ଷ ଷ

– More generally: 𝐾ଵ𝐷𝑁ଵ + 𝐾ଶ𝑁ଵ𝑁ଶ + 𝐾ଷ𝑁ଶ𝑁ଷ + 𝑁ଷ

– Will have fewer parameters than a non-distributed structure with identical numbers of neurons

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଵ

ଶ

ଷ



Distributed scanning

• Total parameters: ଵ ଵ ଶ ଶ ଷ ଷ

– More generally: 𝐾ଵ𝐷𝑁ଵ + 𝐾ଶ𝑁ଵ𝑁ଶ + 𝐾ଷ𝑁ଶ𝑁ଷ + 𝑁ଷ

– Can end up being more parameters than for non-distributed scanning

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଵ

ଶ

ଷ



Distributed scanning

• Total parameters: ଵ ଵ ଶ ଶ ଷ ଷ

– More generally: 𝐾ଵ𝐷𝑁ଵ + 𝐾ଶ𝑁ଵ𝑁ଶ + 𝐾ଷ𝑁ଶ𝑁ଷ + 𝑁ଷ

– Can end up being more parameters than for non-distributed scanning
– But still benefit much more from shared computation in the scans of adjacent locations

time

softmaxEach bar represents an entire
layer of neurons

ଵ

ଵ

ଶ

ଷ

Which adjacent-location scans
reuse computations from scanning
the first location?



Parameters in Undistributed network

• Only need to consider what happens in one block
– All other blocks are scanned by the same net

• ଶ
ଵ weights in first layer

• ଵ ଶweights in second layer
– ௜ିଵ ௜weights in subsequent ith layer

• Total parameters:    ଶ
ଵ ଵ ଶ ଶ ଷ  

– Ignoring the bias term

N1 units

N2 unitsblock

224
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When distributed over 2 layers

• First layer:  𝑁ଵ lower-level units, each looks at 𝐿ଶ pixels
– 𝑁ଵ(𝐿ଶ + 1) weights

• Second layer needs ( ௄

௅

ଶ
𝑁ଵ + 1)𝑁ଶ weights

• Subsequent layers needs 𝑁௜ିଵ𝑁௜ when distributed over 2 layers only

– Total parameters:    𝒪 𝐿ଶ𝑁ଵ +
௄

௅

ଶ
𝑁ଵ𝑁ଶ + 𝑁ଶ𝑁ଷ …  

Colors indicate neurons
with shared parameters N1 groups

Layer 2

No sharing at this level
within a block

block

cell
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When distributed over 2 layers

• First layer:  𝑁ଵ lower-level units, each looks at 𝐿ଶ pixels
– 𝑁ଵ(𝐿ଶ + 1) weights

• Second layer needs ( ௄

௅

ଶ
𝑁ଵ + 1)𝑁ଶ weights

• Subsequent layers needs 𝑁௜ିଵ𝑁௜ when distributed over 2 layers only

– Total parameters:    𝒪 𝐿ଶ𝑁ଵ +
௄

௅

ଶ
𝑁ଵ𝑁ଶ + 𝑁ଶ𝑁ଷ …  

Colors indicate neurons
with shared parameters N1 groups

Layer 2

No sharing at this level
within a block

block

cell
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When distributed over 2 layers

• First layer:  𝑁ଵ lower-level units, each looks at 𝐿ଶ pixels
– 𝑁ଵ(𝐿ଶ + 1) weights

• Second layer needs ( ௄

௅

ଶ
𝑁ଵ + 1)𝑁ଶ weights

• Subsequent layers needs 𝑁௜ିଵ𝑁௜ when distributed over 2 layers only

– Total parameters:    𝒪 𝐿ଶ𝑁ଵ +
௄

௅

ଶ
𝑁ଵ𝑁ଶ + 𝑁ଶ𝑁ଷ …  

Colors indicate neurons
with shared parameters N1 groups

Layer 2

No sharing at this level
within a block

block

cell
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When distributed over 2 layers

• First layer:  𝑁ଵ lower-level units, each looks at 𝐿ଶ pixels
– 𝑁ଵ(𝐿ଶ + 1) weights

• Second layer needs ( ௄

௅

ଶ
𝑁ଵ + 1)𝑁ଶ weights

• Subsequent layers needs 𝑁௜ିଵ𝑁௜ when distributed over 2 layers only

– Total parameters:    𝒪 𝐿ଶ𝑁ଵ +
௄

௅

ଶ
𝑁ଵ𝑁ଶ + 𝑁ଶ𝑁ଷ …  

Colors indicate neurons
with shared parameters N1 groups

Layer 2

No sharing at this level
within a block

block

cell
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When distributed over 3 layers

• First layer:  𝑁ଵ lower-level (groups of) units, each looks at 𝐿ଵ
ଶ pixels

– 𝑁ଵ(𝐿ଵ
ଶ + 1) weights

• Second layer:  𝑁ଶ (groups of) units looking at groups of 𝐿ଶ × 𝐿ଶ connections from each of 𝑁ଵ first-level 
neurons

– (𝐿ଶ
ଶ 𝑁ଵ + 1)𝑁ଶ weights

• Third layer: 

– ( ௄

௅భ௅మ

ଶ
𝑁ଶ + 1)𝑁ଷ weights

• Subsequent layers need 𝑁௜ିଵ𝑁௜ neurons

– Total parameters:    𝒪 𝐿ଵ
ଶ𝑁ଵ + 𝐿ଶ

ଶ 𝑁ଵ𝑁ଶ +
௄

௅భ௅మ

ଶ
𝑁ଶ𝑁ଷ + ⋯  229



Comparing Number of Parameters

• ଶ
ଵ ଵ ଶ ଶ ଷ  

• For this example, let 
ଵ ଶ ଷ

• Total 1034 weights

Conventional MLP, not distributed
Distributed (3 layers)

• ଵ
ଶ

ଵ ଶ
ଶ

ଵ ଶ

௄

௅భ௅మ

ଶ

ଶ ଷ  

• Here, let ଵ ,
ଶ ଵ , ଶ ଷ

• Total 64+128+8 = 160 weights
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Comparing Number of Parameters

•

Conventional MLP, not distributed
Distributed (3 layers)

• ଵ
ଶ

ଵ

௜
ଶ

௜ ௜ାଵ
 
௜ழ௡௖௢௡௩ିଵ

௄

∏ ௛௢௣೔
 
೔

ଶ

௡௖௢௡௩ିଵ ௡௖௢௡௩

௜ ௜ାଵ
 
௜∈௙௟௔௧  

These terms dominate..
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Why distribute?
• Distribution forces localized patterns in lower layers

– More generalizable

• Number of parameters…
– Large (sometimes order of magnitude) reduction in parameters

• Gains increase as we increase the depth over which the blocks are distributed

– Significant gains from shared computation

• Key intuition:  Regardless of the distribution, we can view the 
network as “scanning” the picture with an MLP
– The only difference is the manner in which parameters are shared in 

the MLP
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Story so far

• Position-invariant pattern classification can be performed by scanning 
the input for a target pattern
– Scanning is equivalent to composing a large network with shared subnets

• The operations in scanning the input with a full network can be 
equivalently reordered as
– scanning the input with individual neurons in the first layer to produce 

scanned “maps” of the input
– Jointly scanning the “map” of outputs by all neurons in the previous layers 

by neurons in subsequent layers

• The scanning block can be distributed over multiple layers of the 
network
– Results in significant reduction in the total number of parameters

233



Hierarchical composition: A different 
perspective

• The entire operation can be redrawn as before 
as maps of the entire image
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Building up patterns

• The first layer looks at small sub regions of the 
main image
– Sufficient to detect, say, petals
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Some modifications

• The first layer looks at sub regions of the main image
– Sufficient to detect, say, petals

• The second layer looks at regions of the output of the first layer
– To put the petals together into a flower
– This corresponds to looking at a larger region of the original input image
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Some modifications

• The first layer looks at sub regions of the main image
– Sufficient to detect, say, petals

• The second layer looks at regions of the output of the first layer
– To put the petals together into a flower
– This corresponds to looking at a larger region of the original input image
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Some modifications

• The first layer looks at sub regions of the main image
– Sufficient to detect, say, petals

• The second layer looks at regions of the output of the first layer
– To put the petals together into a flower
– This corresponds to looking at a larger region of the original input image

• We may have any number of layers in this fashion
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Some modifications

• The first layer looks at sub regions of the main image
– Sufficient to detect, say, petals

• The second layer looks at regions of the output of the first layer
– To put the petals together into a flower
– This corresponds to looking at a larger region of the original input image

• We may have any number of layers in this fashion
239



Terminology

• Each of the scanning neurons is generally called a 
“filter”
– Its really a correlation filter as we saw earlier

– Each filter scans for a pattern in the map it operates 
on 240



Terminology

• The pattern in the input image that each filter sees is its “Receptive Field”
– The squares show the sizes of the receptive fields for the first, second and third-layer neurons

• The actual receptive field for a first layer filter is simply its arrangement of weights
• For the higher level filters, the actual receptive field is not immediately obvious 

and must be calculated
– What patterns in the input do the filters actually respond to?
– Will not actually be simple, identifiable patterns like “petal” and “inflorescence”
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Some modifications

• The final layer may feed directly into a multi layer 
perceptron rather than a single neuron

• This is exactly the shared parameter net we just 
saw

242



Modification 1: Convolutional “Stride”

• The scans of the individual “filters” may advance by more than one pixel at a time
– The “stride” may be greater than 1
– Effectively increasing the granularity of the scan

• Saves computation, sometimes at the risk of losing information

• This will result in a reduction of the size of the resulting maps
– They will shrink by a factor equal to the stride

• This can happen at any layer
243



Convolutional neural net
The weight W(l,j)is now a 3D Dl-1xKlxKl tensor (assuming 
square receptive fields)
Y(0) = Image
for l = 1:L  # layers operate on vector at (x,y)
for j = 1:Dl

m = 1
for x = 1:stride:Wl-1-Kl+1 

n = 1
for y = 1:stride:Hl-1-Kl+1

segment = Y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor
z(l,j,m,n) = W(l,j).segment #tensor inner prod.
Y(l,j,m,n) = activation(z(l,j,m,n))
n++

m++

Y = softmax( Y(L) )
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Accounting for jitter

• We would like to account for some jitter in the 
first-level patterns
– If a pattern shifts by one pixel, is it still a petal?
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Accounting for jitter

• We would like to account for some jitter in the first-level patterns
– If a pattern shifts by one pixel, is it still a petal?
– A small jitter is acceptable

• Replace each value by the maximum of the values within a small region 
around it

– Max filtering or Max pooling

Max

Max

Max

Max
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Accounting for jitter

• We would like to account for some jitter in the first-level patterns
– If a pattern shifts by one pixel, is it still a petal?
– A small jitter is acceptable

• Replace each value by the maximum of the values within a small region 
around it

– Max filtering or  Max pooling

Max

1 1

5 6

Max 6

247



The max operation is just a neuron

• The max operation is just another neuron

• Instead of applying an activation to the weighted 
sum of inputs, each neuron just computes the 
maximum over all inputs

Max layer
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The max operation is just a neuron

• The max operation is just another neuron

• Instead of applying an activation to the weighted 
sum of inputs, each neuron just computes the 
maximum over all inputs 249

Max layer



Accounting for jitter

• The max filtering can also be performed as a 
scan

Max

1 1

5 6

Max 6

250



Accounting for jitter

• The “max filter” operation too “scans” the 
picture

Max

1 3

6 5
Max

6 6
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Accounting for jitter

Max

3 2

5 7
Max

6 6 7

• The “max filter” operation too “scans” the 
picture
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Accounting for jitter

Max

• The “max filter” operation too “scans” the 
picture

253



Accounting for jitter

Max

• The “max filter” operation too “scans” the 
picture
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Accounting for jitter

Max

• The “max filter” operation too “scans” the 
picture
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Max pooling “Strides”

• The “max” operations may “stride” by more 
than one pixel

Max
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Max pooling “Strides”

• The “max” operations may “stride” by more 
than one pixel

Max
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Max pooling “Strides”

• The “max” operations may “stride” by more 
than one pixel

Max

258



Max pooling “Strides”

• The “max” operations may “stride” by more 
than one pixel

Max
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Max pooling “Strides”

• The “max” operations may “stride” by more 
than one pixel

Max
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Max pooling “Strides”

• The “max” operations may “stride” by more than one pixel
– This will result in a shrinking of the map
– The operation is usually called “pooling”

• Pooling a number of outputs to get a single output
• When stride is greater than 1, also called “Down sampling”

Max
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Shrinking with a max

• In this example we shrank the image after the 
max
– Adjacent “max” operators did not overlap

– The stride was the size of the max filter itself

Max layer
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Non-overlapped strides

• Non-overlapping strides: Partition the output of the 
layer into blocks

• Within each block only retain the highest value
– If you detect a petal anywhere in the block, a petal is 

detected..
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1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3 4

Max Pooling



Higher layers

• The next layer works on the max-pooled maps

Max
pool
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The overall structure

• In reality we can have many layers of “convolution” (scanning) followed by 
max pooling (and reduction) before the final MLP
– The individual perceptrons at any “scanning” or “convolutional” layer are 

called “filters”
• They “filter” the input image to produce an output image (map)

– The individual max operations are also called max pooling or max filters
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The overall structure

• This entire structure is called a Convolutional 
Neural Network

267



Convolutional Neural Network

Input image First layer filters

First layer maxpooling Second layer filters

Second layer maxpooling
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1-D convolution

• The 1-D scan version of the convolutional neural 
network is the time-delay neural network
– Used primarily for speech recognition 269



1-D scan version

• The 1-D scan version of the convolutional 
neural network
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1-D scan version

• The 1-D scan version of the convolutional 
neural network

The spectrographic time-frequency components are
the input layer
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1-D scan version

• The 1-D scan version of the convolutional 
neural network
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1-D scan version

• The 1-D scan version of the convolutional 
neural network
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1-D scan version

• The 1-D scan version of the convolutional neural network
– Max pooling optional

• Not generally done for speech
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1-D scan version

• The 1-D scan version of the convolutional neural network
– Max pooling optional

• Not generally done for speech
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1-D scan version

• The 1-D scan version of the convolutional neural network
– Max pooling optional

• Not generally done for speech
276



1-D scan version

• The 1-D scan version of the convolutional neural network
– Max pooling optional

• Not generally done for speech
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1-D scan version

• The 1-D scan version of the convolutional neural network
– Max pooling optional

• Not generally done for speech
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1-D scan version

• The 1-D scan version of the convolutional neural network
• A final perceptron (or MLP) to aggregate evidence

– “Does this recording have the target word”
279



Time-Delay Neural Network

• This structure is called the Time-Delay Neural 
Network
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Story so far
• Neural networks learn patterns in a hierarchical manner

– Simple to complex

• Pattern classification tasks such as “does this picture contain a cat” are best 
performed by scanning for the target pattern

• Scanning for patterns can be viewed as classification with a large shared-
parameter network

• Scanning an input with a network and combining the outcomes is equivalent to 
scanning with individual neurons

– First level neurons scan the input
– Higher-level neurons scan the “maps” formed by lower-level neurons
– A final “decision” layer (which may be a max, a perceptron, or an MLP) makes the final 

decision

• The scanned “block” can be distributed over multiple layers for efficiency 
• At each layer,  a scan by a neuron may optionally be followed by a “max” (or any 

other) “pooling” operation to account for deformation

• For 2-D (or higher-dimensional) scans, the structure is called a convnet
• For 1-D scan along time, it is called a Time-delay neural network 281


