
Deep Neural Networks

Convolutional Networks II

Bhiksha Raj

Spring 2020

1

Story so far
• Pattern classification tasks such as “does this picture contain a cat”, or

“does this recording include HELLO” are best performed by scanning for
the target pattern

• Scanning an input with a network and combining the outcomes is
equivalent to scanning with individual neurons hierarchically

– First level neurons scan the input

– Higher-level neurons scan the “maps” formed by lower-level neurons

– A final “decision” unit or layer makes the final decision

• Deformations in the input can be handled by “max pooling”

• For 2-D (or higher-dimensional) scans, the structure is called a convnet

• For 1-D scan along time, it is called a Time-delay neural network

A little history

• How do animals see?

– What is the neural process from eye to recognition?

• Early research:

– largely based on behavioral studies
• Study behavioral judgment in response to visual stimulation

• Visual illusions

– and gestalt
• Brain has innate tendency to organize disconnected bits into whole objects

– But no real understanding of how the brain processed images

Hubel and Wiesel 1959

• First study on neural correlates of vision.

– “Receptive Fields in Cat Striate Cortex”

• “Striate Cortex”: Approximately equal to the V1 visual cortex
– “Striate” – defined by structure, “V1” – functional definition

• 24 cats, anaesthetized, immobilized, on artificial respirators

– Anaesthetized with truth serum

– Electrodes into brain

• Do not report if cats survived experiment, but claim brain tissue was studied

Hubel and Wiesel 1959

• Light of different wavelengths incident on the retina
through fully open (slitted) Iris

– Defines immediate (20ms) response of retinal cells

• Beamed light of different patterns into the eyes and
measured neural responses in striate cortex

Hubel and Wiesel 1959

• Restricted retinal areas which on illumination influenced the firing of single cortical
units were called receptive fields.
– These fields were usually subdivided into excitatory and inhibitory regions.

• Findings:
– A light stimulus covering the whole receptive field, or diffuse illumination of the whole retina,

was ineffective in driving most units, as excitatory regions cancelled inhibitory regions

• Light must fall on excitatory regions and NOT fall on inhibitory regions, resulting in clear patterns

– Receptive fields could be oriented in a vertical, horizontal or oblique manner.

• Based on the arrangement of excitatory and inhibitory regions within receptive fields.

– A spot of light gave greater response for some directions of movement than others.

mice

monkey

From Huberman and Neil, 2011

From Hubel and Wiesel

Hubel and Wiesel 59

• Response as orientation of input light rotates

– Note spikes – this neuron is sensitive to vertical bands

Hubel and Wiesel

• Oriented slits of light were the most effective stimuli for activating
striate cortex neurons

• The orientation selectivity resulted from the previous level of input
because lower level neurons responding to a slit also responded to
patterns of spots if they were aligned with the same orientation as
the slit.

• In a later paper (Hubel & Wiesel, 1962), they showed that within
the striate cortex, two levels of processing could be identified

– Between neurons referred to as simple S-cells and complex C-cells.

– Both types responded to oriented slits of light, but complex cells were
not “confused” by spots of light while simple cells could be confused

Hubel and Wiesel model

• ll

Transform from circular retinal
receptive fields to elongated fields for
simple cells. The simple cells are
susceptible to fuzziness and noise

Composition of complex receptive
fields from simple cells. The C-cell
responds to the largest output from a
bank of S-cells to achieve oriented
response that is robust to distortion

Hubel and Wiesel

• Complex C-cells build from similarly oriented simple cells

– They “fine-tune” the response of the simple cell

• Show complex buildup – building more complex patterns
by composing early neural responses

– Successive transformation through Simple-Complex
combination layers

• Demonstrated more and more complex responses in
later papers

– Later experiments were on waking macaque monkeys
• Too horrible to recall

Hubel and Wiesel

• Complex cells build from similarly oriented simple cells
– The “tune” the response of the simple cell and have similar response to the simple cell

• Show complex buildup – from point response of retina to oriented response of
simple cells to cleaner response of complex cells

• Lead to more complex model of building more complex patterns by composing
early neural responses
– Successive transformations through Simple-Complex combination layers

• Demonstrated more and more complex responses in later papers
• Experiments done by others were on waking monkeys

– Too horrible to recall

Adding insult to injury..

• “However, this model cannot accommodate
the color, spatial frequency and many other
features to which neurons are tuned. The
exact organization of all these cortical columns
within V1 remains a hot topic of current
research.”

Forward to 1980

• Kunihiko Fukushima

• Recognized deficiencies in the

Hubel-Wiesel model

• One of the chief problems: Position invariance of

input

– Your grandmother cell fires even if your grandmother

moves to a different location in your field of vision

Kunihiko Fukushima

NeoCognitron

• Visual system consists of a hierarchy of modules, each comprising a
layer of “S-cells” followed by a layer of “C-cells”

– 𝑈𝑆𝑙 is the lth layer of S cells, 𝑈𝐶𝑙 is the lth layer of C cells

• Only S-cells are “plastic” (i.e. learnable), C-cells are fixed in their
response

• S-cells respond to the signal in the previous layer

• C-cells confirm the S-cells’ response

Figures from Fukushima, ‘80

NeoCognitron

• Each simple-complex module includes a layer of S-cells and a layer of C-cells

• S-cells are organized in rectangular groups called S-planes.
– All the cells within an S-plane have identical learned responses

• C-cells too are organized into rectangular groups called C-planes
– One C-plane per S-plane
– All C-cells have identical fixed response

• In Fukushima’s original work, each C and S cell “looks” at an elliptical region in the
previous plane

Each cell in a plane “looks” at a slightly shifted
region of the input to the plane than the
adjacent cells in the plane.

NeoCognitron

• The complete network
• U0 is the retina

• In each subsequent module, the planes of the S layers detect plane-
specific patterns in the previous layer (C layer or retina)

• The planes of the C layers “refine” the response of the corresponding
planes of the S layers

Neocognitron

• S cells: RELU like activation

– 𝜑 is a RELU

• C cells: Also RELU like, but with an inhibitory bias

– Fires if weighted combination of S cells fires strongly
enough

–

Neocognitron

• S cells: RELU like activation

– 𝜑 is a RELU

• C cells: Also RELU like, but with an inhibitory bias

– Fires if weighted combination of S cells fires strongly
enough

–

Could simply replace these
strange functions with a
RELU and a max

NeoCognitron

• The deeper the layer, the larger the receptive field of
each neuron

– Cell planes get smaller with layer number

– Number of planes increases
• i.e the number of complex pattern detectors increases with layer

Learning in the neo-cognitron

• Unsupervised learning

• Randomly initialize S cells, perform Hebbian learning updates in response to input

– update = product of input and output : ∆𝑤𝑖𝑗 = 𝑥𝑖𝑦𝑗

• Within any layer, at any position, only the maximum S from all the layers is
selected for update
– Also viewed as max-valued cell from each S column

– Ensures only one of the planes picks up any feature

– But across all positions, multiple planes will be selected

• If multiple max selections are on the same plane, only the largest is chosen

• Updates are distributed across all cells within the plane

max

Learning in the neo-cognitron

• Ensures different planes learn different features

• Any plane learns only one feature

– E.g. Given many examples of the character “A” the different cell
planes in the S-C layers may learn the patterns shown

• Given other characters, other planes will learn their components

– Going up the layers goes from local to global receptor fields

• Winner-take-all strategy makes it robust to distortion

• Unsupervised: Effectively clustering

Neocognitron – finale

• Fukushima showed it successfully learns to
cluster semantic visual concepts

– E.g. number or characters, even in noise

Adding Supervision

• The neocognitron is fully unsupervised

– Semantic labels are automatically learned

• Can we add external supervision?

• Various proposals:

– Temporal correlation: Homma, Atlas, Marks, ‘88

– TDNN: Lang, Waibel et. al., 1989, ‘90

• Convolutional neural networks: LeCun

Supervising the neocognitron

• Add an extra decision layer after the final C layer

– Produces a class-label output

• We now have a fully feed forward MLP with shared parameters

– All the S-cells within an S-plane have the same weights

• Simple backpropagation can now train the S-cell weights in every plane of
every layer

– C-cells are not updated

Output
class
label(s)

Scanning vs. multiple filters

• Note: The original Neocognitron actually uses
many identical copies of a neuron in each S
and C plane

Supervising the neocognitron

• The Math

– Assuming square receptive fields, rather than elliptical ones

– Receptive field of S cells in lth layer is 𝐾𝑙 × 𝐾𝑙
– Receptive field of C cells in lth layer is 𝐿𝑙 × 𝐿𝑙

Output
class
label(s)

Supervising the neocognitron

• This is, however, identical to “scanning” (convolving)

with a single neuron/filter (what LeNet actually did)

Output
class
label(s)

𝑼𝑺,𝒍,𝒏 𝒊, 𝒋 = 𝝈

𝒑

𝑘=1

𝑲𝒍

𝑙=1

𝑲𝒍

𝒘𝑺,𝒍,𝒏(𝑝, 𝑘, 𝑙)𝑼𝑪,𝒍−𝟏,𝒑(𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1)

𝑼𝑪,𝒍,𝒏 𝒊, 𝒋 = max
𝑘∈ 𝑖,𝑖+𝐿𝑙 ,𝑗∈(𝑙,𝑙+𝐿𝑙)

𝑼𝑺,𝒍,𝒏 𝒊, 𝒋

Convolutional Neural Networks

Story so far

• The mammalian visual cortex contains of S cells, which capture oriented
visual patterns and C cells which perform a “majority” vote over groups of
S cells for robustness to noise and positional jitter

• The neocognitron emulates this behavior with planar banks of S and C
cells with identical response, to enable shift invariance

– Only S cells are learned

– C cells perform the equivalent of a max over groups of S cells for robustness

– Unsupervised learning results in learning useful patterns

• LeCun’s LeNet added external supervision to the neocognitron

– S planes of cells with identical response are modelled by a scan (convolution)
over image planes by a single neuron

– C planes are emulated by cells that perform a max over groups of S cells
• Reducing the size of the S planes

– Giving us a “Convolutional Neural Network”

The general architecture of a
convolutional neural network

• A convolutional neural network comprises “convolutional” and “downsampling” layers
– Convolutional layers comprise neurons that scan their input for patterns

– Downsampling layers perform max operations on groups of outputs from the convolutional layers

– The two may occur in any sequence, but typically they alternate

• Followed by an MLP with one or more layers

Multi-layer
Perceptron

Output

The general architecture of a
convolutional neural network

• A convolutional neural network comprises of “convolutional” and
“downsampling” layers

– The two may occur in any sequence, but typically they alternate

• Followed by an MLP with one or more layers

Multi-layer
Perceptron

Output

The general architecture of a
convolutional neural network

• Convolutional layers and the MLP are learnable

– Their parameters must be learned from training data for the target
classification task

• Down-sampling layers are fixed and generally not learnable

Multi-layer
Perceptron

Output

A convolutional layer

• A convolutional layer comprises of a series of “maps”

– Corresponding the “S-planes” in the Neocognitron

– Variously called feature maps or activation maps

Maps

Previous
layer

A convolutional layer

• Each activation map has two components

– An affine map, obtained by convolution over maps in the previous layer

• Each affine map has, associated with it, a learnable filter

– An activation that operates on the output of the convolution

Previous
layer

Previous
layer

A convolutional layer

• All the maps in the previous layer contribute

to each convolution

Previous
layer

Previous
layer

A convolutional layer

• All the maps in the previous layer contribute to

each convolution

– Consider the contribution of a single map

Previous
layer

Previous
layer

What is a convolution

• Scanning an image with a “filter”
– Note: a filter is really just a perceptron, with weights

and a bias

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

Example 5x5 image with binary
pixels

1 0 1

0 1 0

11 0

0

Example 3x3 filter
bias

What is a convolution

• Scanning an image with a “filter”

– At each location, the “filter and the underlying map values are
multiplied component wise, and the products are added along with
the bias

1 0 1
0 1 0

11 0

Input Map

Filter

0

bias

The “Stride” between adjacent
scanned locations need not be 1

• Scanning an image with a “filter”

– The filter may proceed by more than 1 pixel at a time

– E.g. with a “stride” of two pixels per shift

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

4

x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias

The “Stride” between adjacent
scanned locations need not be 1

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias

• Scanning an image with a “filter”

– The filter may proceed by more than 1 pixel at a time

– E.g. with a “hop” of two pixels per shift

4 4

The “Stride” between adjacent
scanned locations need not be 1

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias

• Scanning an image with a “filter”

– The filter may proceed by more than 1 pixel at a time

– E.g. with a “hop” of two pixels per shift

4 4

2

The “Stride” between adjacent
scanned locations need not be 1

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias

• Scanning an image with a “filter”

– The filter may proceed by more than 1 pixel at a time

– E.g. with a “hop” of two pixels per shift

4 4

2 4

What really happens

• Each output is computed from multiple maps simultaneously

• There are as many weights (for each output map) as
size of the filter x no. of maps in previous layer

Previous
layer

⋮

𝑧 1, 𝑖, 𝑗 =

𝑚

𝑘=1

3

𝑙=1

3

𝑤 1,𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

What really happens

• Each output is computed from multiple maps simultaneously

• There are as many weights (for each output map) as
size of the filter x no. of maps in previous layer

Previous
layer

⋮

𝑧 1, 𝑖, 𝑗 =

𝑚

𝑘=1

3

𝑙=1

3

𝑤 1,𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

What really happens

• Each output is computed from multiple maps simultaneously

• There are as many weights (for each output map) as
size of the filter x no. of maps in previous layer

Previous
layer

⋮

𝑧 1, 𝑖, 𝑗 =

𝑚

𝑘=1

3

𝑙=1

3

𝑤 1,𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

What really happens

• Each output is computed from multiple maps simultaneously

• There are as many weights (for each output map) as
size of the filter x no. of maps in previous layer

Previous
layer

⋮

𝑧 1, 𝑖, 𝑗 =

𝑚

𝑘=1

3

𝑙=1

3

𝑤 1,𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

What really happens

• Each output is computed from multiple maps simultaneously

• There are as many weights (for each output map) as
size of the filter x no. of maps in previous layer

Previous
layer

⋮

𝑧 1, 𝑖, 𝑗 =

𝑚

𝑘=1

3

𝑙=1

3

𝑤 1,𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

What really happens

• Each output is computed from multiple maps simultaneously

• There are as many weights (for each output map) as
size of the filter x no. of maps in previous layer

Previous
layer

⋮

𝑧 1, 𝑖, 𝑗 =

𝑚

𝑘=1

3

𝑙=1

3

𝑤 1,𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

What really happens

• Each output is computed from multiple maps simultaneously

• There are as many weights (for each output map) as
size of the filter x no. of maps in previous layer

Previous
layer

⋮

𝑧 1, 𝑖, 𝑗 =

𝑚

𝑘=1

3

𝑙=1

3

𝑤 1,𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

What really happens

• Each output is computed from multiple maps simultaneously

• There are as many weights (for each output map) as
size of the filter x no. of maps in previous layer

Previous
layer

⋮

𝑧 1, 𝑖, 𝑗 =

𝑚

𝑘=1

3

𝑙=1

3

𝑤 1,𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

What really happens

• Each output is computed from multiple maps simultaneously

• There are as many weights (for each output map) as
size of the filter x no. of maps in previous layer

Previous
layer

⋮

𝑧 1, 𝑖, 𝑗 =

𝑚

𝑘=1

3

𝑙=1

3

𝑤 1,𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

• Each output is computed from multiple maps simultaneously

• There are as many weights (for each output map) as
size of the filter x no. of maps in previous layer

Previous
layer

⋮

𝑧 2, 𝑖, 𝑗 =

𝑚

𝑘=1

3

𝑙=1

3

𝑤 2,𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏(2)

• Each output is computed from multiple maps simultaneously

• There are as many weights (for each output map) as
size of the filter x no. of maps in previous layer

Previous
layer

⋮

𝑧 2, 𝑖, 𝑗 =

𝑚

𝑘=1

3

𝑙=1

3

𝑤 2,𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏(2)

• Each output is computed from multiple maps simultaneously

• There are as many weights (for each output map) as
size of the filter x no. of maps in previous layer

Previous
layer

⋮

𝑧 2, 𝑖, 𝑗 =

𝑚

𝑘=1

3

𝑙=1

3

𝑤 2,𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏(2)

A different view

• ..A stacked arrangement of planes

• We can view the joint processing of the various

maps as processing the stack using a three-

dimensional filter

Stacked arrangement
of kth layer of maps

Filter applied to kth layer of maps
(convolutive component plus bias)

Extending to multiple input maps

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

𝑧 𝑠, 𝑖, 𝑗 =

𝑝

𝑘=1

𝐿

𝑙=1

𝐿

𝑤 𝑠, 𝑝, 𝑘, 𝑙 𝑌(𝑝, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1) + 𝑏(𝑠)

bias

Extending to multiple input maps

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

One map

bias

𝑧 𝑠, 𝑖, 𝑗 =

𝑝

𝑘=1

𝐿

𝑙=1

𝐿

𝑤 𝑠, 𝑝, 𝑘, 𝑙 𝑌(𝑝, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1) + 𝑏(𝑠)

Extending to multiple input maps

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

All maps

bias

𝑧 𝑠, 𝑖, 𝑗 =

𝑝

𝑘=1

𝐿

𝑙=1

𝐿

𝑤 𝑠, 𝑝, 𝑘, 𝑙 𝑌(𝑝, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1) + 𝑏(𝑠)

Extending to multiple input maps

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

bias

𝑧 𝑠, 𝑖, 𝑗 =

𝑝

𝑘=1

𝐿

𝑙=1

𝐿

𝑤 𝑠, 𝑝, 𝑘, 𝑙 𝑌(𝑝, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1) + 𝑏(𝑠)

Extending to multiple input maps

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

bias

𝑧 𝑠, 𝑖, 𝑗 =

𝑝

𝑘=1

𝐿

𝑙=1

𝐿

𝑤 𝑠, 𝑝, 𝑘, 𝑙 𝑌(𝑝, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1) + 𝑏(𝑠)

Extending to multiple input maps

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

bias

𝑧 𝑠, 𝑖, 𝑗 =

𝑝

𝑘=1

𝐿

𝑙=1

𝐿

𝑤 𝑠, 𝑝, 𝑘, 𝑙 𝑌(𝑝, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1) + 𝑏(𝑠)

Extending to multiple input maps

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

bias

𝑧 𝑠, 𝑖, 𝑗 =

𝑝

𝑘=1

𝐿

𝑙=1

𝐿

𝑤 𝑠, 𝑝, 𝑘, 𝑙 𝑌(𝑝, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1) + 𝑏(𝑠)

Extending to multiple input maps

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

bias

𝑧 𝑠, 𝑖, 𝑗 =

𝑝

𝑘=1

𝐿

𝑙=1

𝐿

𝑤 𝑠, 𝑝, 𝑘, 𝑙 𝑌(𝑝, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1) + 𝑏(𝑠)

Convolutional neural net:
Vector notation

The weight W(l,j)is now a 3D Dl-1xKlxKl tensor (assuming

square receptive fields)

The product in blue is a tensor inner product with a

scalar output

Y(0) = Image

for l = 1:L # layers operate on vector at (x,y)

for j = 1:Dl

for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

segment = Y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor

z(l,j,x,y) = W(l,j).segment #tensor inner prod.

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax({Y(L,:,:,:)})

65

Engineering consideration: The size of
the result of the convolution

• Recall: the “stride” of the convolution may not be one pixel

– I.e. the scanning neuron may “stride” more than one pixel at a time

• The size of the output of the convolution operation depends on
implementation factors

– And may not be identical to the size of the input

– Lets take a brief look at this for completeness sake

bias

The size of the convolution

1 0 1
0 1 0

11 0

Input Map

Filter

0

bias

• Image size: 5x5
• Filter: 3x3
• “Stride”: 1
• Output size = ?

The size of the convolution

1 0 1
0 1 0

11 0

Input Map

Filter

0

bias

• Image size: 5x5
• Filter: 3x3
• Stride: 1
• Output size = ?

The size of the convolution

• Image size: 5x5
• Filter: 3x3
• Stride: 2
• Output size = ?

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter

0

bias 4 4

2 4

The size of the convolution

• Image size: 5x5
• Filter: 3x3
• Stride: 2
• Output size = ?

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter

0

bias 4 4

2 4

The size of the convolution

• Image size: 𝑁 × 𝑁
• Filter: 𝑀 ×𝑀
• Stride: 1
• Output size = ?

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

Filter

0

bias 𝑆𝑖𝑧𝑒 ∶ 𝑁 × 𝑁

𝑀 ×𝑀

?

The size of the convolution

• Image size: 𝑁 × 𝑁
• Filter: 𝑀 ×𝑀
• Stride: 𝑆
• Output size = ?

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

Filter

0

bias 𝑆𝑖𝑧𝑒 ∶ 𝑁 × 𝑁

𝑀 ×𝑀

?

The size of the convolution

• Image size: 𝑁 × 𝑁
• Filter: 𝑀 ×𝑀
• Stride: 𝑆
• Output size (each side) = 𝑁 −𝑀 /𝑆 + 1

– Assuming you’re not allowed to go beyond the edge of the input

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

Filter

0

bias 𝑆𝑖𝑧𝑒 ∶ 𝑁 × 𝑁

𝑀 ×𝑀

?

Convolution Size

• Simple convolution size pattern:

– Image size: 𝑁 × 𝑁

– Filter: 𝑀 ×𝑀

– Stride: 𝑆

– Output size (each side) = 𝑁 −𝑀 /𝑆 + 1
• Assuming you’re not allowed to go beyond the edge of the input

• Results in a reduction in the output size

– Even if 𝑆 = 1

– Sometimes not considered acceptable
• If there’s no active downsampling, through max pooling and/or
𝑆 > 1, then the output map should ideally be the same size as the
input

Solution

• Zero-pad the input
– Pad the input image/map all around

• Add PL rows of zeros on the left and PR rows of zeros on the right
• Add PL rows of zeros on the top and PL rows of zeros at the bottom

– PL and PR chosen such that:
• PL = PR OR | PL – PR| = 1
• PL+ PR = M-1

– For stride 1, the result of the convolution is the same size as the original
image

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter

0

bias
0

0

0

0

0

0

0

0

0

0

0 0 0 0 00 0

0 0 0 0 00 0

Solution

• Zero-pad the input

– Pad the input image/map all around

– Pad as symmetrically as possible, such that..

– For stride 1, the result of the convolution is the
same size as the original image

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter

0

bias
0

0

0

0

0

0

0

0

0

0

0 0 0 0 00 0

0 0 0 0 00 0

Zero padding
• For an 𝐿 width filter:

– Odd 𝐿 : Pad on both left and right with 𝐿 − 1 /2 columns of zeros

– Even 𝐿 : Pad one side with𝐿/2 columns of zeros, and the other with
𝐿

2
− 1 columns of zeros

– The resulting image is width 𝑁 + 𝐿 − 1

– The result of the convolution is width 𝑁

• The top/bottom zero padding follows the same rules to maintain
map height after convolution

• For hop size 𝑆 > 1, zero padding is adjusted to ensure that the size
of the convolved output is 𝑁/𝑆

– Achieved by first zero padding the image with 𝑆 𝑁/𝑆 − 𝑁
columns/rows of zeros and then applying above rules

Why convolution?

• Convolutional neural networks are, in fact, equivalent to scanning
with an MLP

– Just run the entire MLP on each block separately, and combine results

• As opposed to scanning (convolving) the picture with individual neurons/filters

– Even computationally, the number of operations in both computations
is identical

• The neocognitron in fact views it equivalently to a scan

• So why convolutions?

Correlation, not Convolution

• The operation performed is technically a correlation, not a convolution
• Correlation:

𝑦 𝑖, 𝑗 =

𝑙

𝑚

𝑥 𝑖 + 𝑙, 𝑗 + 𝑚 𝑤(𝑙,𝑚)

– Shift the “filter” 𝑤 to “look” at the input 𝑥 block beginning at (𝑖, 𝑗)

• Convolution:

𝑦 𝑖, 𝑗 =

𝑙

𝑚

𝑥 𝑖 − 𝑙, 𝑗 − 𝑚 𝑤(𝑙,𝑚)

• Effectively “flip” the filter, right to left, top to bottom

image filter CorrelationConvolution

Cost of Correlation

• Correlation:

𝑦 𝑖, 𝑗 =

𝑙

𝑚

𝑥 𝑖 + 𝑙, 𝑗 + 𝑚 𝑤(𝑙,𝑚)

• Cost of scanning an 𝑀 ×𝑀 image with an 𝑁 × 𝑁 filter: O 𝑀2𝑁2

– 𝑁2 multiplications at each of 𝑀2 positions

• Not counting boundary effects

– Expensive, for large filters

Correlation

M
N

Correlation in Transform Domain

• Correlation usind DFTs:

Y = 𝐼𝐷𝐹𝑇2 𝐷𝐹𝑇2(𝑋) ∘ 𝑐𝑜𝑛𝑗 𝐷𝐹𝑇2(𝑊)

• Cost of doing this using the Fast Fourier Transform to
compute the DFTs: O 𝑀2𝑙𝑜𝑔𝑁

– Significant saving for large filters

– Or if there are many filters

Correlation

M

N

Returning to our problem

• … From the world of size engineering …

A convolutional layer

• The convolution operation results in a convolution map

• An Activation is finally applied to every entry in the map

Previous
layer

Previous
layer

Convolutional neural net:

The weight W(l,j)is now a 3D Dl-1xKlxKl tensor (assuming

square receptive fields)

The product in blue is a tensor inner product with a

scalar output

Y(0) = Image

for l = 1:L # layers operate on vector at (x,y)

for j = 1:Dl

for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

segment = Y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor

z(l,j,x,y) = W(l,j).segment #tensor inner prod.

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax({Y(L,:,:,:)})

84

The other component
Downsampling/Pooling

• Convolution (and activation) layers are followed intermittently by
“downsampling” (or “pooling”) layers

– Often, they alternate with convolution, though this is not necessary

Multi-layer
Perceptron

Output

Recall: Max pooling

• Max pooling selects the largest from a pool of

elements

• Pooling is performed by “scanning” the input

Max

3 1

4 6
Max

6

Recall: Max pooling

Max

1 3

6 5
Max

6 6

• Max pooling selects the largest from a pool of

elements

• Pooling is performed by “scanning” the input

Recall: Max pooling

Max

3 2

5 7
Max

6 6 7

• Max pooling selects the largest from a pool of

elements

• Pooling is performed by “scanning” the input

Recall: Max pooling

Max

• Max pooling selects the largest from a pool of

elements

• Pooling is performed by “scanning” the input

Recall: Max pooling

Max

• Max pooling selects the largest from a pool of

elements

• Pooling is performed by “scanning” the input

Recall: Max pooling

Max

• Max pooling selects the largest from a pool of

elements

• Pooling is performed by “scanning” the input

“Strides”

• The “max” operations may “stride” by more

than one pixel

Max

“Strides”

• The “max” operations may “stride” by more

than one pixel

Max

“Strides”

• The “max” operations may “stride” by more

than one pixel

Max

“Strides”

• The “max” operations may “stride” by more

than one pixel

Max

“Strides”

• The “max” operations may “stride” by more

than one pixel

Max

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters

and stride 2 6 8

3 4

Pooling: Size of output

• An 𝑁 × 𝑁 picture compressed by a 𝑃 × 𝑃 pooling
filter with stride 𝐷 results in an output map of side ڿ(𝑁 −

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

Mean pool with 2x2

filters and stride 2 3.25 5.25

2 2

Alternative to Max pooling:
Mean Pooling

• Compute the mean of the pool, instead of the max

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

P-norm with 2x2 filters

and stride 2, 𝑝 = 5 4.86 8

2.38 3.16

Alternative to Max pooling:
P-norm

• Compute a p-norm of the pool

𝑦 =
𝑝 1

𝑃2

𝑖,𝑗

𝑥𝑖𝑗
𝑝

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

Network applies to each

2x2 block and strides by

2 in this example

6 8

3 4

Other options

• The pooling may even be a learned filter
• The same network is applied on each block

• (Again, a shared parameter network)

Network in network

Or even an “all convolutional” net

• Downsampling may even be done by a simple convolution
layer with stride larger than 1

– Replacing the maxpooling layer with a conv layer

Just a plain old convolution
layer with stride>1

Fully convolutional network
(no pooling)

The weight W(l,j)is now a 3D Dl-1xKlxKl tensor (assuming

square receptive fields)

The product in blue is a tensor inner product with a

scalar output

Y(0) = Image

for l = 1:L # layers operate on vector at (x,y)

for j = 1:Dl

for x,m = 1:stride(l):Wl-1-Kl+1 # double indices

for y,n = 1:stride(l):Hl-1-Kl+1

segment = y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor

z(l,j,m,n) = W(l,j).segment #tensor inner prod.

Y(l,j,m,n) = activation(z(l,j,m,n))

Y = softmax({Y(L,:,:,:)})
102

Story so far

• The convolutional neural network is a supervised version of a
computational model of mammalian vision

• It includes

– Convolutional layers comprising learned filters that scan the outputs
of the previous layer

– Downsampling layers that vote over groups of outputs from the
convolutional layer

• Convolution can change the size of the output. This may be
controlled via zero padding.

• Downsampling layers may perform max, p-norms, or be learned
downsampling networks

• Regular convolutional layers with stride > 1 also perform
downsampling

– Eliminating the need for explicit downsampling layers

Setting everything together

• Typical image classification task

– Assuming maxpooling..

Convolutional Neural Networks

• Input: 1 or 3 images

– Black and white or color

– Will assume color to be generic

• Input: 3 pictures

Convolutional Neural Networks

• Input: 3 pictures

Convolutional Neural Networks

Preprocessing

• Typically works with square images
– Filters are also typically square

• Large networks are a problem
– Too much detail

– Will need big networks

• Typically scaled to small sizes, e.g. 32x32 or
128x128
– Based on how much will fit on your GPU

• Input: 3 pictures

Convolutional Neural Networks

𝐼 × 𝐼 𝑖𝑚𝑎𝑔𝑒

• Input is convolved with a set of K1 filters

– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..

– Filters are typically 5x5, 3x3, or even 1x1

Convolutional Neural Networks

𝐼 × 𝐼 𝑖𝑚𝑎𝑔𝑒

K1 total filters
Filter size: 𝐿 × 𝐿 × 3

• Input is convolved with a set of K1 filters

– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..

– Filters are typically 5x5, 3x3, or even 1x1

Convolutional Neural Networks

𝐼 × 𝐼 𝑖𝑚𝑎𝑔𝑒

Small enough to capture fine features
(particularly important for scaled-down images)

K1 total filters
Filter size: 𝐿 × 𝐿 × 3

• Input is convolved with a set of K1 filters

– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..

– Filters are typically 5x5, 3x3, or even 1x1

Convolutional Neural Networks

𝐼 × 𝐼 𝑖𝑚𝑎𝑔𝑒

What on earth is this?

Small enough to capture fine features
(particularly important for scaled-down images)

K1 total filters
Filter size: 𝐿 × 𝐿 × 3

• A 1x1 filter is simply a perceptron that operates over
the depth of the map, but has no spatial extent

– Takes one pixel from each of the maps (at a given location)
as input

The 1x1 filter

• Input is convolved with a set of K1 filters

– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..

– Better notation: Filters are typically 5x5(x3), 3x3(x3), or
even 1x1(x3)

Convolutional Neural Networks

𝐼 × 𝐼 𝑖𝑚𝑎𝑔𝑒

K1 total filters
Filter size: 𝐿 × 𝐿 × 3

• Input is convolved with a set of K1 filters

– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..

– Better notation: Filters are typically 5x5(x3), 3x3(x3), or even 1x1(x3)

– Typical stride: 1 or 2

Convolutional Neural Networks

𝐼 × 𝐼 𝑖𝑚𝑎𝑔𝑒 Total number of parameters: 𝐾1 3𝐿2 + 1

Parameters to choose: 𝐾1, 𝐿 and 𝑆
1. Number of filters 𝐾1
2. Size of filters 𝐿 × 𝐿 × 3 + 𝑏𝑖𝑎𝑠
3. Stride of convolution 𝑆

K1 total filters
Filter size: 𝐿 × 𝐿 × 3

• The input may be zero-padded according to

the size of the chosen filters

Convolutional Neural Networks

𝐼 × 𝐼 𝑖𝑚𝑎𝑔𝑒

K1 total filters
Filter size: 𝐿 × 𝐿 × 3

• First convolutional layer: Several convolutional filters

– Filters are “3-D” (third dimension is color)

– Convolution followed typically by a RELU activation

• Each filter creates a single 2-D output map

𝑌𝑚
1
(𝑖, 𝑗) = 𝑓 𝑧𝑚

1
(𝑖, 𝑗)

𝑌1
1

𝑌2
1

𝑌𝐾1
1

𝐼 × 𝐼

Convolutional Neural Networks

𝐼 × 𝐼 𝑖𝑚𝑎𝑔𝑒

K1 filters of size:
𝐿 × 𝐿 × 3

𝑧𝑚
1
(𝑖, 𝑗) =

𝑐∈{𝑅,𝐺,𝐵}

𝑘=1

𝐿

𝑙=1

𝐿

𝑤𝑚
1

𝑐, 𝑘, 𝑙 𝐼𝑐 𝑖 + 𝑘, 𝑗 + 𝑙 + 𝑏𝑚
(1)

The layer includes a convolution operation
followed by an activation (typically RELU)

Learnable parameters in the first
convolutional layer

• The first convolutional layer comprises 𝐾1 filters,
each of size 𝐿 × 𝐿 × 3

– Spatial span: 𝐿 × 𝐿

– Depth : 3 (3 colors)

• This represents a total of 𝐾1 3𝐿2 + 1 parameters

– “+ 1” because each filter also has a bias

• All of these parameters must be learned

• First downsampling layer: From each 𝑃 × 𝑃 block of each
map, pool down to a single value

– For max pooling, during training keep track of which position
had the highest value

𝑈1
1

𝑈2
1

𝑈𝐾1
1

𝐼/𝐷 × (𝐼/𝐷

Convolutional Neural Networks

𝑌1
1

𝑌2
1

𝑌𝐾1
1

𝐼 × 𝐼

𝐼 × 𝐼 𝑖𝑚𝑎𝑔𝑒

Filter size:
𝐿 × 𝐿 × 3

pool

The layer pools PxP blocks
of Y into a single value
It employs a stride D between
adjacent blocks

𝑈𝑚
1
(𝑖, 𝑗) = max

𝑘∈ 𝑖−1 𝐷+1, 𝑖𝐷 ,
𝑙∈ 𝑗−1 𝐷+1, 𝑗𝐷

𝑌𝑚
1
(𝑘, 𝑙)

• First downsampling layer: From each 𝑃 × 𝑃 block of each
map, pool down to a single value

– For max pooling, during training keep track of which position
had the highest value

𝑈1
1

𝑈2
1

𝐼/𝐷 × (𝐼/𝐷

Convolutional Neural Networks

𝑌1
1

𝑌2
1

𝐼 × 𝐼

𝐼 × 𝐼 𝑖𝑚𝑎𝑔𝑒

Filter size:
𝐿 × 𝐿 × 3

Parameters to choose:
Size of pooling block 𝑃
Pooling stride 𝐷

pool

Choices: Max pooling or
mean pooling?
Or learned pooling?

𝑈𝐾1
1𝑌𝐾1

1

𝑈𝑚
1
(𝑖, 𝑗) = max

𝑘∈ 𝑖−1 𝐷+1, 𝑖𝐷 ,
𝑙∈ 𝑗−1 𝐷+1, 𝑗𝐷

𝑌𝑚
1
(𝑘, 𝑙)

• First downsampling layer: From each 𝑃 × 𝑃 block of each
map, pool down to a single value

– For max pooling, during training keep track of which position
had the highest value

𝑈1
1

𝑈2
1

𝐼/𝐷 × (𝐼/𝐷

Convolutional Neural Networks

𝑌1
1

𝑌2
1

𝐼 × 𝐼

𝐼 × 𝐼 𝑖𝑚𝑎𝑔𝑒

Filter size:
𝐿 × 𝐿 × 3

pool

𝑈𝑚
1
(𝑖, 𝑗) = 𝑌𝑚

1
(𝑃𝑚

1
(𝑖, 𝑗))

𝑃𝑚
1
(𝑖, 𝑗) = argmax

𝑘∈ 𝑖−1 𝐷+1, 𝑖𝐷 ,
𝑙∈ 𝑗−1 𝐷+1, 𝑗𝐷

𝑌𝑚
1
(𝑘, 𝑙)

𝑈𝐾1
1𝑌𝐾1

1

• First pooling layer: Drawing it differently for
convenience

𝑊𝑚: 3 × 𝐿 × 𝐿
𝑚 = 1…𝐾1

𝑌1
1
𝑌2

1

𝐾1 𝑃𝑜𝑜𝑙: 𝑃 × 𝑃(𝐷)

𝐾1 × 𝐼 × 𝐼 𝐾1 × 𝐼/𝐷 × 𝐼/𝐷

Convolutional Neural Networks

𝐾1

𝑈𝐾1
1𝑌𝐾1

1

• First pooling layer: Drawing it differently for
convenience

𝑊𝑚: 3 × 𝐿 × 𝐿
𝑚 = 1…𝐾1

𝑌1
1
𝑌2

1

𝐾1 𝑃𝑜𝑜𝑙: 𝑃 × 𝑃(𝐷)

𝐾1 × 𝐼 × 𝐼 𝐾1 × 𝐼/𝐷 × 𝐼/𝐷

Convolutional Neural Networks

𝐾1

𝑈𝐾1
1𝑌𝐾1

1

Jargon: Filters are often called “Kernels”
The outputs of individual filters are called “channels”
The number of filters (𝐾1, 𝐾2, etc) is the number of channels

• Second convolutional layer: 𝐾2 3-D filters resulting in 𝐾2 2-D maps

– Alternately, a kernel with 𝐾2 output channels

𝑊𝑚: 𝐾1 × 𝐿2 × 𝐿2
𝑚 = 1…𝐾2

𝑌𝐾2
2

𝐾2

𝑌𝑚
𝑛
(𝑖, 𝑗) = 𝑓 𝑧𝑚

𝑛
(𝑖, 𝑗)

𝑧𝑚
𝑛
(𝑖, 𝑗) =

𝑟=1

𝐾𝑛−1

𝑘=1

𝐿
𝑛

𝑙=1

𝐿
𝑛

𝑤𝑚
𝑛

𝑟, 𝑘, 𝑙 𝑈𝑟
𝑛−1

𝑖 + 𝑘, 𝑗 + 𝑙 + 𝑏𝑚
(𝑛)

Convolutional Neural Networks

𝑊𝑚: 3 × 𝐿 × 𝐿
𝑚 = 1…𝐾1

𝑌1
1
𝑌2

1

𝐾1 𝑃𝑜𝑜𝑙: 𝑃 × 𝑃(𝐷)

𝐾1 × 𝐼 × 𝐼 𝐾1 × 𝐼/𝐷 × 𝐼/𝐷

𝐾1

𝑈𝐾1
1𝑌𝐾1

1

• Second convolutional layer: 𝐾2 3-D filters resulting in 𝐾2 2-D maps

𝑊𝑚: 𝐾1 × 𝐿2 × 𝐿2
𝑚 = 1…𝐾2

𝑌𝐾2
2

𝐾2

𝑌𝑚
𝑛
(𝑖, 𝑗) = 𝑓 𝑧𝑚

𝑛
(𝑖, 𝑗)

𝑧𝑚
𝑛
(𝑖, 𝑗) =

𝑟=1

𝐾𝑛−1

𝑘=1

𝐿
𝑛

𝑙=1

𝐿
𝑛

𝑤𝑚
𝑛

𝑟, 𝑘, 𝑙 𝑈𝑟
𝑛−1

𝑖 + 𝑘, 𝑗 + 𝑙 + 𝑏𝑚
(𝑛)

Convolutional Neural Networks

𝑊𝑚: 3 × 𝐿 × 𝐿
𝑚 = 1…𝐾1

𝑌1
1
𝑌2

1

𝐾1 𝑃𝑜𝑜𝑙: 𝑃 × 𝑃(𝐷)

𝐾1 × 𝐼 × 𝐼 𝐾1 × 𝐼/𝐷 × 𝐼/𝐷

𝐾1

𝑈𝐾1
1𝑌𝐾1

1

Total number of parameters: 𝐾2 𝐾1𝐿2
2 + 1

All these parameters must be learned

Parameters to choose: 𝐾2, 𝐿2 and 𝑆2
1. Number of filters 𝐾2
2. Size of filters 𝐿2 × 𝐿2 × 𝐾1 + 𝑏𝑖𝑎𝑠
3. Stride of convolution 𝑆2

𝑊𝑚: 𝐾1 × 𝐿2 × 𝐿2
𝑚 = 1…𝐾2

𝑌𝐾2
2

𝐾2

Convolutional Neural Networks

𝑊𝑚: 3 × 𝐿 × 𝐿
𝑚 = 1…𝐾1

𝑌1
1
𝑌2

1

𝐾1 𝑃𝑜𝑜𝑙: 𝑃 × 𝑃(𝐷)

𝐾1 × 𝐼 × 𝐼 𝐾1 × 𝐼/𝐷 × 𝐼/𝐷

𝐾1

𝐾2

• Second convolutional layer: 𝐾2 3-D filters resulting in 𝐾2 2-D maps

• Second pooling layer: 𝐾2 Pooling operations: outcome 𝐾2 reduced 2D
maps

𝑈𝑚
𝑛
(𝑖, 𝑗) = 𝑌𝑚

𝑛
(𝑃𝑚

𝑛
(𝑖, 𝑗))

𝑃𝑚
𝑛
(𝑖, 𝑗) = argmax

𝑘∈ 𝑖−1 𝑑+1, 𝑖𝑑 ,
𝑙∈ 𝑗−1 𝑑+1, 𝑗𝑑

𝑌𝑚
𝑛
(𝑘, 𝑙)

𝑈𝐾1
1𝑌𝐾1

1

𝑊𝑚: 𝐾1 × 𝐿2 × 𝐿2
𝑚 = 1…𝐾2

𝑌𝐾2
2

𝐾2

Convolutional Neural Networks

𝑊𝑚: 3 × 𝐿 × 𝐿
𝑚 = 1…𝐾1

𝑌1
1
𝑌2

1

𝐾1 𝑃𝑜𝑜𝑙: 𝑃 × 𝑃(𝐷)

𝐾1 × 𝐼 × 𝐼 𝐾1 × 𝐼/𝐷 × 𝐼/𝐷

𝐾1

𝐾2

• Second convolutional layer: 𝐾2 3-D filters resulting in 𝐾2 2-D maps

• Second pooling layer: 𝐾2 Pooling operations: outcome 𝐾2 reduced 2D
maps

𝑈𝑚
𝑛
(𝑖, 𝑗) = 𝑌𝑚

𝑛
(𝑃𝑚

𝑛
(𝑖, 𝑗))

𝑃𝑚
𝑛
(𝑖, 𝑗) = argmax

𝑘∈ 𝑖−1 𝑑+1, 𝑖𝑑 ,
𝑙∈ 𝑗−1 𝑑+1, 𝑗𝑑

𝑌𝑚
𝑛
(𝑘, 𝑙)

𝑈𝐾1
1𝑌𝐾1

1

Parameters to choose:
Size of pooling block 𝑃2
Pooling stride 𝐷2

𝑊𝑚: 𝐾1 × 𝐿2 × 𝐿2
𝑚 = 1…𝐾2

𝑌𝐾2
2

𝐾2

Convolutional Neural Networks

𝑊𝑚: 3 × 𝐿 × 𝐿
𝑚 = 1…𝐾1

𝑌1
1
𝑌2

1

𝐾1 𝑃𝑜𝑜𝑙: 𝑃 × 𝑃(𝐷)

𝐾1 × 𝐼 × 𝐼 𝐾1 × 𝐼/𝐷 × 𝐼/𝐷

𝐾1

𝐾2

• This continues for several layers until the final convolved output is fed to
a softmax

– Or a full MLP i

𝑈𝐾1
1𝑌𝐾1

1

The Size of the Layers

• Each convolution layer maintains the size of the image

– With appropriate zero padding

– If performed without zero padding it will decrease the size of the input

• Each convolution layer may increase the number of maps from the previous
layer

• Each pooling layer with hop 𝐷 decreases the size of the maps by a factor of 𝐷

• Filters within a layer must all be the same size, but sizes may vary with layer

– Similarly for pooling, 𝐷 may vary with layer

• In general the number of convolutional filters increases with layers

Parameters to choose (design choices)

• Number of convolutional and downsampling layers

– And arrangement (order in which they follow one another)

• For each convolution layer:

– Number of filters 𝐾𝑖
– Spatial extent of filter 𝐿𝑖 × 𝐿𝑖

• The “depth” of the filter is fixed by the number of filters in the previous layer 𝐾𝑖−1

– The stride 𝑆𝑖

• For each downsampling/pooling layer:

– Spatial extent of filter 𝑃𝑖 × 𝑃𝑖
– The stride 𝐷𝑖

• For the final MLP:

– Number of layers, and number of neurons in each layer

Digit classification

Training

• Training is as in the case of the regular MLP

– The only difference is in the structure of the network

• Training examples of (Image, class) are provided

• Define a divergence between the desired output and true output of the
network in response to any input

• Network parameters are trained through variants of gradient descent

• Gradients are computed through backpropagation

𝑈𝐾1
1

𝐾1
𝑌𝐾2

1

𝐾2

𝐾2

Learning the network

• Parameters to be learned:

– The weights of the neurons in the final MLP

– The (weights and biases of the) filters for every convolutional layer

𝑊𝑚: 𝐾1 × 𝐿2 × 𝐿2
𝑚 = 1…𝐾2

𝑌𝑀2

2

𝐾2

𝑊𝑚: 3 × 𝐿 × 𝐿
𝑚 = 1…𝐾1

𝑌1
1
𝑌2

1

𝑌𝑀
1

𝐾1

𝑈𝑀
1

𝑃𝑜𝑜𝑙: 𝑃 × 𝑃(𝐷)

𝐾1 × 𝐼 × 𝐼 𝐾1 × 𝐼/𝐷 × 𝐼/𝐷

𝐾1

𝐾2

learnable learnable

learnable

Learning the CNN

• In the final “flat” multi-layer perceptron, all the weights and biases
of each of the perceptrons must be learned

• In the convolutional layers the filters must be learned

• Let each layer 𝐽 have 𝐾𝐽 maps

– 𝐾0 is the number of maps (colours) in the input

• Let the filters in the 𝐽th layer be size 𝐿𝐽 × 𝐿𝐽

• For the 𝐽th layer we will require 𝐾𝐽 𝐾𝐽−1𝐿𝐽
2 + 1 filter parameters

• Total parameters required for the convolutional layers:

σ𝐽∈𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑎𝑦𝑒𝑟𝑠𝐾𝐽 𝐾𝐽−1𝐿𝐽
2 + 1

𝑊𝑚: 𝐾1 × 𝐿2 × 𝐿2
𝑚 = 1…𝐾2

𝐾2

Defining the loss

𝑊𝑚: 3 × 𝐿 × 𝐿
𝑚 = 1…𝐾1

𝑌1
1
𝑌2

1

𝐾1

𝐾1

𝐾2

• The loss for a single instance

𝑃𝑜𝑜𝑙

convolve convolve 𝑃𝑜𝑜𝑙

Div()

d(x)

y(x)

Input: x

Div (y(x),d(x))

𝑌(2,∗)
𝑌(1,∗) 𝑈(1,∗)

Problem Setup

• Given a training set of input-output pairs
𝑋1, 𝑑1 , 𝑋2, 𝑑2 , … , 𝑋𝑇 , 𝑑𝑇

• The loss on the ith instance is 𝑑𝑖𝑣 𝑌𝑖 , 𝑑𝑖
• The total loss

𝐿𝑜𝑠𝑠 =
1

𝑇

𝑖=1

𝑇

𝑑𝑖𝑣 𝑌𝑖 , 𝑑𝑖

• Minimize 𝐿𝑜𝑠𝑠 w.r.t 𝑊𝑚, 𝑏𝑚

136

Training CNNs through Gradient Descent

• Gradient descent algorithm:

• Initialize all weights and biases 𝑤(: , : , : , : , :)

• Do:

– For every layer 𝑙 for all filter indices 𝑚, update:

• 𝑤(𝑙,𝑚, 𝑗, 𝑥, 𝑦) = 𝑤(𝑙,𝑚, 𝑗, 𝑥, 𝑦) − 𝜂
𝑑𝐿𝑜𝑠𝑠

𝑑𝑤(𝑙,𝑚,𝑗,𝑥,𝑦)

• Until 𝐿𝑜𝑠𝑠 has converged
137

Total training loss:

𝐿𝑜𝑠𝑠 =
1

𝑇

𝑖=1

𝑇

𝑑𝑖𝑣 𝑌𝑖 , 𝑑𝑖
Assuming the bias is also
represented as a weight

Training CNNs through Gradient Descent

• Gradient descent algorithm:

• Initialize all weights and biases 𝑤(: , : , : , : , :)

• Do:

– For every layer 𝑙 for all filter indices 𝑚, update:

• 𝑤(𝑙,𝑚, 𝑗, 𝑥, 𝑦) = 𝑤(𝑙,𝑚, 𝑗, 𝑥, 𝑦) − 𝜂
𝑑𝐿𝑜𝑠𝑠

𝑑𝑤(𝑙,𝑚,𝑗,𝑥,𝑦)

• Until 𝐿𝑜𝑠𝑠 has converged
138

Total training loss:

𝐿𝑜𝑠𝑠 =
1

𝑇

𝑖=1

𝑇

𝑑𝑖𝑣 𝑌𝑖 , 𝑑𝑖
Assuming the bias is also
represented as a weight

The derivative

• Computing the derivative

139

Total derivative:
𝑑𝐿𝑜𝑠𝑠

𝑑𝑤(𝑙,𝑚, 𝑗, 𝑥, 𝑦)
=
1

𝑇

𝑖

𝑑𝐷𝑖𝑣(𝑌𝑖 , 𝑑𝑖)

𝑑𝑤(𝑙,𝑚, 𝑗, 𝑥, 𝑦)

Total training loss:

𝐿𝑜𝑠𝑠 =
1

𝑇

𝑖

𝐷𝑖𝑣(𝑌𝑖 , 𝑑𝑖)

The derivative

• Computing the derivative

140

Total derivative:
𝑑𝐿𝑜𝑠𝑠

𝑑𝑤(𝑙,𝑚, 𝑗, 𝑥, 𝑦)
=
1

𝑇

𝑖

𝑑𝐷𝑖𝑣(𝑌𝑖 , 𝑑𝑖)

𝑑𝑤(𝑙,𝑚, 𝑗, 𝑥, 𝑦)

Total training loss:

𝐿𝑜𝑠𝑠 =
1

𝑇

𝑖

𝐷𝑖𝑣(𝑌𝑖 , 𝑑𝑖)

Backpropagation: Final flat layers

• Backpropagation continues in the usual manner
until the computation of the derivative of the
divergence w.r.t the inputs to the first “flat” layer

– Important to recall: the first flat layer is only the
“unrolling” of the maps from the final convolutional
layer

𝛻𝑌(𝐿)𝐷𝑖𝑣(𝑌 𝑿 , 𝑑 𝑿)

𝑌(𝑿)

𝑈𝐾1
1

𝐾1
𝑌𝐾2

1

𝐾2

𝐾2

Conventional backprop until here

Backpropagation: Convolutional and
Pooling layers

• Backpropagation from the flat MLP requires

special consideration of

– The shared computation in the convolution layers

– The pooling layers (particularly maxout)

𝑈𝐾1
1

𝐾1
𝑌𝐾2

1

𝐾2

𝐾2

Need adjustments here

𝛻𝑌(𝐿)𝐷𝑖𝑣(𝑌 𝑿 , 𝑑 𝑿)

𝑌(𝑿)

Backprop through a CNN

• In the next class…

Learning the network

• Have shown the derivative of divergence w.r.t every intermediate output,
and every free parameter (filter weights)

• Can now be embedded in gradient descent framework to learn the
network

𝑌1
1
𝑌2

1

𝑌𝑀
1

𝑈𝑀
1

𝑀
𝑀 𝑌𝑀2

2

𝑀2

𝑀2

Story so far

• The convolutional neural network is a supervised

version of a computational model of mammalian vision

• It includes

– Convolutional layers comprising learned filters that scan

the outputs of the previous layer

– Downsampling layers that operate over groups of outputs

from the convolutional layer to reduce network size

• The parameters of the network can be learned through

regular back propagation

– Continued in next lecture..

