
Recitation 2
Computing Loss and Derivatives

Today:

Goal:Conceptual understanding of the math behind backprop

● Neural network forward pass

● Concept of loss

● Motivation for backpropagation

● Why do we calculate gradients?

● How does PyTorch do this under the hood?

Step1: Forward Propagation

● Composed of 2 elements
○ Affine combination
○ Activation function

● The affine combination is the result of the
product of weights with the corresponding
inputs summed with a bias.

○

● The activation function introduces
non-linearity thus allowing us to learn
complex decision boundaries.

What does forward pass look like on a high level?

What is Loss?

● Loss function is a measure of how good your prediction model does in terms
of being able to predict the expected outcome(or value).

● We are converting the learning problem into an optimization problem define a
loss function and then optimize the algorithm to minimize the loss function.

● The loss function will be the starting point of our back propagation

Popular choices of loss functions

1. Regression Loss Functions
1. Mean Squared Error Loss
2. Mean Squared Logarithmic Error Loss
3. Mean Absolute Error Loss

2. Binary Classification Loss Functions
1. Binary Cross-Entropy
2. Hinge Loss
3. Squared Hinge Loss

3. Multi-Class Classification Loss Functions
1. Multi-Class Cross-Entropy Loss
2. Sparse Multiclass Cross-Entropy Loss
3. Kullback Leibler Divergence Loss

Example: Cross-Entropy Loss

● Task: classifying dogs and cats

7

● The desired output is [1,0,0,0] for the class dog but the model outputs
[0.775, 0.116, 0.039, 0.070]

Backpropagation through Layers

Backpropagate Loss

1. Forward

2. Calculate Loss

3. Pass Gradient with respect
to output

4. Update Parameters

5. Continue

Input

Output Loss

Parameters

Parameters

Parametersf1()

f2()

f3()

Output = f3(f2(f1(x)))

Single Layer Backward: Linear

Update W

Update b

Remember...

● Layers are nested functions
○ Use Chain Rule

● Update parameters as we go
● Check Gradient Shapes

(transpose?)
● Gradients follow influence

○ What if something affects more than 1
output?

Input

Output Loss

Parameters

Parameters

Parametersf1()

f2()

f3()

Output = f3(f2(f1(x)))

Lets visualize the above mentioned process...

MLP Example!

Lets solve the following MLP:

Exercise for self…

● Introduce a bias in the network and compute the derivatives
● Do the same for the input.
● Lecture slides should provide enough support for these exercises...

So…
How does Pytorch do it?

How does Pytorch take derivatives and backpropagate?

Auto-differentiation:
● All of the functions can be rewritten

into basic operations
○ True for all computer based calculations

● Sequence of operations instead of
a layers

● Each operation is differentiable

W

b

x

z

y

Operational List

W

b

x

z

y

Derive addition

Derive matrix multiplication

Finally… Pytorch

● Pytorch Tensor Class
(https://pytorch.org/docs/stable/tensors.html)

○ Keeps track of gradients
○ Points to parent and derivative function

● Autograd - not a list
○ Computational graph (directional, acyclic)
○ Backpropagation = graph traversal
○ loss.backward() = kick off backpropagation
○ optimizer.step() = update parameters

● New this semester: Surprise Bonus
○ Still a list of operations
○ HOW???
○ Coming soon to a bonus HW near you.

Visualizations

Credits(3Blue1Brown YouTube channel)

1. MNIST forward propagation GIF:
https://gfycat.com/deadlydeafeningatlanticblackgoby-three-blue-one-brown-m
achines-learning

2. Backpropagation GIF:https://gfycat.com/adolescentidioticgoldeneye

https://gfycat.com/deadlydeafeningatlanticblackgoby-three-blue-one-brown-machines-learning
https://gfycat.com/deadlydeafeningatlanticblackgoby-three-blue-one-brown-machines-learning

Enjoy!

