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Annealing Your Learning Rate

source: https://www.jeremyjordan.me/nn-learning-rate/

1. Among all the hyper parameters existing in neural network, (personally speaking 
-.- ) learning rate is one of the most important hyper parameter that affects your 
training performance.


2. It is usually helpful to anneal the learning rate over time. (Increase of Decrease) 


3. Tricky: Decay it slowly and you’ll be wasting computation bouncing around 
chaotically with little improvement for a long time. But decay it too aggressively 
and the system will cool too quickly, unable to reach the best position it can.



Three common used methods

(to the best of my knowledge -.- ) 

• Step Decay: Reduce the learning rate by a factor every few epochs. Typical values 
might be reducing the learning rate by 0.5 every X epochs, or by 0.1 every Y epochs. 
X, Y depend heavily on the type of problem and the performance of your model. 

• (ReduceOnPlateau) One heuristic you may see in practice is to watch the validation 
error while training with a fixed learning rate, and reduce the learning rate by a 
constant (e.g. 0.5) whenever the validation error stops improving.

source: https://www.jeremyjordan.me/nn-learning-rate/



Three common used methods

(to the best of my knowledge -.- ) 

• Exponential Decay: Reduce the learning rate according to the following 
mathematical form 


where k and e are hyper parameters and t is the epoch number. 


source: https://www.jeremyjordan.me/nn-learning-rate/

• 1/t Decay: Reduce the learning rate according to the following mathematical 
form


where t is the epoch number. 


Step decay is slightly preferable because the hyper-parameters it involves are more 
interpretable than the hyper-parameter k



Regularization
Overfitting is a modeling error that occurs when a function is too closely fit to a limited 
set of data points.



Regularization in NN
• L1/L2 Regularization: It involves adding an extra element to the loss 

function, which punishes our model for being too complex or, in simple 
words, for using too high values in the weight matrix.  (usually, lambda is 
1e-4 or 1e-5)




Regularization in NN
• Dropout: for each training batch, you turn off some neurons with a probability. 


• Motivations: With unlimited computation, the best way to “regularize” a fixed-sized 
model is to average the predictions of all possible settings of the parameters. Practically, 
it’s computationally prohibitive. So dropout provides a method to use O(n) neural network 
to approximate O(2^n) different architectures with shared O(n^2) parameters.

• Implementation: 

• Train Time: Mask some neuron outputs as 0 with a probability. 

• Test Time: No parameters masked at test time but need to multiply with the dropout 

probability to approximate the expected output.
• Typical dropout rate: [0.1, 0.5]. (Hyper-parameter)


Paper: Dropout: A Simple Way to Prevent Neural Networks from Overfitting (https://jmlr.org/papers/v15/srivastava14a.html)



Regularization in NN
• Dropout: for each training batch, you turn off some neurons with a 

probability. 


• Results:

• It addresses two problems: 

• 1) overfitting: disable some outputs so the later layers cannot overfit the 

data.
• 2) generalization: Model combination nearly always improves the 

performance of machine learning methods. 

Paper: Dropout: A Simple Way to Prevent Neural Networks from Overfitting (https://jmlr.org/papers/v15/srivastava14a.html)



Regularization in NN
• Batch-Norm: wildly successful and simple technique for accelerating 

training and learning better neural network representations. 


• Motivation: The general motivation of BatchNorm is the non-stationarity of unit 
activity during training that requires downstream units to adapt to a non-
stationary input distribution. This co-adaptation problem, which the paper 
authors refer to as internal covariate shift, significantly slows learning. 

Paper: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift (https://arxiv.org/abs/1502.03167)

https://arxiv.org/abs/1502.03167


Regularization in NN
1.

2.

Paper: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift (https://arxiv.org/abs/1502.03167)

https://arxiv.org/abs/1502.03167


Regularization in NN
• 1) BN enables higher training rate: Normally, large learning rates may increase 

the scale of layer parameters, which then amplify the gradient during back 
propagation and lead to the model explosion. However, with Batch 
Normalization, back propagation through a layer is unaffected by the scale of its 
parameters. 


• 2) Faster Convergence.


• 3) BN regularizes the model: a training example is seen in conjunction with 
other examples in the mini-batch, and the training network no longer producing 
deterministic values for a given training example. In our experiments, we found 
this effect to be advantageous to the generalization of the network. 

Paper: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift (https://arxiv.org/abs/1502.03167)

https://arxiv.org/abs/1502.03167


Other Regularization in NN

• Early Stop: literally, just stop the training when you see the validation score 
decreases. (overfit begins)


• Gradient Clipping: this is very important for RNN models. 

• https://deepai.org/machine-learning-glossary-and-terms/gradient-clipping. 

• Parameter Initializations: https://cs231n.github.io/neural-networks-2/#init 

https://deepai.org/machine-learning-glossary-and-terms/gradient-clipping
https://cs231n.github.io/neural-networks-2/#init


Common Pitfalls
• Zero initialization: this would a very bad performance issue. -> each 

neuron would be identical. 


• Forget to shuffle the data set -> Equally as bad as zero initialization 
because there is no randomness.


• Choose of learning rate. 

• Too Large: don’t converge.


• Too Small: don’t get rid of the local optima.


• Choose of batch size 

• According to the property of SGD, smaller batch size leads to better 
convergence rate. But smaller batch size would deteriorate the 
performance of BN layer and running speed.


• Problem with momentum method. (prone to local minima)



Common Pitfalls

• Order of BatchNorm and activation function. (Paper: https://arxiv.org/abs/
1905.05928v1 )


• Linear->BN->ReLU


• Linear->ReLU->BN (reference paper)


• Tricky things come when using BatchNorm and Dropout together. (Paper: 
https://arxiv.org/abs/1801.05134)


• Theoretically, they work against each other.


• Forget to normalize your input data. This would not be a problem if you are 
using BN.


• Put LR_scheduler in batch loop


• Forget optimizer.zero_grad()

https://arxiv.org/abs/1905.05928v1
https://arxiv.org/abs/1905.05928v1
https://arxiv.org/abs/1801.05134


Tips for Improving the 
models• Ensemble: 


• Different initializations, different architecture, different optimizers.


• Different epochs.


• Dropout


• What if we use dropout before the first linear layer?


• Deeper and wider


• Learning Rate Scheduler


• Try cyclic learning rate scheduler. e.g. CosineAnnealingLR


• Learning Rate warmup: solve the Radom initialization problem.  Lead to 
stable learning process.


