Autoencoders

- Encode modalities in a shared space
- Train and then when training the downstream task keep only the encoder part
- Pros: Extremely robust, can reconstruct missing modalities if trained well
- Cons: Needs separate training, and often not state-of-the-art compared to pooled or coordinated representations
Autoencoders

Encoder

Decoder

Audio Reconstruction
Video Reconstruction

Audio Input
Video Input

Shared Representation

g

h

x

f

g

h

r
Autoencoders are trained to reconstruct the input. However, simply reconstructing the input is useless. Usually, the output of the decoder is not what is needed.
Types of Autoencoders

- Undercomplete autoencoders
- Denoising Autoencoders
- Sparse Autoencoders
- Contractive Autoencoders
- ...
Undercomplete Autoencoders

- Autoencoders with code dimension smaller than the input dimension
- \(\text{dim}(h) < \text{dim}(x) \)
- Minimize the loss function in the form of
 - \(L(x, g(f(x))) \)

- Usually \(L() \) is the mean squared error loss
- Usually, an overcomplete autoencoder (\(\text{dim}(h) > \text{dim}(x) \)) does not learn meaningful features i.e. it only learns to reconstruct its input
Sparse Autoencoders

- Are autoencoders that force the hidden representation h to have as many zeros as possible
- Loss function of the form
 \[L(x, g(f(x))) + \Omega(h) \]
- The loss function $L()$ usually something like a mean squared loss
- The regularization penalty $\Omega()$ enforces sparsity of the hidden representation
- Can learn meaningful features even if it is overcomplete!
Denoising Autoencoders

- Denoising autoencoders operate on corrupted versions of the input
 - $L(x, g(f(x^{-})))$
 - Where x^{-} is x + noise
- Must learn how to remove noise from input
- In the process of noise removal it ends up learning useful features about the input distribution