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Outline

• Automatic Speech Recognition (ASR) Systems

• Different Approaches For Building ASR Systems

• RNN-T (Recurrent Neural Network Transducer) Based ASR Training And 
Decoding

• Practical Considerations For deploying RNN-T ASR Systems in Production

Use pptx version if possible to see slides in Slide 
Show (Animation View) for best viewing as there are 
animations throughout



Automatic Speech Recognition
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ASR As Sequence To Sequence Problem
• Input Sequence: Audio frame features

• Output Sequence : Words from True Transcript Text written as 
letters

• Example Training Instance: Input Sequence : 7  audio frames and 
True Transcript Text: “BE”

• At each audio frame index, network* generates probability of 
producing each output symbol. E. g.  Probability of generating 
output symbol “K” at 1st frame.

• #audio frames != # letters. We don’t know alignment i.e.  which 
portion of audio aligns to what letter in true transcript.

• Collapse continuous occurrences of same letter into one:• First alignment choice (BBEEEEE -> BE)• Second alignment choice (BBBEEEE -> BE) • and so on…..

• How to deal with repeated letters (as in word BEE)  and slience? 
(next slide)
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Neural Network (i.e. LSTM + LL)

Softmax Layer (Toy example: If we assume there are just three letters in the  language (B, E, C))

network* -> Softmax layer and neural network that produces ft 

Audio

LSTM image is taken from https://colah.github.io/posts/2015-08-
Understanding-LSTMs/



X1 X2 X3 X4 X5

P∅
1

PB1

PE
1

PC1

X6 X7

Connectionist Temporal Classification (CTC)
P∅

2

PB2

PE
2

PC2

P∅
3

PB3

PE
3

PC3

P∅4

PB4

PE
4

PC4

P∅5

PB5

PE
5

PC5

P∅6

PB6

PE
6

PC6

• Input Sequence: Audio frame features

• Output Sequence: Letters

• At each audio frame index, network generates probability 
of producing each output symbol and blank symbol (∅)

• How to deal with #audio frame != # letters -> Collapse 
letters

• How to deal with repeated letters (as in word BEE)? -> 
blank symbol (∅) . ∅ also indicates “emit nothing” 
(silence). ∅BE∅EE∅

• Conditional Independence: Probability output at each 
frame does not depend on history of transcript produced 
so far, this non auto-regression on text history makes it 
less effective on learning LM information and, you may 
still need language model -> RNN-T.
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A path to generate “BEE”Audio Features
Neural Network

Softmax Layer



ASR And Machine Translation As Sequence To 
Sequence Problem

Image from Bhiksha Raj’s lecture on attention models 

Machine Translation

Image from Chan et al., “Listen, Attend and Spell”ASR

LAS attends to all audio embeddings and uses text history produced so far to 
generate probability distribution over output units

https://deeplearning.cs.cmu.edu/S21/document/slides/lec18.attention.pdf
https://arxiv.org/abs/1508.01211


Conditional Independence Assumption

>
CTC:
• Only uses audio embedding at time “t” (𝑥!) to 

generate probability distribution over output units. 
CTC assumes that each output unit is conditionally 
independent of others.

• Streaming

LAS:
Attends to all audio embeddings and uses text history
produced so far to generate probability distribution 
over output units.

Softmax

Pr 𝑘 𝑡 → Pt
k

𝑥!

Audio Encoder

𝑓!

Linear Layer
ℎ!



Conditional Independence Assumption

Softmax

Pr 𝑘 𝑡 → Pt
k

𝑥!

Audio Encoder

𝑓!

CTC:
• Only uses audio embedding at time “t” (𝑥)) to 

generate probability distribution over output units. 
CTC assumes that each output unit is 
conditionally independent of others.

• Streaming

>
Linear Layer

Softmax

ℎ!,$

Pr 𝑘 𝑡, 𝑢 → Pk
(t,u)

Joiner 

𝑧!,$

𝑥!

Audio Encoder

𝑓!

Text Predictor

Text History: 𝑦$%&

𝑔$

RNN-T:
• Uses both audio embedding at time “t” (𝑥)) and 

text history produced so far (𝑦*+,)  to generate 
probability distribution over output units.

• Streaming

>

LAS:
Attends to all audio embeddings and uses text history
produced so far to generate probability distribution over output 
units.

Linear Layer
ℎ!



Why RNN-T ASR From Production Point Of View

• Single deployable non modularized neural model, all components of ASR in one model.
• Allows compact on-device streaming ASR. Does not need a decoder graph which can be 

large. Unlimited words in vocab. Standard on-device ASR choice across industry.

• Achieves comparable accuracy and compute with much smaller size model compared to 
modularized (hybrid) systems for production when training data is the same.

Image from https://ai.googleblog.com/2019/03/an-all-neural-on-device-
speech.html

Example Study
Image from Jain et al., “RNN-T For Latency 
Controlled ASR With Imoroved Beam Search”

https://arxiv.org/pdf/1911.01629.pdf


Linear Layer

Softmax
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Pr 𝑘 𝑡, 𝑢 → Pk
(t,u)

Joiner 
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Components Of RNN-T ASR System
• Audio Encoder : To encode sequence of audio 

features into audio embeddings. Long short-term 
memory (LSTM), B-LSTM (bi-directional LSTM), 
Transformer are commonly used audio encoders. 
Acts as acoustic model

• Text Predictor : To encode transcript produced so 
far into text embedding. Typically a LSTM. Acts as 
language model

• Joiner combines output of audio encoder and text 
predictor

• A linear layer followed by Softmax produces 
probability distribution over output units. 
Pr 𝑘 𝑡, 𝑢 (Pk

(t,u) is probability of emitting “k” from (t, 
u).

• No collapsing of symbols: If emitted output  
symbols is blank (∅) then move to next time frame 
else stay in same time frame. ∅ also indicates “emit 
nothing”
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Output symbols 
(k): ”E”, “B”, “C”, 
∅ (blank symbol )



Training



Training Objective
• Training utterance: 

“Input Audio” -> “BEE” (transcript)

• #output units (u): 3
BEE -> [[B],  [E] ,[E]]

• #audio frames (t) : 4

• We don’t know alignment i.e.  which portion of audio aligns  to what  output unit (A path taken in lattice)

• Training Objective

Graves et al., “Sequence transduction with recurrent neural networks”

https://arxiv.org/abs/1211.3711
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Graves et al., “Sequence transduction with recurrent neural networks”
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• Training utterance: 
“Input Audio” -> “BEE” (transcript)

• #output units (u): 3
BEE -> [[B],  [E] ,[E]]

• #audio frames (t) : 4

𝑦$%& 𝑥!

We don’t know alignment  i.e. which portion of audio aligns  to what  output unit

https://arxiv.org/abs/1211.3711


An Alignment During Training
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• Training utterance: 
“Input Audio” -> “BEE” (transcript)

• #output units (u): 3
BEE -> [[B],  [E] ,[E]]

• #audio frames (t) : 4

• Alignment options:
• “B” and first “E” from frame1
and  second “E” from frame 3 

<BOS>: Begin of sentence
𝑦$%& 𝑥!

https://arxiv.org/abs/1211.3711


An Alignment During Training
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Probability of emitting 
“B” from (t=1, u =0)
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• Training utterance: 
“Input Audio” -> “BEE” (transcript)

• #output units (u): 3
BEE -> [[B],  [E] ,[E]]

• #audio frames (t) : 4

• Alignment options:
• “B” and first “E” from frame1
and  second “E” from frame 3 

<BOS>: Begin of sentence

If emitted output  symbols is blank (∅) then move to 
next time frame else stay in same time frame. ∅ also 
indicates “emit nothing”

https://arxiv.org/abs/1211.3711


An Alignment During Training
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Probability of emitting 
“B” from (t=1, u =0)
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• Training utterance: 
“Input Audio” -> “BEE” (transcript)

• #output units (u): 3
BEE -> [[B],  [E] ,[E]]

• #audio frames (t) : 4

• Alignment options:
• “B” and first “E” from frame1
and  second “E” from frame 3 

If emitted output  symbols is blank (∅) then move to 
next time frame else stay in same time frame. ∅ also 
indicates “emit nothing”

https://arxiv.org/abs/1211.3711


An Alignment During Training
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P ∅(t,u) Probability of emitting 
“∅” from (t=1, u =2)

• Training utterance: 
“Input Audio” -> “BEE” (transcript)

• #output units (u): 3
BEE -> [[B],  [E] ,[E]]

• #audio frames (t) : 4

• Alignment options:
• “B” and first “E” from frame1
and  second “E” from frame 3 

If emitted output  symbols is blank (∅) then move to 
next time frame else stay in same time frame. ∅ also 
indicates “emit nothing”

https://arxiv.org/abs/1211.3711


An Alignment During Training
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• Training utterance: 
“Input Audio” -> “BEE” (transcript)

• #output units (u): 3
BEE -> [[B],  [E] ,[E]]

• #audio frames (t) : 4

• Alignment options:
• “B” and first “E” from frame1
and  second “E” from frame 3 

If emitted output  symbols is blank (∅) then move to 
next time frame else stay in same time frame. ∅ also 
indicates “emit nothing”

https://arxiv.org/abs/1211.3711


An Alignment During Training
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• Training utterance: 
“Input Audio” -> “BEE” (transcript)

• #output units (u): 3
BEE -> [[B],  [E] ,[E]]

• #audio frames (t) : 4

• Alignment options:
• “B” and first “E” from frame1
and  second “E” from frame 3 

If emitted output  symbols is blank (∅) then move to 
next time frame else stay in same time frame. ∅ also 
indicates “emit nothing”

https://arxiv.org/abs/1211.3711


An Alignment During Training
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Probability of emitting 
“B” from (t=1, u =0)

Probability of emitting 
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• Training utterance: 
“Input Audio” -> “BEE” (transcript)

• #output units (u): 3
BEE -> [[B],  [E] ,[E]]

• #audio frames (t) : 4

• Alignment options:
• “B” and first “E” from frame1
and  second “E” from frame 3 

If emitted output  symbols is blank (∅) then move to 
next time frame else stay in same time frame. ∅ also 
indicates “emit nothing”

https://arxiv.org/abs/1211.3711


An Alignment During Training
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“B” from (t=1, u =0)

Probability of emitting 
“∅” from (t=1, u =2)

Text Predictor

h

Joiner 

𝑓!𝑔$

𝑧!,$
Linear Layer

Softmax

ℎ!,$

Pr(𝑘|𝑡, 𝑢)

[<BOS>, B, E ]

Audio Encoder

𝑥*

PE(t,u)

PB
(t,u)

PCt,u)

P ∅(t,u)

• Training utterance: 
“Input Audio” -> “BEE” (transcript)

• #output units (u): 3
BEE -> [[B],  [E] ,[E]]

• #audio frames (t) : 4

• Alignment options:
• “B” and first “E” from frame1
and  second “E” from frame 3 

If emitted output  symbols is blank (∅) then move to 
next time frame else stay in same time frame. ∅ also 
indicates “emit nothing”

https://arxiv.org/abs/1211.3711


RNN-T Lattice And Training
• Training utterance: 

“Input Audio” -> “BEE” (transcript)

• #output units (u): 3
BEE -> [[B],  [E] ,[E]]

• #audio frames (t) : 4

• We don’t know alignment i.e. 
which portion of audio aligns  to what 
output unit

• Probability of alignment is multiplication of probabilities assigned along 
the path of alignment

• Training

• Lattice contains all valid alignment paths(traversals). During training, 
we change (optimize) neural network parameters to maximize sum 
of probabilities of all alignment paths

• Computation is done efficiently through dynamic programming 
(slide 51 to 56)

Graves et al., “Sequence transduction with recurrent neural networks”
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Inference: Find a Transcript given an audio and Trained 
RNN-T model

Goal: Find candidate transcript of a given audio during test time. 
Challenge: There are infinitely many alignments that can be assigned to a test audio.

features

Audio

?

Transcript

RNN-T model decoding



Operation: Extend Hypothesis
• Hypothesis is defined as a candidate output sequence during search

• Example Hypothesis: “EB” at time frame “t”
• Output symbols: ”E”, “B”, “C”, “∅”

• Extend Hypothesis: Append hypothesis with each of the output symbols (k) and ∅

• The ∅ extension goes to next time frame (t + 1) and non-blank extensions remain in the
same time frame (t)

• Every extended hypothesis has lower probability compared to the hypothesis it was
extended from

Text Predictor
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𝑧!,$
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Softmax

ℎ!,$

Pr(𝑘|𝑡, 𝑢)

[<BOS>, E, B]

Audio Encoder
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EB∅ EBE EBB EBC

EB
Time = t

Time = t + 1

p

p * P∅
(t, “BE”)

p * PE
(t, “BE”)

p * PB
(t, “BE”)

p * PC
(t, “BE”)

PE(t,u)

PB
(t,u)

PCt,u)

P ∅(t,u)

Output symbols 
(k): ”E”, “B”, “C”, 
∅ (blank symbol )



Subset Of Hypotheses At t = 1 During Decoding

BOS

B E C

B∅ BB BE BC

∅

C∅ CB CE CC

BE∅ BEB BEE BEC

• We can continue generating symbols 
from every hypothesis that has not yet 
emitted ∅

Audio

X1 X2 X3 X4

t=1



● Goal: Get a candidate final transcript by making local optimal choice at each 
distinct “t” and “u” 

Greedy Decoding



Greedy Decoding
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k probability

∅ 0.4

E 0.2

B 0.3

C 0.1

[< 𝐵𝑂𝑆 >]

• Lets make a local optimal 
choice: If highest 
probability is given to 
blank (∅), move to the 
next audio frame else stay 
in the same audio frame

• Do it until all audio frames 
are processed

∅ E B C

[< 𝐵𝑂𝑆 >, ]
t = 1

Audio

X1 X2 X3 X4



Greedy Decoding

Text Predictor

h

Audio Encoder

Joiner 

[< 𝐵𝑂𝑆 >] 𝑥(
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Pr(𝑘|𝑡, 𝑢)

• Lets make a local optimal 
choice: If highest 
probability is given to 
blank (∅), move to the 
next audio frame else stay 
in the same audio frame

• Do it until all audio frames 
are processed

k probability

∅ 0.04

E 0.04

B 0.3

C 0.01

∅ E B C

[< 𝐵𝑂𝑆 >]
t = 2

Audio
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Greedy Decoding

Text Predictor
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Audio Encoder
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[< 𝐵𝑂𝑆 >, 𝐵]
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• Lets make a local optimal 
choice: If highest 
probability is given to 
blank (∅), move to the 
next audio frame else stay 
in the same audio frame

• Do it until all audio frames 
are processed

∅ E B C
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𝑥(

[< 𝐵𝑂𝑆 >, 𝐵]

Audio
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Greedy Decoding

Text Predictor
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Audio Encoder
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[< 𝐵𝑂𝑆 >, 𝐵] 𝑥)
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Linear Layer

Softmax

ℎ!,$

Pr(𝑘|𝑡, 𝑢)

• Lets make a local optimal 
choice: If highest 
probability is given to 
blank (∅), move to the 
next audio frame else stay 
in the same audio frame

• Do it until all audio frames 
are processed

∅ E E C

k probability

∅ 0.3

E 0.35

B 0.3

C 0.15

t = 3
[< 𝐵𝑂𝑆 >, 𝐵]

Audio
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Greedy Decoding
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[< 𝐵𝑂𝑆 >, 𝐵, 𝐸]
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Pr(𝑘|𝑡, 𝑢)

• Lets make a local optimal 
choice: If highest 
probability is given to 
blank (∅), move to the 
next audio frame else stay 
in the same audio frame

• Do it until all audio frames 
are processed

∅ E B C
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𝑥)

t = 3
[< 𝐵𝑂𝑆 >, 𝐵, 𝐸]

Audio

X1 X2 X3 X4



Greedy Decoding

Text Predictor
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[< 𝐵𝑂𝑆 >, 𝐵, 𝐸] 𝑥*

𝑓!𝑔$

𝑧!,$
Linear Layer

Softmax

ℎ!,$

Pr(𝑘|𝑡, 𝑢)

• Lets make a local optimal 
choice: If highest 
probability is given to 
blank (∅), move to the 
next audio frame else stay 
in the same audio frame

• Do it until all audio frames 
are processed

∅ E B C

k probability

∅ 0.3

E 0.4

B 0.28

C 0.02

t = 4
[< 𝐵𝑂𝑆 >, 𝐵, 𝐸]

Audio

X1 X2 X3 X4



Greedy Decoding
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Audio Encoder
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[< 𝐵𝑂𝑆 >, 𝐵, 𝐸, 𝐸]
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Linear Layer

Softmax
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Pr(𝑘|𝑡, 𝑢)

• Lets make a local optimal 
choice: If highest 
probability is given to 
blank (∅), move to the 
next audio frame else stay 
in the same audio frame

• Do it until all audio frames 
are processed

∅ E B C

k probability

∅ 0.4

E 0.25

B 0.3

C 0.05

𝑥*

t = 4
[< 𝐵𝑂𝑆 >, 𝐵, 𝐸, 𝐸]

Audio
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Subset Of Hypotheses At t = 1 During Decoding

BOS

B E C

B∅ BB BE BC

∅

C∅ CB CE CC

BE∅ BEB BEE BEC

• We can continue generating symbols 
from every hypothesis that has not yet 
emitted ∅

Audio

X1 X2 X3 X4

t=1



● We don’t want to stay in time frame “t” forever. But we do not know when to 
move to “t+1” as there are infinitely many candidates that can be explored in 
time frame “t”. 

● Goal: We would like to obtain n candidate hypotheses at time frame “t+1” 
before exiting to  decode at “t” which would be better than all possible future 
extensions at “t” that could go to “t+1”. 

● n is hyper parameter

Beam Search



Beam Search: Expand the best hypothesis among
candidate hypotheses

B∅ BB BE BC

B E C∅

C∅ CB CE CC

1st extension candidate: Best 
hypothesis among “B”, “E”, 
“C”

2nd extension candidate: Best 
hypothesis among “BB”, “BE”, 
“BC”, “E”, “C”

BOS

B∅
C∅
∅

Hypothesis that 
has emitted ∅ and 
hence gone to 
“t+1”. Beam Size 
(n) “3”

Audio

X1 X2 X3 X4

Is beam size (n) number of extensions 
enough? No.



Beam Search: When to exit search at time frame t

Hypothesis that has 
emitted ∅ and hence 
gone to “t+1”. Beam 
Size (n) “3”

Is the nth best 
hypothesis in B 
better than the 
best hypothesis 

in A

no

Stay at t and 
expand more

B E C

B∅ BB BE BC

∅

C∅ CB CE CC

1st extension candidate from 
A: Best hypothesis among 
“B”, “E”, “C”

2nd extension candidate from 
A: Best hypothesis among 
“BB”, “BE”, “BC”, “E”, “C”

BE∅ BEB BEE BEC
3rd extension candidate from 
A : Best hypothesis among 
“BB”, “BE”, “BC”, “CB”, “CE”, 
“CC”

BOS

• Set B: Hypotheses that has emitted ∅ from frame “t” and are now in “t+1”
• Set A: Hypotheses that has not yet emitted ∅ from frame “t” and so can continue emitting more symbols from “t"

4th extension candidate from A : Best hypothesis among “BB”, “BEB”, “BEE”, “BEC”, “BC”, 
“CB”, “CE”, “CC” 

B∅ (“𝐵”)
BE∅(“𝐵𝐸”)
C∅ (“𝐶”)
∅ (“”)

. . 

nth best hypothesis
from B

yes
Exit from t 
and move  

to t+ 1

Recap: Every extended hypothesis has lower
probability compared to hypothesis it was extended
from.



● Combine probabilities of different alignments that 
result in same partial transcript

○ BB ∅ B ∅ ( First frame emitted two Bs and 
Second Frame emitted one B)

○ ∅ BBB ∅ ( First frame emitted nothing and 
Second Frame emitted three Bs)

○ The total probability of “BBB” at exit of time 
index “2” would be some of probability of   
alignments : BB ∅ B ∅ and ∅ BBB ∅

■ These are two different alignments 
that result in “BBB” at t=2. 

Beam Search: How To Deal With hypotheses that results in 
same partial transcript in B
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How To Deal With Hypotheses That Share Prefix

B E C

B∅ BE

BE∅

• The three best hypotheses from previous time frame corresponds to following partial transcripts 
:  B & BE & C

• RNN-T allows emission of any number of non blank symbols from a time frame and as 
hypothesis “B” from previous time frame can be extended to “BE” by emitting “E” at the current 
time frame, should the total probability of text sequence “BE” be contributed from both 1) BE
and 2) B by emitting “E”? Yes!! 

• Add prefix accumulation for each of the alignment responsible for generating partial transcript.

• We are limiting prefix accumulation to only best hypotheses kept from 
previous time frame, which works well in practice.

BOS

C∅

Audio

X1 X2 X3 X4



Beam Search: Algorithm
• Set B: Hypotheses that a blank has been output from frame t

• Set A: Hypotheses that a blank has not been output from frame t

• Take the best hypothesis from A and extend it with each of the output symbols
and ∅

• Exit the beam search at audio frame t if B has more than W (beam size)
hypotheses that are more probable than most probable hypothesis in A.

• When starting the beam search at audio frame t+1: 1) Empty A, 2) Move all
Hypotheses from B to A, 3) compute the prefix (pref) completion probability
and, 4) do prefix accumulation.

• Prefix completion probability (Pr(y|"𝒚,t)) for proper prefixes( $𝑦 ∈ pref(y)) of each
hypothesis (y) is computed by outputting the symbols of symbol index (u) from
(| '𝑦| + 1) to (|y|) at audio frame (t). (slide 60 has more context about it)

• Prefix accumulation for each hypothesis in A is done by following:

Graves et al., “Sequence transduction with recurrent neural networks”

https://arxiv.org/abs/1211.3711


Practical Considerations



Utilizing Utterance Specific Context: Contextualization

• Use utterance specific list of context words along with audio during RNN-T ASR training and/or 
inference 

• Improve recognition of rare words for ASR systems



Utilizing Utterance Specific Context: Biasing Module
• Train RNN-T model using: Utterance specific context words list along with Audio, True Transcript
• We want to let model know what could be next possible output units if the next word produced in transcript was from context 

words list.
• Biasing Module: Built using Trie (data structure) of all utterance specific context  words. Trie is used to find what words from 

context list can be finished from last unfinished word in text history so far
• Text history so far: Movies with An
• Queries:

○ Last unfinished word suffix: Android, Anna (Jain et al., “Contextual RNN-T For Open Domain ASR”)

.
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𝑦$%& 𝑥!
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Text Predictor

h

Audio Encoder

Joiner 

𝑧!,$
Linear Layer

𝑓!𝑔$

Pr(𝑘|𝑡, 𝑢)

𝑌$%& (movies with An)

Image from Jain et al., “Contextual RNN-T For Open Domain ASR”

𝑏$

Android, Anna 

Triie with Context Words: Android, Anna, Pytorch

https://arxiv.org/abs/2006.03411
https://arxiv.org/abs/2006.03411


• Train RNN-T model using: Utterance specific embeddings (i.e. embeddings of context words: Android, Anna, Pytorch) along 
with Audio, True Transcript (Jain et al., “Contextual RNN-T For Open Domain ASR”)

• Embedding Extractor: Extracts embeddings of relevant context information. Here we are using embeddings of context words
but we could use other embeddings such as visual embeddings.

• Attention Module: Attends between contextual embeddings and output of RNN-T Text Predictor
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Image from Jain et al., “Contextual RNN-T For Open Domain ASR”

Utilizing Utterance Specific Context: Attention Module
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What Does Attention Module Learn?

Image from Jain et al., “Contextual RNN-T For Open Domain ASR”

https://arxiv.org/abs/2006.03411


Utilizing Utterance Specific Context: Shallow Fusion

• Build a personalized Language Model (LM) using WFST
○ Patterns: 

■ Hey Assistant call @entity 
• Hey Assistant call Nayan

○ In the wild messaging :
■ … @name …

• message Nayan that I will be late…

• Language Model (LM) has same output units as RNN-T’s one. 

• Shallow Fusion is performed by computing a weighted sum of scores from Language Model and RNN-
T model.  

• Compute weighted sum of scores from RNN-T(Pr(𝑘|𝑡, 𝑦*)) and personalized Language Model 
(Pr_LM(𝑘|𝑦*)) and use it in beam search.

• Boost occurrence of contextual entity (@entity) using Personalized Language Model (PLM)

Personalized 
Language 

Model

RNN-T

Weighted 
Sum of 
Scores

Beam 
Search

Chen et al., “End-to-end contextual speech recognition using class language models and a token 
passing decoder”  and Le et al., “Contextualized Streaming End-to-End Speech Recognition with 
Trie-Based Deep Biasing and Shallow Fusion”

https://arxiv.org/pdf/1812.02142.pdf
https://arxiv.org/pdf/2104.02194.pdf


Contextualization: Utilizing Large Text Only data with 
Shallow Fusion
• Language models (LM) built with external text only data allows to model knowledge of the world into 

ASR system. Helpful when ASR training data is limited. Language model can estimate for example, 
Pr_LM(“m”| [“P”, “r”, “e”, ”s”, “I”, “d”, ”e”, ”n”, t”, “ “, “B”, ”a”, ”r”, ”a”, ”c”, ”k”, “ “,“O”, “b”, 
“a”]) from text LM only data.

• Compute weighted sum of scores from RNN-T(Pr(𝑘|𝑡, 𝑦*)) and Language Model (Pr_LM(𝑘|𝑦*)) and use 
it in beam search

Language 
Model

RNN-T

Weighted 
Sum Of 
Scores

Beam 
Search



Choice Of Output Units For RNN-T ASR

• RNN-T ASR produces probability distribution over output units.

• Letters do not take co-occurrence into account.

• Words
• Large number of output units.
• Out of vocabulary concern for unseen words in ASR training data.

• Sentence Pieces
• Configurable number of output units.
• Combines co-occurring characters in single unit.
• Example: 

• Hello World encoded as [[Hello] [▁Wor] [ld]]
• Number of output units larger than letters but less number of  runs for text predictor network.

• If a phrase is of 11 letters but could be re-presented by 3 sentence pieces then we only need to run the 
text predictor network ~1/4th time.



Optimization: Beam Search 
Decoding

• Limit number of expanded 
hypothesizes that are added in A

Expand best hypo from A only with the 
output symbols that are within 
expand_beam value of best expansion 
output symbol

• Additional Conditions for exiting beam 
search at audio frame t

Exit if the best hypothesis in B is better by 
more than state_beam compared to best 
hypothesis in A

Jain et al., “RNN-T For Latency Controlled ASR With Imoroved Beam Search”

https://arxiv.org/pdf/1911.01629.pdf


More Details On Training  
RNN-T model



Training: Lattice With Complete Set Of Alignments

• A naïve implementation is computationally 
heavy: Use dynamic programming to 
efficiently compute this.
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Graves et al., “Sequence transduction with recurrent neural networks”

Probability of emitting 
“B” from (t=1, u =0)

https://arxiv.org/abs/1211.3711


Training: Forward Variable (alpha)
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⍺(t-1, u) * ∅(t-1, u) 
⍺(t, u-1) * y (t ,u-1) 

⍺(1, 0)  =  1

⍺(t, u)  = ⍺(t-1, u) * ∅(t-1, u) + ⍺(t, u-1) * y (t ,u-1) 

Text Predictor
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Pr 𝑘 𝑡, 𝑢 𝑎. 𝑘. 𝑎. Pk(t,u)
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⍺(t, u) is probability of outputting [: u] symbols during 
[: t] frames

Graves et al., “Sequence transduction with recurrent neural networks”

1                           2                             3                   4(T)

y (t ,u) is probability of emitting next symbol (u + 1) in output sequence from (t, u)

Emitting ∅ at t-1 

Emitting non ∅ at t 

https://arxiv.org/abs/1211.3711


Training: Backward Variable (beta)
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Graves et al., “Sequence transduction with recurrent neural networks”

β(t, u) is probability of outputting [u+1: ] symbols 
during [t: ] frames. 

y (t ,u) is probability of emitting next symbol (u + 1) in output sequence from (t, u)

Emitted non ∅ at t 

Emitted ∅ at t 

https://arxiv.org/abs/1211.3711


Training: ⍺(t, u) * β(t, u)
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⍺(t-1, u) * ∅(t-1, u) 

⍺(t, u-1) * y (t ,u-1) 

β(t+1, u) * ∅(t, u)

β(t, u+1) * y (t ,u)

α(t, u)β(t, u) is equal to the probability of emitting the complete 
output sequence if yu is emitted during audio frame t.

For, given an input sequence x (length T)  and a target 
sequence y* (length U) 

Pr(y*|x)    =   ∑ ⍺(t, u) * β (t ,u)
(t,u):  t+u = n , (for any n, 1 ≤ n ≤ U + T)
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Graves et al., “Sequence transduction with recurrent neural networks”

y (t ,u) is probability of emitting next symbol (u + 1) in output sequence from (t, u)

https://arxiv.org/abs/1211.3711


Training: Gradient Descent
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For Target sequence 𝑦*

⍺(t, u)  = ⍺(t-1, u) * ∅(t-1, u) + ⍺(t, u-1) * y (t ,u-1) 

β(t, u) = β(t+1, u) * ∅(t, u) + β(t, u+1) * y (t ,u)  

Pr(𝑦*|x)    =   ∑ ⍺(t, u) * β (t ,u)
(t,u): t+u = n (for any n, 1 ≤ n ≤ U + T)

y (t ,u) is probability of emitting next symbol (u + 1) in output sequence from (t, u)
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Image from Graves et al., “Sequence transduction with recurrent neural 
networks”

Back Propagation

Graves et al., “Sequence transduction with recurrent neural networks”

https://arxiv.org/abs/1211.3711
https://arxiv.org/abs/1211.3711


Improving Training Optimization And Emission Delays

Token Emission Delay Problem: 
During inference, tokens are 
emitted with considerable delay 
after they are spoken

Restrict alignment paths: Helps in 
token emission delay and 
improving training speed.

Mahadeokar et al. “Alignment Restricted Streaming Recurrent Neural Network Transducer”

https://arxiv.org/abs/2011.03072


Further Reading
• CTC: Graves et al., Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks
• RNN-T: Graves et al., Sequence Transduction with Recurrent Neural Networks
• On Device RNN-T ASR:

• He et al., Streaming end-to-end speech recognition for mobile devices
• Yuan et al., Optimizing speech recognition for the edge

• Improving RNN-T beam search
• Jain et al., RNN-T For Latency Controlled ASR With Imoroved Beam Search

• Contextualization:
• Jain et al., Contextual RNN-T For Open Domain ASR
• Le et al., “Contextualized Streaming End-to-End Speech Recognition with Trie-Based Deep Biasing and Shallow Fusion”

• RNN-T Variants:
• Variani et al., Hybrid Autoregressive Transducer (HAT)
• Tripathi et al., Monotonic RNN-T

• Comparing RNN-T with other ASR techniques
• Zhang et al., Benchmarking LF-MMI, CTC and RNN-T Criteria for Streaming ASR
• Jain et al., RNN-T For Latency Controlled ASR With Imoroved Beam Search

• Sentence Piece
• Kudo et al., A simple and language independent subword tokenizer and detokenizer for Neural Text Processing

• Good read on tries: https://medium.com/basecs/trying-to-understand-tries-3ec6bede0014 (Vaidehi Joshi)

https://www.cs.toronto.edu/~graves/icml_2006.pdf
https://arxiv.org/pdf/1211.3711.pdf
https://arxiv.org/pdf/1811.06621.pdf
https://arxiv.org/pdf/1909.12408.pdf
https://arxiv.org/pdf/1911.01629.pdf
https://arxiv.org/abs/2006.03411
https://arxiv.org/pdf/2104.02194.pdf
https://arxiv.org/abs/2003.07705
https://ieeexplore.ieee.org/document/9003822
https://arxiv.org/abs/2011.04785
https://arxiv.org/pdf/1911.01629.pdf
https://www.aclweb.org/anthology/D18-2012/
https://www.aclweb.org/anthology/D18-2012/


● Many thanks to Rohit Prabhavalkar, Mark Tygert, Michael Picheny, Nayan
Singhal, Kritika Singh, Xiaohui Zhang, Prady Prakash, Duc Le, Yuan 
Shangguan, Paco Guzmán, Yatharth Saraf and Mike Seltzer for 
brainstorming with ideas to improve content of this presentation.

Thanks


