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–Yann LeCun

“This (GANS), and the variations that are now being 
proposed is the most interesting idea in the last 10 

years in ML, in my opinion”



Video: https://www.youtube.com/watch?v=QiiSAvKJIHo

https://www.youtube.com/watch?v=QiiSAvKJIHo
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ORIGINAL PAPER (GANS, 2014)



GANS PROGRESSION

https://twitter.com/goodfellow_ian/status/1084973596236144640?lang=en 

• Better quality
• High Resolution



STARGAN(2018)



PROGRESSIVE GROWING OF GANS 
(2018)



HIGH FIDELITY NATURAL IMAGES 
(2019)
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DISCRIMINATIVE vs GENERATIVE MODELS

• Discriminative models learn 
conditional distribution P(Y | X)

• Learns decision boundary 
between classes.

• Limited scope. Can only be used 
for classification tasks.

• Generative models learn the Generative 
models learn the joint distribution P(Y, X)

• Learns actual probability distribution of 
data.

• Can do both generative and discriminative 
tasks. distribution P(Y, X)

• Harder problem. Requires a deeper 
understanding of the distribution 
than discriminative models.

Given a distribution of inputs X and labels Y.
DISCRIMINATIVE MODELS GENERATIVE MODELS



EXPLICIT VS IMPLICIT DISTRIBUTION MODELLING

• Calculates P(x ~ X) for all x • Generate x ~ X

EXPLICIT DISTRIBUTION MODELS IMPLICIT DISTRIBUTION MODELS
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VARIATIONAL AUTOENCODERS (VAE)

Encoderx ~ (training set) P(z) Decoder

• Encoder models P(Z|X)
• Decoder models P(X|Z)
• Loss encourages P(Z|X) ~ Q(Z) 



VAEs vs GANs

• Minimizing the KL-divergence

• Minimize a bound on the divergence 
between generated distribution and 
target distribution

• Simpler optimization. Trains faster and 
more reliably 

• Results are blurry

• Minimizing the Jenson-Shannon 
Divergence

• Minimize divergence between generated 
distribution and target distribution

• Noisy and difficult optimization

• Sharper results

VAEs GANs
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WHAT ARE GANS?

Generative Adversarial Networks

Generative Models
We try to learn the underlying the distribution

from which our dataset comes from.
Eg: Variational AutoEncoders (VAE)

Adversarial Training
GANS are made up of two competing networks (adversaries)

that are trying beat each other. 

Neural Networks

GOAL: Generate data from an unlabelled distribution.



WHAT ARE GANS?

P(z) Generator Generated 
Data



WHAT ARE GANS?

P(z) Generator Generated 
Data

Discriminator Real/Fake?



WHAT ARE GANS?

P(z) Generator Generated 
Data

Discriminator Real/Fake?

Real
Data



HOW TO TRAIN A GAN?



HOW TO TRAIN A GAN?
At t = 0, 

GeneratorLatent 
Vector

Generated
Image (fake image)

Generated 
Data

Discriminator Real/Fake?

Given
Training 

Data

(fake data)

(Real data)



HOW TO TRAIN A GAN?
At t = 0, 

GeneratorLatent 
Vector

Generated
Image (fake image)

Generated 
Data

Discriminator Real/Fake?

Given
Training 

Data

(fake data)

(Real data)

Binary
Classifier



HOW TO TRAIN A GAN?
Which network should I train first?



HOW TO TRAIN A GAN?
Which network should I train first?

Discriminator!



HOW TO TRAIN A GAN?

Which network should I train first?
Discriminator!

But with what training data?



HOW TO TRAIN A GAN?

Which network should I train first?
Discriminator!

But with what training data?
The Discriminator is a Binary classifier.
The Discriminator has two class - Real and Fake.
The data for Real class if already given: THE TRAINING DATASET
The data for Fake class? -> generate from the Generator
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HOW TO TRAIN A GAN?
What’s next? -> Train the Generator

But how? What’s our training objective?
Generate images from the Generator 

such that they are classified incorrectly by the Discriminator!
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using the current ability 
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GENERATIVE ADVERSARIAL NETWORKS

• Introduced in 2014

• Goal is to model P(X), the distribution of training data

• Model can generate samples from P(X)

• Trained using a pair of  “adversaries”



THE GENERATOR

• The generator learns P(X|Z) : Produces realistic looking data X 
from a latent vector Z

• Z is sampled from a known prior, such as a Gaussian

• Maps a simple known distribution to a complicated data 
distribution

• GOAL : Generated distribution, G(z), matches the true data 
distribution P(X)



THE DISCRIMINATOR

• Trained to tell the difference between real and generated 
(fake) data

• Backpropagates its expectations to the generator

• “Thrown away” after generator is trained



ORIGINAL GAN FORMULATION
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PG = generated data distribution D(X) = discriminator output 

Objective:
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THE OPTIMAL DISCRIMINATOR
PD = actual data distribution
PG = generated data distribution D(X) = discriminator output 

CASE -1I : GOOD GENERATOR

“I cannot tell the difference between X = G(z) and my data”

PD(X) = 1, PG(X) =1
D(X) = 0.5



THE OPTIMAL GENERATOR

Objective:

PD = actual data distribution
PG = generated data distribution

D(X) = discriminator output 
G(Z) = generator output



THE OPTIMAL GENERATOR

Objective:

PD = actual data distribution
PG = generated data distribution

D(X) = discriminator output 
G(Z) = generator output

Generator wants 
to minimize this!



THE OPTIMAL GENERATOR

Jenson-Shanon Divergence



THE OPTIMAL GENERATOR



MIN-MAX STATIONARY POINT

• There exists a stationary point:

• If the generated data exactly matches the real data, the 
discriminator outputs 0.5 for all inputs

• If discriminator outputs 0.5, the gradients for the generator 
is flat, so generator does not learn



MIN-MAX STATIONARY POINT

• Stationary points need not be stable (depends on the exact 
GANs formulation and other factors)



MIN-MAX OPTIMIZATION
• Both generator and the discriminator need to be trained 

simultaneously

• If discriminator is undertrained, it provides sub-optimal 
feedback to the generator

• If the discriminator is overtrained, there is no local feedback 
for marginal improvements 

• Discriminator and generator needs to be trained together



HOW TO TRAIN A GAN?

GeneratorDiscriminator

Step 1:
Train the Discriminator 
using the current ability 

of the Generator.

Step 2:
Train the Generator

to beat
the Discriminator.

Objective:



CONTENTS

• Motivation

• Discriminative vs Generative Models

• GANs vs VAEs

• GANs Introduction

• GANs Theory

• GANS EVALUATION



GANS EVALUATION

• Human Evaluation

• Approximate Test Set likelihood

• Evaluate with Discriminative Network



GANS EVALUATION : INCEPTION SCORE

• Use a discriminative network (originally based on Inception 
v3 Architecture) to classify generated images

• Inception should produce a variety of labels

• Each label should have high confidence (low entropy)



QUESTIONS?


