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WHAT ARE GANS? o=

Generatwe Models Neural Networks

We try to learn the underlying the distribution

from which our dataset comes from.
Eg:Variational AutoEncoders (VAE)

\ 4

Adversarial Training

GANS are made up of two competing networks (adversaries)
that are trying beat each other.

GOAL: Generate data from an unlabelled distribution.



Carnegie
Mellon
University

WHAIT CAN GANS DO

Data Augmentation
Image-to-Image Translation
Text-to-Image Synthesis

Single Image Super Resolution
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HOW TO TRAIN A GANP™
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HOW TO TRAIN A GAN?# =

Which network should | train first?

Discriminator!

But with what training data/

The Discriminator is a Binary classifier.
The Discriminator has two class - Real and Fake.

The data for Real class if already given: THE TRAINING DATASET
The data for Fake class! -> generate from the Generator
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HOW TO TRAIN A GAN?# =

What's next! -> Train the Generator

But how! What's our training objective?

Generate images from the Generator
such that they are classified incorrectly by the Discriminator!
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HOW TO TRAIN A GANP™

L |

Discriminator Generator

Step | Step 2:
Train the Discriminator Train the Generator

using the current ability to beat
of the Generator; the Discriminator;
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We represent the discriminator by D(X; )
We represent the generator by G(Z; 0)

Pp = actual data distribution
Pc = generated data distribution

D(X) : Output of the discriminator / Probability that X came from
actual data distribution Pp

G(Z) : Output of the generator/A point from the generated data
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[ |
We represent the discriminator by D(X; 0) Po = actual data distributign |
We represent the generator by G(Z; 9) Pc = generated data distribution

D(X) : Output of the discriminator / Probability that X came from actual data distribution Pp

G(Z) : Output of the generator/A point from the generated data distribution Pg

it X ~ Pp, what should happen to the value of D(X)?

[t should be maximized!
=D (X) should be maximized
=log(D(X)) should be maximized

=Ex~ps[log(D(X))] should be maximized

Chances of real data
being called real.
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=log(D(X)) should be minimized

=log(1-D(X)) should be maximized



Carnegie

Mellon
HOW TO TRAIN A GANZ™
[ |
We represent the discriminator by D(X; 0) Po = actual data distributign |
We represent the generator by G(Z; 9) Pc = generated data distribution

D(X) : Output of the discriminator / Probability that X came from actual data distribution Pp

G(Z) : Output of the generator/A point from the generated data distribution Pg

T X = G(L), 1.e. X~ Pg, what should happen to the value of
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't should be minimized!
=D(X) should be minimized
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S Po = actual data distribution
We represent the discriminator by D(X; 0) P = generated data distribution

We represent the generator by G(Z; 6) Pz = chosen prior in latent vector space

D(X) : Output of the discriminator / Probability that X came from actual data distribution Pp

G(Z) : Output of the generator/A point from the generated data distribution Pg

T X = G(L), 1.e. X~ Pg, what should happen to the value of
D(X)?

't should be minimized!
=D(X) should be minimized
=log(D(X)) should be minimized
=log(1-D(X)) should be maximized
=Ex~pe[log(1-D(X))] should be maximized

=Ez~p.[log(1-D(G(2)))] should be maximized

Chances of fake data
being called fake.
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S Po = actual data distribution
We represent the discriminator by D(X; 0) P = generated data distribution

We represent the generator by G(Z; 6) Pz = chosen prior in latent vector space

D(X) : Output of the discriminator / Probability that X came from actual data distribution Pp

G(Z) : Output of the generator/A point from the generated data distribution Pg

The discriminator maximizes this sum:

V(D,G) = Ex~po[log(D(X))] + Ez~p.[log(1-D(G(2)))]

Chances of real
data being called
real.

Chances of fake

data being called
fake.
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S Po = actual data distribution
We represent the discriminator by D(X; 0) P = generated data distribution
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50, In your GAN formulation:
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S Po = actual data distribution
We represent the discriminator by D(X; 0) P = generated data distribution

We represent the generator by G(Z; 6) Pz = chosen prior in latent vector space

D(X) : Output of the discriminator / Probability that X came from actual data distribution Pp

G(Z) : Output of the generator/A point from the generated data distribution Pg

50, In your GAN formulation:
The discriminator maximizes this sum: \/(D,G) — EX~PD[|Qg(D(X))] + EZ~P2[|Og(1—D(G(Z)))]

The generator minimizes this sum:  V(D,G) = Ex~PD[|Og(D(><)):| + EZ~PZ[|Og(1—D(G(Z)))]

Chances of real Chances of fake

data being called data being called
real. fake.
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-ORMULATION

The original GAN formulation is the following min-max game

minmax V (D, G) = Ex log D(X) + Ez log(1 — D(G(Z2)))

G D

m D wants D(X)=1and D(G(Z))=0

m G wants D(G(Z)) =1
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THE OPTIMAL DISCRIMINATOR

Pp = actual data distribution
Pc = generated data distribution

D(X) = discriminator output

Objective: minmaxV(D, G) = Ex log D(X) + Ez log(1 — D(G(2)))

What is the optimal discriminator?
f = EXNPD log D(X) -1 ]EXNPG |Og(1 — D(X))

_ /X [Pb(X) log D(X) + Pg(X) log(1 — D(X))] dX

of _ Pp(X) Ps(X) _ 0
oD(X) ~ D(X) 1-D(X)
Pp(X)  Pg(X)
D(X) — 1= D(X)
(1 = D(X))Pp(X) = D(X)Ps(X)
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THE OPTIMAL GENERATOR
Pp = actual data distribution D(X) = discriminator output

PG = generated data distribution  G(Z) = generator output

Objective: minmax V(D, G) = Ex log D(X) + Ez log(1 — D(G(2)))

= Ex~p, log D(X) + ]EXNPG Iog(l — D(X))
lo Pp(X) lo Pp(X)

& Pe(X) + Po(X) 6 % Pe(X) + Po(X)
— JSD(PD|P(;) o |0g4

+Ep

=Ep,
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THE OPTIMAL GENERATOR

What is the optimal generator?

mcgn JSD(Pp||Pg) — log 4

Minimize the Jensen-Shannon divergence between the real and
generated distributions (make the distributions similar)
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MIN-MAX STATIONARY POINT

» Stationary points need not be stable (depends on the exact

GANs formulation and other factors)
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WHY IS THERE NO STATIC OPTIMAL
DISCRIMINATOR?

min max V(D, G) = Ex log D(X) + Ez log(1 — D(G(Z)))

» Discriminator indicates the direction in which generator

should move relative to the current generator

* For a given fixed discriminator, the optimal generator outputs

argmax D(X) for all z~Z/

 (Cannot train generator without training discriminator first
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CAUSES OF OPTIMIZATION ISSUES

Simultaneous updates require a careful balance between
players

Stationary point exists but there's no guarantee of reaching it

I discriminator is undertrained, it guides the generator in the
wrong direction

It discriminator is overtrained, it Is too hard and generator
cannot make much progress
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DVERSARIAL

» Different optimizers, learning rates, batch size
* Different architectures, depths, number of parameters

* Training discriminator and generator for different number of
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PLAYER

RS

CASE - || play rock-paper-scissors with a probability of

(0.36,0.32,0.32)

* What Is your best strategy!

* What is your probability of winning?
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PLAYER

RS

CASE - I1:1 play rock-paper-scissors with a probability of

(0.33,0.33,0.33)

* What is your optimal strategy?

* What is your probability of winning?
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RS

Player A plays rock-paper-scissors with a probability of

(0.36,0.32,0.32)
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PLAYER

RS

Player A plays rock-paper-scissors with a probability of

(0.36,0.32,0.32)

* GLOBAL OPTIMUM : Both players play uniformly with (0.33,0.33,0.33)
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RS

Player A plays rock-paper-scissors with a probability of

paper (0, |, 0)

(0.36,0.32,0.32)

- It player B optimizes all the way, its optimal strategy is always
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PLAYER

RS

Player A plays rock-paper-scissors with a probability of

paper (0,1,0)

(0.36,0.32,0.32)

» Now player A should play only scissors (0,0,1)

» |f player B optimizes all the way, its optimal strategy Is always
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PLAYER

RS

Player A plays rock-paper-scissors with a probability of

paper (0,1,0)

(0.36,0.32,0.32)

» Now player A should play only scissors (0,0,1)

» Now player B should only play rock (1,0,0)

» |f player B optimizes all the way, its optimal strategy Is always
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ADVERSARIAL BALANCE IN TWO PLAYER
GAMES: ROCK-PAPER-SCISSORS

Player A plays rock-paper-scissors with a probability of

(0.36,0.32,0.32)

» |f player B optimizes all the way, its optimal strategy is always paper (0, |, 0)

* Now player A should play only scissors ( 0,0, |)

* Now player B should only play rock (1,0, 0)

« Now player A should only play paper (O, I, 0)
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(0.36,0.32,0.32)

- Now player A should play only scissors
- Now player B should only play rock

- Now player A should only play paper
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her-scissors with a probability of

Carnegie
Mellon

University

PLAYER

RS

- |f player B optimizes all the way, its optimal strategy Is always paper.
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TRAINING ISSUES IN GAS

e Oscillations

* Mode Collapse : Generates a small subspace but does not

cover the entire distribution (https://www.youtube.com/
watchv=ktxhiKhVWoEE)



https://www.youtube.com/watch?v=ktxhiKhWoEE
https://www.youtube.com/watch?v=ktxhiKhWoEE
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IMPROVED TECHNIQUES FOR TRAINING GANS (2016)

A collection of interesting technigues and experiments
* Feature Matching

* Minibatch Discrimination

* Historical Averaging

* One-sided Label Smoothing

e Virtual Batch Normalization



FEATUR

- MATCHING

Statistics of generated images should match statistics of real

Images

m Discriminator produces multidimensional output, a “statistic”

of the data

m Generator trained to minimize L, between real and generated

data

m Discriminator trained to maximize L, between real and

generated data

IExD(X) —EzD(G(2))5

Carnegie
Mellon
University



MINIBA

Discriminator can look at multiple inputs at once and decide if

CH

DISCRIMINA

those inputs come from the real or generated distribution

m GANSs frequently collapse to a single point
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‘ O Nniversity

m Discriminator needs to differentiate between two distributions

m Easier task if looking at multiple samples



Carnegie
Mellon

HISTORICAL AVERAGING  riversity

Dampen oscillations by encouraging updates to converge to a
mean

m GANs frequently create a cycle or experience oscillations

m Add a term to reduce oscillations that encourages the current
parameters to be near a moving average of the parameters

1 t
9—;2:9,-

2
2
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-D LABEL SMOOTHING

Don’t over-penalize generated images

m Label smoothing is a common and easy technique that
improves performance across many domains

m Sigmoid tries hard to saturate to 0 or 1 but can never quite

reach that goal

m Provide targets that are € or 1 — € so the sigmoid doesn’t

saturate and overtrain

m Experimentally, smooth the real targets but do not smooth
the generated targets when training the discriminator
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VIRTUAL BATCH NORMALIZATION

Use batch normalization to accelerate convergence
m Batch normalization accelerates convergence
m However, hard to apply in an adversarial setting

m Collect statistics on a fixed batch of real data and use to
normalize other data
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WASSERSTEIN DISTANCE™™*

* [he distance between probability distributions

* Inturtively, each distribution is viewed as a unit amount of earth (soll)

* The total 2 mass X mean distance required to transform one distribution to another

 Also called earth mover’s distance

N

-‘t ) ®

]
]

Red points, Blue points represent two different distributions.
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WASSERSTEIN DISTANCE™

]P)'r', ]P) — 1 f E N N B
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Red points, Blue points represent two different distributions.
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THE GAME OF DISTANCE MEASURES
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KL Divergence
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THE GAME OF DISTANCE MEASURES

-

| Jenson-
KL Divergence Shanon
Divergence
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THE GAME OF DISTANCE MEASURES

TR ¥

KL Diversence JEREEN- VWasserstein
- Shanon Distance
Divergence
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KL-DIVERGENCE ™

KL(plla) = [ p(x)log %

P(X) Q(X)

X =0 X =]

Let O be the distance between the two peaks of the distribution
f O = 0, KL(P||Q) = 1 log(1/0) = o0
0 = 0,KL(P||Q) = 1 log(1/1) =0

Not differentiable w.rit ©
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JENSON-SHANON DIVERGENCE
p(X) JS(PollPg) = 2 KL(Ppl|m) + S KL(Ps|m) Q)
X =0 X = |

Let O be the distance between the two peaks of the distribution
f0 %= 0,JSD(P||Q) =05 * (1 log(1/0.5) + 1 log(1/0.5)) = log4
f8 = 0,]SD(P||Q) = 0.5 * (1 log(1/1) + 1 log(1/1)) = 0

Not differentiable w.rit ©
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WASSERSTEIN DISTANCE™*
W (P,,P,) = ,Yeni(l%)apg) E(,y)mry | 2 = yll]
P(X) Q(X)
X =0 X =
W(RQ) =10

Differentiable w.rt © !
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SD VS WASSERSTEIN (EM)
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Figure 1: These plots show p(Ps,Po) as a function of 0 when p is the EM distance (left
plot) or the JS divergence (right plot). The EM plot is continuous and provides a usable
gradient everywhere. The JS plot is not continuous and does not provide a usable gradient.
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WASSERSTEIN (EM)VS |SD

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Figure 1: These plots show p(Ps,Po) as a function of 0 when p is the EM distance (left
plot) or the JS divergence (right plot). The EM plot is continuous and provides a usable
gradient everywhere. The JS plot is not continuous and does not provide a usable gradient.

* Distance value Is not constant for non-overlapping distributions
* Differentiable w.rt 0
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D should be a 1-Lipschitz function
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W G A N University

ey 5, [P@) - 5, D@)

Kantorovich-Rubinstein duality

D should be a 1-Lipschitz function

Weight clipping:
* Restrict weights between [-c, ¢]
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WGAN-GP ~ Uniweis

L= _E [D@)-_E @]+ E [(IVaD@)l2~1)?].

N Y A\ - >4

WV TV
Original critic loss Our gradient penalty

A function is 1-Lipschitz If its gradients are at most 1 everywhere.
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WGAN-GP ~ Uniweis

L= _E [D@)-_E @]+ E [(IVaD@)l2~1)?].

N Y . _J

WV TV
Original critic loss Our gradient penalty

A function is 1-Lipschitz If its gradients are at most 1 everywhere.

Gradient penalty introduces a softer constraint on gradients
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GANS PROGRESSION

* Better quality
* High Resolution

2018

https://twitter.com/goodfellow_ian/status/1084973596236144640?ang=en
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GANS PROGRESSION

Original
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Paper

2014 2015 2016 2017 2018 2019 2020

Conditional
GANs

minmax V(D, G) = Egrpy,(2)[108 D(@[Y)] + Eznp, () llog(1 — D(G(2]y)))].



GANS PROGRESSION

Discriminator D(xly) \
Original i ®
AN (XYY Y]
Paper  eai
00000 00000
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A I 00000
b
Conditions <© 00009 0000 Q)

GANs

ngn mS’XV(D7 G) = Egrpyua(a) 108 D(2|Y)] + Eonp, () [log(1 — D(G(2]y)))]-
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