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WHAT ARE GANS?

Generative Adversarial Networks

Generative Models
We try to learn the underlying the distribution

from which our dataset comes from.
Eg: Variational AutoEncoders (VAE)

Adversarial Training
GANS are made up of two competing networks (adversaries)

that are trying beat each other. 

Neural Networks

GOAL: Generate data from an unlabelled distribution.



WHAT CAN GANS DO?

• Data Augmentation

• Image-to-Image Translation

• Text-to-Image Synthesis

• Single Image Super Resolution



HOW TO TRAIN A GAN?
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HOW TO TRAIN A GAN?
Which network should I train first?

Discriminator!

But with what training data?
The Discriminator is a Binary classifier.
The Discriminator has two class - Real and Fake.
The data for Real class if already given: THE TRAINING DATASET
The data for Fake class? -> generate from the Generator
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What’s next? -> Train the Generator

But how? What’s our training objective?
Generate images from the Generator 

such that they are classified incorrectly by the Discriminator!



HOW TO TRAIN A GAN?

GeneratorDiscriminator

Step 1:
Train the Discriminator 
using the current ability 

of the Generator.

Step 2:
Train the Generator

to beat
the Discriminator.
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Chances of real 
data being called 

real.
Chances of fake 
data being called 

fake.
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THE OPTIMAL DISCRIMINATOR
PD = actual data distribution
PG = generated data distribution D(X) = discriminator output 

Objective:



THE OPTIMAL GENERATOR

Objective:

PD = actual data distribution
PG = generated data distribution

D(X) = discriminator output 
G(Z) = generator output

Generator wants 
to minimize this!



THE OPTIMAL GENERATOR



MIN-MAX STATIONARY POINT

• Stationary points need not be stable (depends on the exact 
GANs formulation and other factors)
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WHY IS THERE NO STATIC OPTIMAL 
DISCRIMINATOR?

• Discriminator indicates the direction in which generator 
should move relative to the current generator

• For a given fixed discriminator, the optimal generator outputs 
argmax D(X) for all z~Z

• Cannot train generator without training discriminator first



CAUSES OF OPTIMIZATION ISSUES

• Simultaneous updates require a careful balance between 
players

• Stationary point exists but there’s no guarantee of reaching it

• If discriminator is undertrained, it guides the generator in the 
wrong direction

• If discriminator is overtrained, it is too hard and generator 
cannot make much progress



FACTORS AFFECTING ADVERSARIAL 
BALANCE

• Different optimizers, learning rates, batch size

• Different architectures, depths, number of parameters

• Training discriminator and generator for different number of 
iterations



ADVERSARIAL BALANCE IN TWO PLAYER 
GAMES: ROCK-PAPER-SCISSORS

CASE - 1: I play rock-paper-scissors with a probability of 

(0.36, 0.32, 0.32)

• What is your best strategy?

• What is your probability of winning?
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ADVERSARIAL BALANCE IN TWO PLAYER 
GAMES: ROCK-PAPER-SCISSORS
Player A plays rock-paper-scissors with a probability of 

(0.36, 0.32, 0.32)

• If player B optimizes all the way, its optimal strategy is always paper.

• Now player A should play only scissors

• Now player B should only play rock

• Now player A should only play paper 

• …….



TRAINING ISSUES IN GAS

• Oscillations

• Mode Collapse : Generates a small subspace but does not 
cover the entire distribution (https://www.youtube.com/
watch?v=ktxhiKhWoEE)

https://www.youtube.com/watch?v=ktxhiKhWoEE
https://www.youtube.com/watch?v=ktxhiKhWoEE
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IMPROVED TECHNIQUES FOR TRAINING GANS (2016)

A collection of interesting techniques and experiments

• Feature Matching

• Minibatch Discrimination

• Historical Averaging

• One-sided Label Smoothing

• Virtual Batch Normalization



FEATURE MATCHING



MINIBATCH DISCRIMINATION



HISTORICAL AVERAGING



ONE-SIDED LABEL SMOOTHING



VIRTUAL BATCH NORMALIZATION
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WASSERSTEIN DISTANCE
• The distance between probability distributions

• Intuitively, each distribution is viewed as a unit amount of earth (soil) 

• The total Σ mass × mean distance required to transform one distribution to another

• Also called earth mover’s distance

Red points, Blue points represent two different distributions. 



WASSERSTEIN DISTANCE

Red points, Blue points represent two different distributions. 
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THE GAME OF DISTANCE MEASURES

VAE GANs WGANs

KL Divergence
Jenson-
Shanon 

Divergence

Wasserstein 
Distance



KL-DIVERGENCE

X = 0 X = 1

P(X) Q(X)

Let θ be the distance between the two peaks of the distribution
If θ ≠ 0, KL(P||Q) = 1 log(1/0) = ∞
If θ = 0, KL(P||Q) = 1 log(1/1) = 0

Not differentiable w.r.t θ 



JENSON-SHANON DIVERGENCE

X = 0 X = 1

P(X) Q(X)

Let θ be the distance between the two peaks of the distribution
If θ ≠ 0, JSD(P||Q) = 0.5 * (1 log(1/0.5) + 1 log(1/0.5)) = log4

If θ = 0, JSD(P||Q) = 0.5 * (1 log(1/1) + 1 log(1/1)) = 0

Not differentiable w.r.t θ 



WASSERSTEIN DISTANCE

X = 0 X = 1

P(X) Q(X)

W(P,Q) = | θ |

Differentiable w.r.t θ    !!



JSD VS WASSERSTEIN (EM)



WASSERSTEIN (EM) VS JSD

• Distance value is not constant for non-overlapping distributions
• Differentiable w.r.t θ



WGAN

Kantorovich-Rubinstein duality
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Kantorovich-Rubinstein duality

D should be a 1-Lipschitz function



WGAN

Kantorovich-Rubinstein duality

D should be a 1-Lipschitz function

Weight clipping:
• Restrict weights between [-c, c]



WGAN-GP

A function is 1-Lipschitz if its gradients are at most 1 everywhere.



WGAN-GP

A function is 1-Lipschitz if its gradients are at most 1 everywhere.

Gradient penalty introduces a softer constraint on gradients
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GANS PROGRESSION

https://twitter.com/goodfellow_ian/status/1084973596236144640?lang=en 

• Better quality
• High Resolution
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