
GENERATIVE ADVERSARIAL
NETWORKS - PART 1I

11785- Introduction to Deep Learning

AKSHAT GUPTA
Spring 2021

Slides Inspired by Benjamin Striner

CONTENTS

• GANs Recap

• Understanding Training Issue in GANs

• GAN Training and Stabilization

• Wasserstein GANs

• GANstory - GAN Architectures

CONTENTS

• GANS RECAP

• Understanding Training Issue in GANs

• GAN Training and Stabilization

• Wasserstein GANs

• GANstory - GAN Architectures

WHAT ARE GANS?

Generative Adversarial Networks

Generative Models
We try to learn the underlying the distribution

from which our dataset comes from.
Eg: Variational AutoEncoders (VAE)

Adversarial Training
GANS are made up of two competing networks (adversaries)

that are trying beat each other.

Neural Networks

GOAL: Generate data from an unlabelled distribution.

WHAT CAN GANS DO?

• Data Augmentation

• Image-to-Image Translation

• Text-to-Image Synthesis

• Single Image Super Resolution

HOW TO TRAIN A GAN?
At t = 0,

GeneratorLatent
Vector

Generated
Image (fake image)

Generated
Data

Discriminator Real/Fake?

Given
Training

Data

(fake data)

(Real data)

Binary
Classifier

HOW TO TRAIN A GAN?
Which network should I train first?

HOW TO TRAIN A GAN?
Which network should I train first?

Discriminator!

HOW TO TRAIN A GAN?
Which network should I train first?

Discriminator!

But with what training data?

HOW TO TRAIN A GAN?
Which network should I train first?

Discriminator!

But with what training data?
The Discriminator is a Binary classifier.
The Discriminator has two class - Real and Fake.
The data for Real class if already given: THE TRAINING DATASET
The data for Fake class? -> generate from the Generator

HOW TO TRAIN A GAN?
What’s next? -> Train the Generator

But how? What’s our training objective?

HOW TO TRAIN A GAN?
What’s next? -> Train the Generator

But how? What’s our training objective?
Generate images from the Generator

such that they are classified incorrectly by the Discriminator!

HOW TO TRAIN A GAN?

GeneratorDiscriminator

Step 1:
Train the Discriminator
using the current ability

of the Generator.

Step 2:
Train the Generator

to beat
the Discriminator.

HOW TO TRAIN A GAN?
We represent the discriminator by D(X; θ)
We represent the generator by G(Z; θ)

HOW TO TRAIN A GAN?
We represent the discriminator by D(X; θ)
We represent the generator by G(Z; θ)

PD = actual data distribution
PG = generated data distribution

HOW TO TRAIN A GAN?
We represent the discriminator by D(X; θ)
We represent the generator by G(Z; θ)

PD = actual data distribution
PG = generated data distribution

D(X) : Output of the discriminator / Probability that X came from
actual data distribution PD

HOW TO TRAIN A GAN?
We represent the discriminator by D(X; θ)
We represent the generator by G(Z; θ)

PD = actual data distribution
PG = generated data distribution

D(X) : Output of the discriminator / Probability that X came from
actual data distribution PD

G(Z) : Output of the generator/A point from the generated data
distribution PG

HOW TO TRAIN A GAN?
We represent the discriminator by D(X; θ)
We represent the generator by G(Z; θ)

PD = actual data distribution
PG = generated data distribution

D(X) : Output of the discriminator / Probability that X came from actual data distribution PD

G(Z) : Output of the generator/A point from the generated data distribution PG

If X ~ PD, what should happen to the value of D(X)?

HOW TO TRAIN A GAN?
We represent the discriminator by D(X; θ)
We represent the generator by G(Z; θ)

PD = actual data distribution
PG = generated data distribution

D(X) : Output of the discriminator / Probability that X came from actual data distribution PD

G(Z) : Output of the generator/A point from the generated data distribution PG

If X ~ PD, what should happen to the value of D(X)?
It should be maximized!

HOW TO TRAIN A GAN?
We represent the discriminator by D(X; θ)
We represent the generator by G(Z; θ)

PD = actual data distribution
PG = generated data distribution

D(X) : Output of the discriminator / Probability that X came from actual data distribution PD

G(Z) : Output of the generator/A point from the generated data distribution PG

If X ~ PD, what should happen to the value of D(X)?
It should be maximized!

⇒D(X) should be maximized

HOW TO TRAIN A GAN?
We represent the discriminator by D(X; θ)
We represent the generator by G(Z; θ)

PD = actual data distribution
PG = generated data distribution

D(X) : Output of the discriminator / Probability that X came from actual data distribution PD

G(Z) : Output of the generator/A point from the generated data distribution PG

If X ~ PD, what should happen to the value of D(X)?
It should be maximized!

⇒D(X) should be maximized

⇒log(D(X)) should be maximized

HOW TO TRAIN A GAN?
We represent the discriminator by D(X; θ)
We represent the generator by G(Z; θ)

PD = actual data distribution
PG = generated data distribution

D(X) : Output of the discriminator / Probability that X came from actual data distribution PD

G(Z) : Output of the generator/A point from the generated data distribution PG

If X ~ PD, what should happen to the value of D(X)?
It should be maximized!

⇒D(X) should be maximized

⇒log(D(X)) should be maximized

⇒EX~PD[log(D(X))] should be maximized

HOW TO TRAIN A GAN?
We represent the discriminator by D(X; θ)
We represent the generator by G(Z; θ)

PD = actual data distribution
PG = generated data distribution

D(X) : Output of the discriminator / Probability that X came from actual data distribution PD

G(Z) : Output of the generator/A point from the generated data distribution PG

If X ~ PD, what should happen to the value of D(X)?
It should be maximized!

⇒D(X) should be maximized

⇒log(D(X)) should be maximized

⇒EX~PD[log(D(X))] should be maximized

Chances of real data
being called real.

HOW TO TRAIN A GAN?
We represent the discriminator by D(X; θ)
We represent the generator by G(Z; θ)

PD = actual data distribution
PG = generated data distribution

D(X) : Output of the discriminator / Probability that X came from actual data distribution PD

G(Z) : Output of the generator/A point from the generated data distribution PG

If X = G(Z), i.e. X~ PG, what should happen to the value of
D(X)?

HOW TO TRAIN A GAN?
We represent the discriminator by D(X; θ)
We represent the generator by G(Z; θ)

PD = actual data distribution
PG = generated data distribution

D(X) : Output of the discriminator / Probability that X came from actual data distribution PD

G(Z) : Output of the generator/A point from the generated data distribution PG

If X = G(Z), i.e. X~ PG, what should happen to the value of
D(X)?

It should be minimized!

HOW TO TRAIN A GAN?
We represent the discriminator by D(X; θ)
We represent the generator by G(Z; θ)

PD = actual data distribution
PG = generated data distribution

D(X) : Output of the discriminator / Probability that X came from actual data distribution PD

G(Z) : Output of the generator/A point from the generated data distribution PG

If X = G(Z), i.e. X~ PG, what should happen to the value of
D(X)?

It should be minimized!

⇒D(X) should be minimized

⇒log(D(X)) should be minimized

HOW TO TRAIN A GAN?
We represent the discriminator by D(X; θ)
We represent the generator by G(Z; θ)

PD = actual data distribution
PG = generated data distribution

D(X) : Output of the discriminator / Probability that X came from actual data distribution PD

G(Z) : Output of the generator/A point from the generated data distribution PG

If X = G(Z), i.e. X~ PG, what should happen to the value of
D(X)?

It should be minimized!

⇒D(X) should be minimized

⇒log(D(X)) should be minimized

⇒log(1-D(X)) should be maximized

HOW TO TRAIN A GAN?
We represent the discriminator by D(X; θ)
We represent the generator by G(Z; θ)

PD = actual data distribution
PG = generated data distribution

D(X) : Output of the discriminator / Probability that X came from actual data distribution PD

G(Z) : Output of the generator/A point from the generated data distribution PG

If X = G(Z), i.e. X~ PG, what should happen to the value of
D(X)?

It should be minimized!

⇒D(X) should be minimized

⇒log(D(X)) should be minimized

⇒log(1-D(X)) should be maximized

⇒EX~PG[log(1-D(X))] should be maximized

HOW TO TRAIN A GAN?
We represent the discriminator by D(X; θ)
We represent the generator by G(Z; θ)

PD = actual data distribution
PG = generated data distribution
Pz = chosen prior in latent vector space

D(X) : Output of the discriminator / Probability that X came from actual data distribution PD

G(Z) : Output of the generator/A point from the generated data distribution PG

If X = G(Z), i.e. X~ PG, what should happen to the value of
D(X)?

It should be minimized!

⇒D(X) should be minimized

⇒log(D(X)) should be minimized

⇒log(1-D(X)) should be maximized

⇒EX~PG[log(1-D(X))] should be maximized

⇒EZ~Pz[log(1-D(G(Z)))] should be maximizedChances of fake data
being called fake.

HOW TO TRAIN A GAN?
We represent the discriminator by D(X; θ)
We represent the generator by G(Z; θ)

D(X) : Output of the discriminator / Probability that X came from actual data distribution PD

G(Z) : Output of the generator/A point from the generated data distribution PG

If X = G(Z), i.e. X~ PG, what should happen to the value of D(X)?

If X ~ PD, what should happen to the value of D(X)?
⇒EX~PD[log(D(X))] should be maximized

PD = actual data distribution
PG = generated data distribution
Pz = chosen prior in latent vector space

⇒EZ~Pz[log(1-D(G(Z)))] should be maximized

HOW TO TRAIN A GAN?
We represent the discriminator by D(X; θ)
We represent the generator by G(Z; θ)

D(X) : Output of the discriminator / Probability that X came from actual data distribution PD

G(Z) : Output of the generator/A point from the generated data distribution PG

If X = G(Z), i.e. X~ PG, what should happen to the value of D(X)?

If X ~ PD, what should happen to the value of D(X)?
⇒EX~PD[log(D(X))] should be maximized

PD = actual data distribution
PG = generated data distribution
Pz = chosen prior in latent vector space

⇒EZ~Pz[log(1-D(G(Z)))] should be maximized

V(D,G) = EX~PD[log(D(X))] + EZ~Pz[log(1-D(G(Z)))]
⇒ The discriminator should maximize this sum:

HOW TO TRAIN A GAN?
We represent the discriminator by D(X; θ)
We represent the generator by G(Z; θ)

D(X) : Output of the discriminator / Probability that X came from actual data distribution PD

G(Z) : Output of the generator/A point from the generated data distribution PG

PD = actual data distribution
PG = generated data distribution
Pz = chosen prior in latent vector space

V(D,G) = EX~PD[log(D(X))] + EZ~Pz[log(1-D(G(Z)))]

The discriminator maximizes this sum:

Chances of real
data being called

real.
Chances of fake
data being called

fake.

HOW TO TRAIN A GAN?
We represent the discriminator by D(X; θ)
We represent the generator by G(Z; θ)

D(X) : Output of the discriminator / Probability that X came from actual data distribution PD

G(Z) : Output of the generator/A point from the generated data distribution PG

PD = actual data distribution
PG = generated data distribution
Pz = chosen prior in latent vector space

V(D,G) = EX~PD[log(D(X))] + EZ~Pz[log(1-D(G(Z)))]Given that the discriminator maximizes this sum:

What should the generator do?

HOW TO TRAIN A GAN?
We represent the discriminator by D(X; θ)
We represent the generator by G(Z; θ)

D(X) : Output of the discriminator / Probability that X came from actual data distribution PD

G(Z) : Output of the generator/A point from the generated data distribution PG

PD = actual data distribution
PG = generated data distribution
Pz = chosen prior in latent vector space

V(D,G) = EX~PD[log(D(X))] + EZ~Pz[log(1-D(G(Z)))]Given that the discriminator maximizes this sum:

What should the generator do?
Generate images from the Generator

such that they are classified incorrectly by the Discriminator!

HOW TO TRAIN A GAN?
We represent the discriminator by D(X; θ)
We represent the generator by G(Z; θ)

D(X) : Output of the discriminator / Probability that X came from actual data distribution PD

G(Z) : Output of the generator/A point from the generated data distribution PG

PD = actual data distribution
PG = generated data distribution
Pz = chosen prior in latent vector space

V(D,G) = EX~PD[log(D(X))] + EZ~Pz[log(1-D(G(Z)))]Given that the discriminator maximizes this sum:

What should the generator do?
Generate images from the Generator

such that they are classified incorrectly by the Discriminator!
⇒D(G(Z))) should be maximized

HOW TO TRAIN A GAN?
We represent the discriminator by D(X; θ)
We represent the generator by G(Z; θ)

D(X) : Output of the discriminator / Probability that X came from actual data distribution PD

G(Z) : Output of the generator/A point from the generated data distribution PG

PD = actual data distribution
PG = generated data distribution
Pz = chosen prior in latent vector space

V(D,G) = EX~PD[log(D(X))] + EZ~Pz[log(1-D(G(Z)))]Given that the discriminator maximizes this sum:

What should the generator do?
Generate images from the Generator

such that they are classified incorrectly by the Discriminator!
⇒D(G(Z))) should be maximized
⇒log(D(G(Z)))) should be maximized

HOW TO TRAIN A GAN?
We represent the discriminator by D(X; θ)
We represent the generator by G(Z; θ)

D(X) : Output of the discriminator / Probability that X came from actual data distribution PD

G(Z) : Output of the generator/A point from the generated data distribution PG

PD = actual data distribution
PG = generated data distribution
Pz = chosen prior in latent vector space

V(D,G) = EX~PD[log(D(X))] + EZ~Pz[log(1-D(G(Z)))]Given that the discriminator maximizes this sum:

What should the generator do?
Generate images from the Generator

such that they are classified incorrectly by the Discriminator!
⇒D(G(Z))) should be maximized
⇒log(D(G(Z)))) should be maximized
⇒log(1- D(G(Z)))) should be minimized

HOW TO TRAIN A GAN?
We represent the discriminator by D(X; θ)
We represent the generator by G(Z; θ)

D(X) : Output of the discriminator / Probability that X came from actual data distribution PD

G(Z) : Output of the generator/A point from the generated data distribution PG

PD = actual data distribution
PG = generated data distribution
Pz = chosen prior in latent vector space

V(D,G) = EX~PD[log(D(X))] + EZ~Pz[log(1-D(G(Z)))]Given that the discriminator maximizes this sum:

What should the generator do?
Generate images from the Generator

such that they are classified incorrectly by the Discriminator!
⇒D(G(Z))) should be maximized
⇒log(D(G(Z)))) should be maximized
⇒log(1- D(G(Z)))) should be minimized

⇒EZ~Pz[log(1-D(G(Z)))] should be minimized

HOW TO TRAIN A GAN?
We represent the discriminator by D(X; θ)
We represent the generator by G(Z; θ)

D(X) : Output of the discriminator / Probability that X came from actual data distribution PD

G(Z) : Output of the generator/A point from the generated data distribution PG

PD = actual data distribution
PG = generated data distribution
Pz = chosen prior in latent vector space

V(D,G) = EX~PD[log(D(X))] + EZ~Pz[log(1-D(G(Z)))]Given that the discriminator maximizes this sum:

What should the generator do?
Generate images from the Generator

such that they are classified incorrectly by the Discriminator!
⇒D(G(Z))) should be maximized
⇒log(D(G(Z)))) should be maximized
⇒log(1- D(G(Z)))) should be minimized

⇒EZ~Pz[log(1-D(G(Z)))] should be minimizedChances of fake data
being called fake.

HOW TO TRAIN A GAN?
We represent the discriminator by D(X; θ)
We represent the generator by G(Z; θ)

D(X) : Output of the discriminator / Probability that X came from actual data distribution PD

G(Z) : Output of the generator/A point from the generated data distribution PG

PD = actual data distribution
PG = generated data distribution
Pz = chosen prior in latent vector space

V(D,G) = EX~PD[log(D(X))] + EZ~Pz[log(1-D(G(Z)))]Given that the discriminator maximizes this sum:

What should the generator do?
Generate images from the Generator

such that they are classified incorrectly by the Discriminator!
⇒D(G(Z))) should be maximized
⇒log(D(G(Z)))) should be maximized
⇒log(1- D(G(Z)))) should be minimized

⇒EZ~Pz[log(1-D(G(Z)))] should be minimized
⇒EX~PD[log(D(X))] + EZ~Pz[log(1-D(G(Z)))] should be minimized

HOW TO TRAIN A GAN?
We represent the discriminator by D(X; θ)
We represent the generator by G(Z; θ)

D(X) : Output of the discriminator / Probability that X came from actual data distribution PD

G(Z) : Output of the generator/A point from the generated data distribution PG

PD = actual data distribution
PG = generated data distribution
Pz = chosen prior in latent vector space

V(D,G) = EX~PD[log(D(X))] + EZ~Pz[log(1-D(G(Z)))]The discriminator maximizes this sum:

So, in your GAN formulation:

The generator minimizes this sum: V(D,G) = EX~PD[log(D(X))] + EZ~Pz[log(1-D(G(Z)))]

HOW TO TRAIN A GAN?
We represent the discriminator by D(X; θ)
We represent the generator by G(Z; θ)

D(X) : Output of the discriminator / Probability that X came from actual data distribution PD

G(Z) : Output of the generator/A point from the generated data distribution PG

PD = actual data distribution
PG = generated data distribution
Pz = chosen prior in latent vector space

V(D,G) = EX~PD[log(D(X))] + EZ~Pz[log(1-D(G(Z)))]The discriminator maximizes this sum:

So, in your GAN formulation:

The generator minimizes this sum: V(D,G) = EX~PD[log(D(X))] + EZ~Pz[log(1-D(G(Z)))]

Chances of real
data being called

real.

Chances of fake
data being called

fake.

ORIGINAL GAN FORMULATION

ORIGINAL GAN FORMULATION

THE OPTIMAL DISCRIMINATOR
PD = actual data distribution
PG = generated data distribution D(X) = discriminator output

Objective:

THE OPTIMAL GENERATOR

Objective:

PD = actual data distribution
PG = generated data distribution

D(X) = discriminator output
G(Z) = generator output

Generator wants
to minimize this!

THE OPTIMAL GENERATOR

MIN-MAX STATIONARY POINT

• Stationary points need not be stable (depends on the exact
GANs formulation and other factors)

CONTENTS

• GANs Recap

• UNDERSTANDING TRAINING ISSUES IN GANS

• GAN Training and Stabilization

• Wasserstein GANs

• GANstory - GAN Architectures

WHY IS THERE NO STATIC OPTIMAL
DISCRIMINATOR?

• Discriminator indicates the direction in which generator
should move relative to the current generator

• For a given fixed discriminator, the optimal generator outputs
argmax D(X) for all z~Z

• Cannot train generator without training discriminator first

CAUSES OF OPTIMIZATION ISSUES

• Simultaneous updates require a careful balance between
players

• Stationary point exists but there’s no guarantee of reaching it

• If discriminator is undertrained, it guides the generator in the
wrong direction

• If discriminator is overtrained, it is too hard and generator
cannot make much progress

FACTORS AFFECTING ADVERSARIAL
BALANCE

• Different optimizers, learning rates, batch size

• Different architectures, depths, number of parameters

• Training discriminator and generator for different number of
iterations

ADVERSARIAL BALANCE IN TWO PLAYER
GAMES: ROCK-PAPER-SCISSORS

CASE - 1: I play rock-paper-scissors with a probability of

(0.36, 0.32, 0.32)

• What is your best strategy?

• What is your probability of winning?

ADVERSARIAL BALANCE IN TWO PLAYER
GAMES: ROCK-PAPER-SCISSORS

CASE - I1: I play rock-paper-scissors with a probability of

(0.33, 0.33, 0.33)

• What is your optimal strategy?

• What is your probability of winning?

ADVERSARIAL BALANCE IN TWO PLAYER
GAMES: ROCK-PAPER-SCISSORS

Player A plays rock-paper-scissors with a probability of

(0.36, 0.32, 0.32)

ADVERSARIAL BALANCE IN TWO PLAYER
GAMES: ROCK-PAPER-SCISSORS

Player A plays rock-paper-scissors with a probability of

(0.36, 0.32, 0.32)

• GLOBAL OPTIMUM : Both players play uniformly with (0.33, 0.33, 0.33)

ADVERSARIAL BALANCE IN TWO PLAYER
GAMES: ROCK-PAPER-SCISSORS

Player A plays rock-paper-scissors with a probability of

(0.36, 0.32, 0.32)

• If player B optimizes all the way, its optimal strategy is always
paper (0, 1, 0)

ADVERSARIAL BALANCE IN TWO PLAYER
GAMES: ROCK-PAPER-SCISSORS

Player A plays rock-paper-scissors with a probability of

(0.36, 0.32, 0.32)

• If player B optimizes all the way, its optimal strategy is always
paper (0,1,0)

• Now player A should play only scissors (0,0,1)

ADVERSARIAL BALANCE IN TWO PLAYER
GAMES: ROCK-PAPER-SCISSORS

Player A plays rock-paper-scissors with a probability of

(0.36, 0.32, 0.32)

• If player B optimizes all the way, its optimal strategy is always
paper (0,1,0)

• Now player A should play only scissors (0,0,1)

• Now player B should only play rock (1,0,0)

ADVERSARIAL BALANCE IN TWO PLAYER
GAMES: ROCK-PAPER-SCISSORS

Player A plays rock-paper-scissors with a probability of

(0.36, 0.32, 0.32)

• If player B optimizes all the way, its optimal strategy is always paper (0, 1, 0)

• Now player A should play only scissors (0, 0, 1)

• Now player B should only play rock (1, 0, 0)

• Now player A should only play paper (0, 1, 0)

ADVERSARIAL BALANCE IN TWO PLAYER
GAMES: ROCK-PAPER-SCISSORS
Player A plays rock-paper-scissors with a probability of

(0.36, 0.32, 0.32)

• If player B optimizes all the way, its optimal strategy is always paper.

• Now player A should play only scissors

• Now player B should only play rock

• Now player A should only play paper

• …….

TRAINING ISSUES IN GAS

• Oscillations

• Mode Collapse : Generates a small subspace but does not
cover the entire distribution (https://www.youtube.com/
watch?v=ktxhiKhWoEE)

https://www.youtube.com/watch?v=ktxhiKhWoEE
https://www.youtube.com/watch?v=ktxhiKhWoEE

CONTENTS

• GANs Recap

• Understanding Training Issue in GANs

• GAN TRAINING AND STABILIZATION

• Wasserstein GANs

• GANstory - GAN Architectures

IMPROVED TECHNIQUES FOR TRAINING GANS (2016)

A collection of interesting techniques and experiments

• Feature Matching

• Minibatch Discrimination

• Historical Averaging

• One-sided Label Smoothing

• Virtual Batch Normalization

FEATURE MATCHING

MINIBATCH DISCRIMINATION

HISTORICAL AVERAGING

ONE-SIDED LABEL SMOOTHING

VIRTUAL BATCH NORMALIZATION

CONTENTS

• GANs Recap

• Understanding Training Issue in GANs

• GAN Training and Stabilization

• WASSERSTEIN GANS

• GANstory - GAN Architectures

WASSERSTEIN DISTANCE
• The distance between probability distributions

• Intuitively, each distribution is viewed as a unit amount of earth (soil)

• The total Σ mass × mean distance required to transform one distribution to another

• Also called earth mover’s distance

Red points, Blue points represent two different distributions.

WASSERSTEIN DISTANCE

Red points, Blue points represent two different distributions.

THE GAME OF DISTANCE MEASURES

THE GAME OF DISTANCE MEASURES

VAE

THE GAME OF DISTANCE MEASURES

VAE

KL Divergence

THE GAME OF DISTANCE MEASURES

VAE GANs

KL Divergence

THE GAME OF DISTANCE MEASURES

VAE GANs

KL Divergence
Jenson-
Shanon

Divergence

THE GAME OF DISTANCE MEASURES

VAE GANs WGANs

KL Divergence
Jenson-
Shanon

Divergence

Wasserstein
Distance

KL-DIVERGENCE

X = 0 X = 1

P(X) Q(X)

Let θ be the distance between the two peaks of the distribution
If θ ≠ 0, KL(P||Q) = 1 log(1/0) = ∞
If θ = 0, KL(P||Q) = 1 log(1/1) = 0

Not differentiable w.r.t θ

JENSON-SHANON DIVERGENCE

X = 0 X = 1

P(X) Q(X)

Let θ be the distance between the two peaks of the distribution
If θ ≠ 0, JSD(P||Q) = 0.5 * (1 log(1/0.5) + 1 log(1/0.5)) = log4

If θ = 0, JSD(P||Q) = 0.5 * (1 log(1/1) + 1 log(1/1)) = 0

Not differentiable w.r.t θ

WASSERSTEIN DISTANCE

X = 0 X = 1

P(X) Q(X)

W(P,Q) = | θ |

Differentiable w.r.t θ !!

JSD VS WASSERSTEIN (EM)

WASSERSTEIN (EM) VS JSD

• Distance value is not constant for non-overlapping distributions
• Differentiable w.r.t θ

WGAN

Kantorovich-Rubinstein duality

WGAN

Kantorovich-Rubinstein duality

D should be a 1-Lipschitz function

WGAN

Kantorovich-Rubinstein duality

D should be a 1-Lipschitz function

Weight clipping:
• Restrict weights between [-c, c]

WGAN-GP

A function is 1-Lipschitz if its gradients are at most 1 everywhere.

WGAN-GP

A function is 1-Lipschitz if its gradients are at most 1 everywhere.

Gradient penalty introduces a softer constraint on gradients

CONTENTS

• GANs Recap

• Understanding Training Issue in GANs

• GAN Training and Stabilization

• Wasserstein GANs

• GANSTORY - GAN ARCHITECTURES

GANS PROGRESSION

https://twitter.com/goodfellow_ian/status/1084973596236144640?lang=en

• Better quality
• High Resolution

GANS PROGRESSION

2014

Original
GANs
Paper

2015 2016 2017 2018 2019 2020

GANS PROGRESSION

2014

Original
GANs
Paper

Conditional
GANs

2015 2016 2017 2018 2019 2020

GANS PROGRESSION

2014

Original
GANs
Paper

Conditional
GANs

2015 2016 2017 2018 2019 2020

GANS PROGRESSION

2014

Original
GANs
Paper

Conditional
GANs

2015 2016 2017 2018 2019 2020

GANS PROGRESSION

2014

Original
GANs
Paper

Conditional
GANs

2015 2016 2017 2018 2019 2020

LapGAN

GANS PROGRESSION

2014

Original
GANs
Paper

Conditional
GANs

2015 2016 2017 2018 2019 2020

LapGAN

DCGAN

GANS PROGRESSION

2014

Original
GANs
Paper

Conditional
GANs

2015 2016 2017 2018 2019 2020

LapGAN

DCGAN

Improved
Techniques for
Training GANS

GANS PROGRESSION

2014

Original
GANs
Paper

Conditional
GANs

2015 2016 2017 2018 2019 2020

LapGAN

DCGAN

Improved
Techniques for
Training GANS

WGAN

GANS PROGRESSION

2014

Original
GANs
Paper

Conditional
GANs

2015 2016 2017 2018 2019 2020

LapGAN

DCGAN

Improved
Techniques for
Training GANS

WGAN

WGAN-GP

GANS PROGRESSION

2014

Original
GANs
Paper

Conditional
GANs

2015 2016 2017 2018 2019 2020

LapGAN

DCGAN

Improved
Techniques for
Training GANS

WGAN

WGAN-GP

STARGAN

GANS PROGRESSION

2014

Original
GANs
Paper

Conditional
GANs

2015 2016 2017 2018 2019 2020

LapGAN

DCGAN

Improved
Techniques for
Training GANS

WGAN

WGAN-GP

STARGAN

BigGAN

QUESTIONS?

