Deep Learning Recurrent Networks: Part 4 Spring 2021

Story so far

- Recurrent structures can be trained by minimizing the divergence between the *sequence* of outputs and the *sequence* of desired outputs
 - Through gradient descent and backpropagation
- The challenge: Defining this divergence
 - Inputs and outputs may not be time aligned or even synchronous

Images from Karpathy

- Conventional MLP
- Time-synchronous outputs
 - E.g. part of speech tagging

This is a regular MLP

- No recurrence
 - Exactly as many outputs as inputs
 - The output at time t is unrelated to the output at $t' \neq t$.

Learning in a regular MLP for series

- In the context of analyzing time series, the divergence to minimize is still the divergence between two series
 - Must be differentiable w.r.t every Y(t)
- In this setting: One-to-one correspondence between actual and target outputs
- Common assumption: Total divergence is the sum of *local* divergences at individual times
 - Simplifies model and maths

- Gradient backpropagated at each time $\nabla_{Y(t)}Div(Y_{target}(1...T), Y(1...T))$
- Common assumption: One-to-one corresponde

$$Div(Y_{target}(1 \dots T), Y(1 \dots T)) = \sum_{t} Div(Y_{target}(t), Y(t))$$

$$7_{Y(t)}Div(Y_{target}(1 \dots T), Y(1 \dots T)) = \nabla_{Y(t)}Div(Y_{target}(t), Y(t))$$

- This is further backpropagated to update weights etc

Typical Divergence for classification: $Div(Y_{target}(t), Y(t)) = KL(Y_{target}(t), Y(t))$

- Conventional MLP
- Time-synchronous outputs
 - E.g. part of speech tagging

Time synchronous network

- Network produces one output for each input
 - With one-to-one correspondence
 - E.g. Assigning grammar tags to words
 - May require a bidirectional network to consider both past and future words in the sentence

Time-synchronous networks: Inference

- One sided network: Process input left to right and produce output after each input
- Bi-directional network: Process input in both directions
- In all cases, there is an output for every input with exact one-to-one time-synchronous correspondence
 - Will continue to assume unidirectional models for explanations

Back Propagation Through Time

- Train given a set of input-target output pairs that are time synchronous
 - $(\mathbf{X}_i, \mathbf{D}_i)$, where $\mathbf{X}_i = X_{i,0}, ..., X_{i,T}$, $\mathbf{D}_i = D_{i,0}, ..., D_{i,T}$
- The divergence computed is between the sequence of outputs by the network and the desired sequence of outputs Div(Y_{target}(1...T), Y(1...T))

Back Propagation Through Time

First step of backprop: Compute $\nabla_{Y(t)}DIV$ for all t

- The key component is the computation of this derivative!!
- This depends on the definition of "DIV"

BPTT: Time-synchronous recurrence

 Usual assumption: Sequence divergence is the sum of the divergence at individual instants

$$Div(Y_{target}(1 \dots T), Y(1 \dots T)) = \sum_{t} Div(Y_{target}(t), Y(t))$$
$$\nabla_{Y(t)} Div(Y_{target}(1 \dots T), Y(1 \dots T)) = \nabla_{Y(t)} Div(Y_{target}(t), Y(t))$$

Typical Divergence for classification: $Div(Y_{target}(t), Y(t)) = KL(Y_{target}(t), Y(t))$

- Sequence classification: Classifying a full input sequence
 - E.g phoneme recognition
- Order synchronous , time asynchronous sequence-to-sequence generation
 - E.g. speech recognition
 - Exact location of output is unknown a priori

Example..

- Question answering
- Input : Sequence of words
- Output: Answer at the end of the question

Example..

- Speech recognition
- Input : Sequence of feature vectors (e.g. Mel spectra)
- Output: Phoneme ID at the end of the sequence
 - Represented as an N-dimensional output probability vector, where N is the number of phonemes

Inference: Forward pass

- Exact input sequence provided
 - Output generated when the last vector is processed
 - Output is a probability distribution over phonemes
- But what about at *intermediate stages*?

Forward pass

- Exact input sequence provided
 - Output generated when the last vector is processed
 - Output is a probability distribution over phonemes
- Outputs are actually produced for *every* input
 - We only *read* it at the end of the sequence

Training

- The Divergence is only defined at the final input $-DIV(Y_{target}, Y) = KL(Y(T), Phoneme)$
- This divergence must propagate through the net to update all parameters

Training

- The Divergence is only defined at the final input $-DIV(Y_{target}, Y) = KL(Y(T), Phoneme)$
- This divergence must propagate through the net to update all parameters

Training

Fix: Use these outputs too.

These too must ideally point to the correct phoneme

- Exploiting the untagged inputs: assume the same output for the entire input
- Define the divergence everywhere

$$DIV(Y_{target}, Y) = \sum_{t} w_t KL(Y(t), Phoneme)$$

• Define the divergence everywhere

$$DIV(Y_{target}, Y) = \sum_{t} w_t KL(Y(t), Phoneme)$$

 X_1

*X*₂

Color

of

sky

• Typical weighting scheme for speech: all are equally important

 X_0

- Problem like question answering: answer only expected after the question ends
 - Only w_T is high, other weights are 0 or low

- E.g phoneme recognition
- Order synchronous , time asynchronous sequence-to-sequence generation
 - E.g. speech recognition
 - Exact location of output is unknown a priori

A more complex problem

- Objective: Given a sequence of inputs, asynchronously output a sequence of symbols
 - This is just a simple concatenation of many copies of the simple "output at the end of the input sequence" model we just saw
- But this simple extension complicates matters..

The sequence-to-sequence problem

- How do we know when to output symbols
 - In fact, the network produces outputs at every time
 - Which of these are the real outputs
 - Outputs that represent the definitive occurrence of a symbol

The actual output of the network

At each time the network outputs a probability for each output symbol given all inputs until that time

 E.g. y₄^D = prob(s₄ = D|X₀...X₄)

Recap: The output of a network

- Any neural network with a softmax (or logistic) output is actually outputting an estimate of the *a posteriori* probability of the classes given the output $[P(c_1|X), P(c_2|X), ..., P(c_K|X)]$
- Selecting the class with the highest probability results in *maximum a posteriori probability* classification

 $Class = \operatorname*{argmax}_{i} P(Y_i | X)$

• We use the same principle here

Overall objective

• Find most likely symbol sequence given inputs $S_0 \dots S_{K-1} = \underset{S'_0 \dots S'_{K-1}}{\operatorname{argmax}} prob(S'_0 \dots S'_{K-1} | X_0 \dots X_{N-1})$

• Option 1: Simply select the most probable symbol at each time

- Option 1: Simply select the most probable symbol at each time
 - Merge adjacent repeated symbols, and place the actual emission of the symbol in the final instant

Simple pseudocode

Assuming y(t, i), t = 1 ... T, i = 1 ... N is already computed using the underlying RNN

```
n = 1
best(1) = argmax<sub>i</sub>(y(1,i))
for t = 1:T
    best(t) = argmax<sub>i</sub>(y(t,i))
    if (best(t) != best(t-1))
        out(n) = best(t-1))
        time(n) = t-1
        n = n+1
```


- Option 1: Simply select the most probable symbol at each time
 - Merge adjacent repeated symbols, and place the actual emission of the symbol in the final instant
 31

- Option 1: Simply select the most probable symbol at each time
 - Merge adjacent repeated symbols, and place the actual emission of the symbol in the final instant

- Option 2: Impose external constraints on what sequences are allowed
 - *E.g.* only allow sequences corresponding to dictionary words
 - *E.g. Sub-symbol* units (like in HW1 what were they?)
 - *E.g.* using special "separating" symbols to separate repetitions

- Option 2: Impose external constraints on what sequences are allowed
 - *E.g.* only allow sequences corresponding to dictionary words
 - *E.g. Sub-symbol* units (like in HW1 what were they?)
 - *E.g.* using special "separating" symbols to separate repetitions

Decoding

- This is in fact a *suboptimal* decode that actually finds the most likely *time-synchronous* output sequence
 - Which is not necessarily the most likely order-synchronous sequence
 - The "merging" heuristics do not guarantee optimal order-synchronous sequences
 - We will return to this topic later

The sequence-to-sequence problem

- How do we know when to output symbols
 - In fact, the network produces outputs at every time
 - Which of these are the real outputs
- How do we *train* these models?
Training

- Training data: input sequence + output sequence
 - Output sequence length <= input sequence length</p>
- Given output symbols *at the right locations*
 - The phoneme /B/ ends at X_2 , /AH/ at X_6 , /T/ at X_9

The "alignment" of labels

- The time-stamps of the output symbols give us the "alignment" of the output sequence to the input sequence
 - Which portion of the input aligns to what symbol
- Simply knowing the output sequence does not provide us the alignment
 - This is extra information

Training with alignment

- Training data: input sequence + output sequence
 - Output sequence length <= input sequence length</p>
- Given the *alignment* of the output to the input
 - The phoneme /B/ ends at X_2 , /AH/ at X_6 , /T/ at X_9

• Either just define Divergence as: $DIV = KL(Y_2, B) + KL(Y_6, AH) + KL(Y_9, T)$

• Or..

- Either just define Divergence as: $DIV = KL(Y_2, B) + KL(Y_6, AH) + KL(Y_9, T)$
- Or repeat the symbols over their duration

$$DIV = \sum_{t} KL(Y_t, symbol_t) = -\sum_{t} \log Y(t, symbol_t)_{41}$$

Problem: No timing information provided /B/ /AH/ /T/

- Only the sequence of output symbols is provided for the training data
 - But no indication of which one occurs where
- How do we compute the divergence?
 - And how do we compute its gradient w.r.t. Y_t

Training *without* alignment

- We know how to train if the alignment is provided
- Problem: Alignment is *not* provided
- Solution:
 - 1. Guess the alignment
 - 2. Consider *all possible* alignments

Solution 1: Guess the alignment /F/ /F/ /IY/ /IY/ /IY/ /B/ /B/ /IY/ /F/ /F/ *Y*₀ *Y*₃ Y_4 Y_5 Y_6 Y_8 Y_1 Y_7 Y_9 Y_2 *X*₃ X_4 *X*₆ X_9 X_0 X_1 *X*₂ X_5 X_7 X_8

- Guess an initial alignment and iteratively refine it as the model improves
- Initialize: Assign an initial alignment
 - Either randomly, based on some heuristic, or any other rationale
- Iterate:
 - Train the network using the current alignment
 - *Reestimate* the alignment for each training instance

Solution 1: Guess the alignment /IY/ /F/ /F/ **/**B/ /IY/ /IY/ /B/ /IY/ /F/ /F/ *Y*₃ Y_4 Y_5 *Y*₆ Y_0 Y_1 Y_7 Y_8 Y_9 Y_2 *X*₃ X_1 X_4 *X*₆ X_9 *X*₀ *X*₂ X_5 X_7 X_8

- Guess an initial alignment and iteratively refine it as the model improves
- Initialize: Assign an initial alignment
 - Either randomly, based on some heuristic, or any other rationale
- Iterate:
 - Train the network using the current alignment
 - *Reestimate* the alignment for each training instance

Characterizing the alignment

/B/	/B/	/B/	/ B /	/AH/	/AH/	/AH/	/AH/	/T/	/т/
X ₀	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	<i>X</i> ₇	<i>X</i> ₈	<u>X</u> 9
/B/	/B/	/AH/	/AH/	/AH/	/AH/	/AH/	/T/	/T/	/т/
X ₀	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<u>X</u> ₄	<i>X</i> ₅	<i>X</i> ₆	<i>X</i> ₇	<i>X</i> ₈	<u>X</u> 9
/B/	/B/	/ B /	/AH/	/AH/	/AH/	/T/	/T/	/т/	/т/
X ₀	<u>X</u> 1	<i>X</i> ₂	<i>X</i> ₃	X_4	<i>X</i> ₅	<i>X</i> ₆	<i>X</i> ₇	<i>X</i> ₈	<u>X</u> 9

- An alignment can be represented as a repetition of symbols
 - Examples show different alignments of /B/ /AH/ /T/ to $X_0 \dots X_9$

Estimating an alignment

- Given:
 - The unaligned K-length symbol sequence $S = S_0 \dots S_{K-1}$ (e.g. /B/ /IY/ /F/ /IY/)
 - An *N*-length input ($N \ge K$)
 - And a (trained) recurrent network
- Find:
 - An N-length expansion $s_0 \dots s_{N-1}$ comprising the symbols in S in strict order

• e.g.
$$S_0 S_0 S_1 S_1 S_1 S_2 \dots S_{K-1}$$

- i.e. $s_0 = S_0, s_1 = S_0, s_2 = S_1, s_3 = S_1, s_4 = S_1, \dots s_{N-1} = S_{K-1}$
- E.g. /B/ /B/ /IY/ /IY/ /IY/ /F/ /F/ /F/ /F/ /IY/ ..
- Outcome: an *alignment* of the target symbol sequence $S_0 \dots S_{K-1}$ to the input $X_0 \dots X_{N-1}$

Estimating an alignment

- Alignment problem:
- Find

argmax $P(s_0, s_1, \dots, s_{N-1} | S_0, S_1, \dots, S_K, X_0, X_1, \dots, X_{N-1})$

Such that

$$compress(s_0, s_1, \dots, s_{N-1}) \equiv S_0, S_1, \dots, S_K$$

compress() is the operation of compressing repetitions into one

Recall: The actual output of the network

• At each time the network outputs a probability for *each* output symbol

Recall: unconstrained decoding

- We find the most likely sequence of symbols
 - (Conditioned on input $X_0 \dots X_{N-1}$)
- This may not correspond to an expansion of the desired symbol sequence
 - E.g. the unconstrained decode may be /AH//AH//AH//D//D//AH//F//IY//IY/
 - Contracts to /AH/ /D/ /AH/ /F/ /IY/
 - Whereas we want an expansion of /B//IY//F//IY/

Constraining the alignment: Try 1

Block out all rows that do not include symbols from the target sequence

– E.g. Block out rows that are not /B/ /IY/ or /F/

Blocking out unnecessary outputs

Compute the entire output (for all symbols)

Copy the output values for the target symbols into the secondary reduced structure 52

Constraining the alignment: Try 1

- Only decode on reduced grid
 - We are now assured that only the appropriate symbols will be hypothesized

Constraining the alignment: Try 1

- Only decode on reduced grid
 - We are now assured that only the appropriate symbols will be hypothesized
- Problem: This still doesn't assure that the decode sequence correctly expands the target symbol sequence
 - E.g. the above decode is not an expansion of /B//IY//F//IY/
- Still needs additional constraints

Try 2: Explicitly arrange the constructed table

$\begin{array}{c c} / B / & y_0^B \\ / IY / & y_0^{IY} \\ / F / & y_0^F \\ / IY / & y_0^{IY} \end{array}$	$\begin{array}{ c c c }\hline y_1^B & y_2^B \\ \hline y_1^{IY} & y_2^{IY} \\ \hline y_1^F & y_2^F \\ \hline y_1^{IY} & y_2^{IY} \\ \hline y_2^{IY} & y_2^{IY} \\ \hline \end{array}$	$ \begin{array}{c c} y_3^B \\ y_3^{IY} \\ y_3^{IY} \\ y_4^{IY} \\ y_4^F \\ y_4^F \\ y_4^{IY} \\ y_4^{IY} \\ y_4^{IY} \\ y_4^{IY} \\ \end{array} $	$\begin{array}{c c} y_5^B & y_6^B \\ \hline y_5^{IY} & y_6^{IY} \\ \hline y_5^F & y_6^F \\ \hline y_5^{IY} & y_6^{IY} \\ \end{array}$	$\begin{array}{c c} y_7^B & y_8^B \\ y_7^{IY} & y_8^{IY} \\ y_7^F & y_8^F \\ y_7^{IY} & y_8^{IY} \\ y_7^{IY} & y_8^{IY} \end{array}$
$\begin{array}{c c} /AH / & y_0^{AH} \\ /B / & y_0^B \\ /D / & y_0^D \\ /EH / & y_0^{EH} \\ /EH / & y_0^{FH} \\ /IY / & y_0^{IY} \\ /F / & y_0^F \\ /G / & y_0^G \end{array}$	$\begin{array}{c c} y_1^{AH} & y_2^{AH} \\ \hline y_1^B & y_2^B \\ \hline y_1^D & y_2^D \\ \hline y_1^{EH} & y_2^{EH} \\ \hline y_1^{IY} & y_2^{IY} \\ \hline y_1^F & y_2^F \\ \hline y_1^G & y_2^G \\ \hline \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} y_{5}^{AH} & y_{6}^{AH} \\ \hline y_{5}^{B} & y_{6}^{B} \\ \hline y_{5}^{D} & y_{6}^{D} \\ \hline y_{5}^{EH} & y_{6}^{EH} \\ \hline y_{5}^{F} & y_{6}^{F} \\ \hline y_{5}^{F} & y_{6}^{F} \\ \hline y_{5}^{G} & y_{6}^{G} \\ \hline \end{array}$	$\begin{array}{c c} y_7^{AH} & y_8^{AH} \\ y_7^{B} & y_8^{B} \\ y_7^{D} & y_8^{B} \\ y_7^{D} & y_8^{B} \\ y_7^{FH} & y_8^{EH} \\ y_7^{IY} & y_8^{IY} \\ y_7^{F} & y_8^{F} \\ y_7^{G} & y_8^{G} \\ \end{array}$

Arrange the constructed table so that from top to bottom it has the exact sequence of symbols required

Try 2: Explicitly arrange the constructed table

Note: If a symbol occurs multiple times, we repeat the row in the appropriate location.

E.g. the row for /IY/ occurs twice, in the 2nd and 4th positions

J					· · ·					
/B/	\mathcal{Y}_0^B	\mathcal{Y}_1^B	y_2^B	y_3^B	y_4^B	\mathcal{Y}_5^B	y_6^B	\mathcal{Y}_7^B	\mathcal{Y}_8^B	
/D/	y_0^D	y_1^D	y_2^D	y_3^D	y_4^D	\mathcal{Y}_5^D	y_6^D	\mathcal{Y}_7^D	y_8^D	
/EH/	y_0^{EH}	y_1^{EH}	y_2^{EH}	y_3^{EH}	y_4^{EH}	\mathcal{Y}_5^{EH}	y_6^{EH}	y_7^{EH}	\mathcal{Y}_8^{EH}	
/IY/	y_0^{IY}	\mathcal{Y}_1^{IY}	y_2^{IY}	y_3^{IY}	\mathcal{Y}_4^{IY}	\mathcal{Y}_5^{IY}	y_6^{IY}	\mathcal{Y}_7^{IY}	y_8^{IY}	
/F/	y_0^F	y_1^F	y_2^F	y_3^F	y_4^F	\mathcal{Y}_5^F	\mathcal{Y}_6^F	y_7^F	y_8^F	
/G/	y_0^G	\mathcal{Y}_1^G	y_2^G	y_3^G	y_4^G	y_5^G	y_6^G	\mathcal{Y}_7^G	y_8^G	
	<u> </u>	rt.	<u> </u>		<u> </u>	<u>بل</u> ے		<u> </u>		
Arrange the constructed table so that from top to bottom it has the exact										
se	sequence of symbols required									
	•	·								

Composing the graph

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#T = length of input

#First create output table
For i = 1:N
 s(1:T,i) = y(1:T, S(i))

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

/B/	y_0^B	y_1^B	y_2^B	y_3^B	y_4^B	y_5^B	y_6^B	y_7^B	y_8^B
/IY/	y_0^{IY}	y_1^{IY}	y_2^{IY}	y_3^{IY}	y_4^{IY}	y_5^{IY}	y_6^{IY}	y_7^{IY}	y_8^{IY}
/F/	y_0^F	y_1^F	y_2^F	y_3^F	y_4^F	y_5^F	y_6^F	y_7^F	y_8^F
/IY/	y_0^{IY}	y_1^{IY}	y_2^{IY}	y_3^{IY}	y_4^{IY}	y_5^{IY}	y_6^{IY}	y_7^{IY}	y_8^{IY}

Explicitly constrain alignment

- Constrain that the first symbol in the decode *must* be the top left block
- The last symbol *must* be the bottom right
- The rest of the symbols must follow a sequence that *monotonically* travels down from top left to bottom right
 - I.e. symbol chosen at any time is at the same level or at the next level to the symbol at the previous time
- This guarantees that the sequence *is* an expansion of the target sequence
 - /B/ /IY/ /F/ /IY/ in this case

Explicitly constrain alignment

- Compose a graph such that every path in the graph from source to sink represents a valid alignment
 - Which maps on to the target symbol sequence (/B//IY//F//IY/)
- Edge scores are 1
- Node scores are the probabilities assigned to the symbols by the neural network

Path Score (probability)

- Compose a graph such that every path in the graph from source to sink represents a valid alignment
 - Which maps on to the target symbol sequence (/B//IY//F//IY/)
- Edge scores are 1
- Node scores are the probabilities assigned to the symbols by the neural network
- The "score" of a path is the product of the probabilities of all nodes along the path
- E.g. the probability of the marked path is

 $Scr(Path) = y_0^B y_1^B y_2^{IY} y_3^{IY} y_4^F$

Path Score (probability)

- Compose a graph such that every path in the graph from source to sink represents a valid alignment
 - Which maps on to the target symbol sequence (/B//IY//F//IY/)
- Edge scores are 1
- Node scores are the probabilities assigned to the symbols by the neural network
- The "score" of a path is the product of the probabilities of all nodes along the path

Figure shows a typical end-to-end path. There are an exponential number of such paths. Challenge: Find the path with the highest score (probability)

Explicitly constrain alignment

 Find the *most probable path* from source to sink using any dynamic programming algorithm

– E.g. The Viterbi algorithm

Viterbi algorithm: Basic idea

- The best path to any node *must* be an extension of the best path to one of its parent nodes
 - Any other path would necessarily have a lower probability
- The best parent is simply the parent with the bestscoring best path

Viterbi algorithm: Basic idea

$$BestPath(y_0^B \to y_3^F) = BestPath(y_0^B \to y_2^{IY})y_3^F$$

or
$$BestPath(y_0^B \to y_2^F)y_3^F$$

 $BestPath(y_0^B \rightarrow y_3^F) = BestPath(y_0^B \rightarrow BestParent)y_3^F$

• The best parent is simply the parent with the best-scoring best path *BestParent*

 $= argmax_{Parent \in (y_2^{IY}, y_2^F)}(Score(BestPath(y_0^B \rightarrow Parent)))$

- Dynamically track the best path (and the score of the best path) from the source node to every node in the graph
 - At each node, keep track of
 - The best incoming parent edge
 - The score of the best path from the source to the node through this best parent edge
- Eventually compute the best path from source to sink

- First, some notation:
- $y_t^{S(r)}$ is the probability of the target symbol assigned to the *r*-th row in the *t*-th time (given inputs $X_0 \dots X_t$)
 - E.g., S(0) = /B/
 - The scores in the 0^{th} row have the form y_t^B
 - E.g. S(1) = S(3) = /IY/
 - The scores in the 1st and 3rd rows have the form y_t^{IY}
 - E.g. S(2) = /F/
 - The scores in the 2^{nd} row have the form y_t^F

• Initialization:

BP(0, i) = null, i = 0 ... K - 1

BP := Best Parent Bscr := Bestpath Score to node

 $Bscr(0,0) = y_0^{S(0)}, Bscr(0,i) = 0 for i = 1 ... K - 1$

• Initialization:

$$BP(0,i) = null, \ i = 0 \dots K - 1$$

$$Bscr(0,0) = y_0^{S(0)}, \ Bscr(0,i) = 0 \ for \ i = 1 \dots K - 1$$

• for $t = 1 \dots T - 1$

for
$$l = 0 ... K - 1$$

- $BP(t, l) = \underset{p \in parents(l)}{\operatorname{argmax}} Bscr(t 1, p)$
- $Bscr(t, l) = Bscr(BP(t, l)) \times y_t^{S(l)}$

• Initialization:

 $BP(0,i) = null, \ i = 0 \dots K - 1$ $Bscr(0,0) = y_0^{S(0)}, \ Bscr(0,i) = 0 \ for \ i = 1 \dots K - 1$

• for $t = 1 \dots T - 1$

 $BP(t,0) = 0; Bscr(t,0) = Bscr(t-1,0) \times y_t^{S(0)}$

• Initialization:

$$BP(0,i) = null, \ i = 0 \dots K - 1$$

Bscr(0,0) = $y_0^{S(0)}$, Bscr(0,i) = 0 for $i = 1 \dots K - 1$

• for $t = 1 \dots T - 1$

$$BP(t,0) = 0; Bscr(t,0) = Bscr(t-1,0) \times y_t^{S(0)}$$

for $l = 1 \dots K - 1$

•
$$BP(t,l) = \begin{pmatrix} l-1: if \left(Bscr(t-1,l-1) > Bscr(t-1,l)\right) \\ l:else \end{pmatrix}$$

•
$$Bscr(t,l) = Bscr(BP(t,l)) \times y_t^{S(l)}$$

]		
$\left \right $	\leftarrow	
	70	

• Initialization:

$$BP(0,i) = null, \ i = 0 \dots K - 1$$

$$Bscr(0,0) = y_0^{S(0)}, \ Bscr(0,i) = 0 \ for \ i = 1 \dots K - 1$$

• for $t = 1 \dots T - 1$

 $BP(t,0) = 0; Bscr(t,0) = Bscr(t-1,0) \times y_t^{S(0)}$ for $l = 1 \dots K - 1$

•
$$BP(t,l) = \begin{pmatrix} l-1: if (Bscr(t-1,l-1) > Bscr(t-1,l)) \ l-1; \\ l:else \end{pmatrix}$$

• $Bscr(t,l) = Bscr(BP(t,l)) \times y_t^{S(l)}$
71

• Initialization:

ullet

$$BP(0,i) = null, \ i = 0 \dots K - 1$$

$$Bscr(0,0) = y_0^{S(0)}, \ Bscr(0,i) = 0 \ for \ i = 1 \dots K - 1$$

for $t = 1 \dots T - 1$

 $BP(t,0) = 0; Bscr(t,0) = Bscr(t-1,0) \times y_t^{S(0)}$ for l = 1 ... K - 1

•
$$BP(t,l) = \begin{pmatrix} l-1: if (Bscr(t-1,l-1) > Bscr(t-1,l)) \ l-1; \\ l:else \end{pmatrix}$$

•
$$Bscr(t,l) = Bscr(BP(t,l)) \times y_t^{S(l)}$$
 72

• Initialization:

 $BP(0,i) = null, \ i = 0 \dots K - 1$ $Bscr(0,0) = y_0^{S(0)}, \ Bscr(0,i) = 0 \ for \ i = 1 \dots K - 1$

• for $t = 1 \dots T - 1$

 $BP(t,0) = 0; Bscr(t,0) = Bscr(t-1,0) \times y_t^{S(0)}$ for $l = 1 \dots K - 1$

- BP(t,l) = (if (Bscr(t-1,l-1) > Bscr(t-1,l)) l-1; else l)
- $Bscr(t, l) = Bscr(BP(t, l)) \times y_t^{S(l)}$

• Initialization:

 $BP(0,i) = null, \ i = 0 \dots K - 1$ $Bscr(0,0) = y_0^{S(0)}, \ Bscr(0,i) = 0 \ for \ i = 1 \dots K - 1$

• for $t = 1 \dots T - 1$

 $BP(t,0) = 0; Bscr(t,0) = Bscr(t-1,0) \times y_t^{S(0)}$ for $l = 1 \dots K - 1$

- BP(t,l) = (if (Bscr(t-1,l-1) > Bscr(t-1,l)) l-1; else l)
- $Bscr(t, l) = Bscr(BP(t, l)) \times y_t^{S(l)}$

• Initialization:

$$BP(0,i) = null, \ i = 0 \dots K - 1$$

Bscr(0,0) = $y_0^{S(0)}$, Bscr(0,i) = 0 for $i = 1 \dots K - 1$

• for $t = 1 \dots T - 1$

$$BP(t,0) = 0; Bscr(t,0) = Bscr(t-1,0) \times y_t^{S(0)}$$

for $l = 1 \dots K - 1$

• $Bscr(t,l) = Bscr(BP(t,l)) \times y_t^{S(l)}$

•
$$BP(t,l) = \begin{pmatrix} l-1: if (Bscr(t-1,l-1) > Bscr(t-1,l)) \ l-1; \\ l:else \end{pmatrix}$$

- / >

• Initialization:

$$BP(0,i) = null, \ i = 0 \dots K - 1$$

Bscr(0,0) = $y_0^{S(0)}$, Bscr(0,i) = 0 for $i = 1 \dots K - 1$

• for $t = 1 \dots T - 1$

$$BP(t,0) = 0; Bscr(t,0) = Bscr(t-1,0) \times y_t^{S(0)}$$

for $l = 1 \dots K - 1$

• $Bscr(t,l) = Bscr(BP(t,l)) \times y_t^{S(l)}$

•
$$BP(t,l) = \begin{pmatrix} l-1: if (Bscr(t-1,l-1) > Bscr(t-1,l)) \ l-1; \\ l:else \end{pmatrix}$$

• Initialization:

$$BP(0,i) = null, \ i = 0 \dots K - 1$$

Bscr(0,0) = $y_0^{S(0)}$, Bscr(0,i) = 0 for $i = 1 \dots K - 1$

• for $t = 1 \dots T - 1$

$$BP(t,0) = 0; Bscr(t,0) = Bscr(t-1,0) \times y_t^{S(0)}$$

for $l = 1 \dots K - 1$

• $Bscr(t, l) = Bscr(BP(t, l)) \times y_t^{S(l)}$

•
$$BP(t,l) = \begin{pmatrix} l-1: if (Bscr(t-1,l-1) > Bscr(t-1,l)) \ l-1; \\ l:else \end{pmatrix}$$

• s(T-1) = S(K-1)

- s(T-1) = S(K-1)
- for t = T 1 downto 1

s(t-1) = BP(s(t))

- s(T-1) = S(K-1)
- for t = T 1 downto 1

s(t-1) = BP(s(t))

/B/ /B/ /IY/ /F/ /F/ /IY/ /IY/ /IY/ /IY/

VITERBI

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#T = length of input

```
#First create output table
For i = 1:N
   s(1:T,i) = y(1:T, S(i))
```

#Now run the Viterbi algorithm

```
# First, at t = 1
BP(1,1) = -1
Bscr(1,1) = s(1,1)
Bscr(1,2:N) = 0
for t = 2:T
BP(t,1) = 1;
Bscr(t,1) = Bscr(t-1,1)*s(t,1)
for i = 1:min(t,N)
BP(t,i) = Bscr(t-1,i) > Bscr(t-1,i-1) ? i : i-1
Bscr(t,i) = Bscr(t-1,BP(t,i))*s(t,i)
```

Backtrace

```
AlignedSymbol(T) = N
for t = T downto 2
    AlignedSymbol(t-1) = BP(t,AlignedSymbol(t))
```

Using 1...N and 1...T indexing, instead of 0...N-1, 0...T-1, for convenience of notation

VITERBI

table

Do not need explicit construction of output

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#T = length of input

```
#First create output table
For i = 1:N
    s(1:T,i) = v(1:T, S(i))
```

```
#Now run the Viterbi algorithm
```

```
# First, at t = 1
BP(1,1) = -1
Bscr(1,1) = s(1,1)
Bscr(1,2:N) = 0
for t = 2:T
BP(t,1) = 1;
Bscr(t,1) = Bscr(t-1,1)*s(t,1)
for i = 2:min(t,N)
BP(t,i) = Bscr(t-1,i) > Bscr(t-1,i-1) ? i : i-1
Bscr(t,i) = Bscr(t-1,BP(t,i))*s(t,i)
```

Backtrace

```
AlignedSymbol(T) = N
for t = T downto 2
    AlignedSymbol(t-1) = BP(t,AlignedSymbol(t))
```

Using 1...N and 1...T indexing, instead of 0...N-1, 0...T-1, for convenience of notation

VITERBI

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#T = length of input

Without explicit construction of output table

```
# First, at t = 1
BP(1,1) = -1
Bscr(1,1) = y(1,S(1))
Bscr(1,2:N) = 0
for t = 2:T
BP(t,1) = 1;
Bscr(t,1) = Bscr(t-1,1)*y(t,S(1))
for i = 2:min(t,N)
BP(t,i) = Bscr(t-1,i) > Bscr(t-1,i-1) ? i : i-1
Bscr(t,i) = Bscr(t-1,BP(t,i))*y(t,S(i))
```

Backtrace

```
AlignedSymbol(T) = N
for t = T downto 2
    AlignedSymbol(t-1) = BP(t,AlignedSymbol(t))
```

Using 1...N and 1...T indexing, instead of 0...N-1, 0...T-1, for convenience of notation

Assumed targets for training with the Viterbi algorithm

/B/ /B/ /IY/ /F/ /F/ /IY//IY/ /IY/ /IY/

Gradients from the alignment

/B/ /B/ /IY/ /F/ /F/ /IY/ /IY/ /IY/ /IY/

$$DIV = \sum_{t} KL(Y_{t}, symbol_{t}^{bestpath}) = -\sum_{t} \log Y(t, symbol_{t}^{bestpath})$$

• The gradient w.r.t the *t*-th output vector *Y_t*

$$\nabla_{Y_t} DIV = \begin{bmatrix} 0 & 0 & \cdots & \frac{-1}{Y(t, symbol_t^{bestpath})} & 0 & \cdots & 0 \end{bmatrix}$$

 Zeros except at the component corresponding to the target *in the estimated* alignment

The "decode" and "train" steps may be combined into a single "decode, find alignment compute derivatives" step for SGD and mini-batch updates

Iterative update

- Option 1:
 - Determine alignments for every training instance
 - Train model (using SGD or your favorite approach) on the entire training set
 - Iterate
- Option 2:
 - During SGD, for each training instance, find the alignment during the forward pass
 - Use in backward pass

Iterative update: Problem

- Approach heavily dependent on initial alignment
- Prone to poor local optima
- Alternate solution: Do not commit to an alignment during any pass..

Next Class

- Training without explicit alignment..
 - Connectionist Temporal Classification
 - Separating repeated symbols
- The CTC decoder..