Deep Learning

Recurrent Networks: Part 4

Spring 2021
Story so far

- Recurrent structures can be trained by minimizing the divergence between the *sequence* of outputs and the *sequence* of desired outputs
 - Through gradient descent and backpropagation

- The challenge: Defining this divergence
 - Inputs and outputs may not be time aligned or even synchronous
Variants of recurrent nets

- Conventional MLP
- Time-synchronous outputs
 - E.g. part of speech tagging

Images from Karpathy
This is a regular MLP

- No recurrence
 - Exactly as many outputs as inputs
 - The output at time t is unrelated to the output at $t' \neq t$.
Learning in a regular MLP for series

• In the context of analyzing time series, the divergence to minimize is still the divergence between two series
 – Must be differentiable w.r.t every Y(t)

• In this setting: One-to-one correspondence between actual and target outputs

• Common assumption: Total divergence is the sum of local divergences at individual times
 – Simplifies model and maths
“Series MLP” as a regular MLP

• Gradient backpropagated at each time
 \[\nabla_Y(t) \text{Div}(Y_{target}(1 \ldots T), Y(1 \ldots T)) \]

• Common assumption: One-to-one correspondence
 \[\text{Div}(Y_{target}(1 \ldots T), Y(1 \ldots T)) = \sum_t \text{Div}(Y_{target}(t), Y(t)) \]

\[\nabla_Y(t) \text{Div}(Y_{target}(1 \ldots T), Y(1 \ldots T)) = \nabla_Y(t) \text{Div}(Y_{target}(t), Y(t)) \]

– This is further backpropagated to update weights etc

Typical Divergence for classification: \[\text{Div}(Y_{target}(t), Y(t)) = KL(Y_{target}(t), Y(t)) \]
Variants of recurrent nets

- Conventional MLP
- Time-synchronous outputs
 - E.g. part of speech tagging

Images from Karpathy
Time synchronous network

• Network produces one output for each input
 – With one-to-one correspondence
 – E.g. Assigning grammar tags to words
 • May require a bidirectional network to consider both past and future words in the sentence
Time-synchronous networks: Inference

• One sided network: Process input left to right and produce output after each input

• Bi-directional network: Process input in both directions

• In all cases, there is an output for every input with exact one-to-one time-synchronous correspondence
 – Will continue to assume unidirectional models for explanations
Back Propagation Through Time

• Train given a set of input-target output pairs that are time synchronous
 • \((X_i, D_i), \text{ where } X_i = X_{i,0}, ..., X_{i,T}, D_i = D_{i,0}, ..., D_{i,T}\)

• The divergence computed is between the sequence of outputs by the network and the desired sequence of outputs
 \(Div(Y_{target}(1 ... T), Y(1 ... T))\)
First step of backprop: Compute $\nabla_{Y(t)} DIV$ for all t

- The key component is the computation of this derivative!!
- This depends on the definition of “DIV”
BPTT: Time-synchronous recurrence

- Usual assumption: **Sequence divergence is the sum of the divergence at individual instants**

\[
\text{Div}(Y_{target}(1 \ldots T), Y(1 \ldots T)) = \sum_t \text{Div}(Y_{target}(t), Y(t))
\]

\[
\nabla_{Y(t)} \text{Div}(Y_{target}(1 \ldots T), Y(1 \ldots T)) = \nabla_{Y(t)} \text{Div}(Y_{target}(t), Y(t))
\]

Typical Divergence for classification: \(\text{Div}(Y_{target}(t), Y(t)) = KL(Y_{target}(t), Y(t))\)
Variants of recurrent nets

- Sequence classification: Classifying a full input sequence
 - E.g. phoneme recognition

- Order synchronous, time asynchronous sequence-to-sequence generation
 - E.g. speech recognition
 - Exact location of output is unknown a priori
Example..

- Question answering
- Input: Sequence of words
- Output: Answer at the end of the question
• **Speech recognition**
• **Input**: Sequence of feature vectors (e.g. Mel spectra)
• **Output**: Phoneme ID at the end of the sequence
 – Represented as an N-dimensional output probability vector, where N is the number of phonemes
Inference: Forward pass

- Exact input sequence provided
 - Output generated when the last vector is processed
 - Output is a probability distribution over phonemes

- But what about at *intermediate stages*?
Forward pass

- Exact input sequence provided
 - Output generated when the last vector is processed
 - Output is a probability distribution over phonemes

- Outputs are actually produced for every input
 - We only read it at the end of the sequence
• The Divergence is only defined at the final input
 \[\text{DIV}(Y_{target}, Y) = KL(Y(T), Phoneme) \]
• This divergence must propagate through the net to update all parameters
Training

• The Divergence is only defined at the final input
 \[\text{DIV}(Y_{\text{target}}, Y) = \text{Xent}(Y(T), \text{Phoneme}) \]
• This divergence must propagate through the net to update all parameters
Training

• Exploiting the untagged inputs: assume the same output for the entire input

• Define the divergence everywhere

\[DIV(Y_{target}, Y) = \sum_t w_t Xent(Y(t), Phoneme) \]
Training

- Define the divergence everywhere

\[DIV(Y_{target}, Y) = \sum_t w_t X_{ent}(Y(t), Phoneme) \]

- Typical weighting scheme for speech: all are equally important
- Problem like question answering: answer only expected after the question ends
 - Only \(w_T \) is high, other weights are 0 or low
Variants on recurrent nets

- **Sequence classification**: Classifying a full input sequence
 - E.g. phoneme recognition
- **Order synchronous, time asynchronous sequence-to-sequence generation**
 - E.g. speech recognition
 - Exact location of output is unknown a priori
A more complex problem

• Objective: Given a sequence of inputs, asynchronously output a sequence of symbols
 – This is just a simple concatenation of many copies of the simple “output at the end of the input sequence” model we just saw

• But this simple extension complicates matters..
The *sequence-to-sequence* problem

- How do we know *when* to output symbols
 - In fact, the network produces outputs at *every* time
 - *Which* of these are the *real* outputs
 - Outputs that represent the definitive occurrence of a symbol
The actual output of the network

<table>
<thead>
<tr>
<th>/AH/</th>
<th>y_0^{AH}</th>
<th>y_1^{AH}</th>
<th>y_2^{AH}</th>
<th>y_3^{AH}</th>
<th>y_4^{AH}</th>
<th>y_5^{AH}</th>
<th>y_6^{AH}</th>
<th>y_7^{AH}</th>
<th>y_8^{AH}</th>
</tr>
</thead>
<tbody>
<tr>
<td>/B/</td>
<td>y_0^B</td>
<td>y_1^B</td>
<td>y_2^B</td>
<td>y_3^B</td>
<td>y_4^B</td>
<td>y_5^B</td>
<td>y_6^B</td>
<td>y_7^B</td>
<td>y_8^B</td>
</tr>
<tr>
<td>/D/</td>
<td>y_0^D</td>
<td>y_1^D</td>
<td>y_2^D</td>
<td>y_3^D</td>
<td>y_4^D</td>
<td>y_5^D</td>
<td>y_6^D</td>
<td>y_7^D</td>
<td>y_8^D</td>
</tr>
<tr>
<td>/EH/</td>
<td>y_0^{EH}</td>
<td>y_1^{EH}</td>
<td>y_2^{EH}</td>
<td>y_3^{EH}</td>
<td>y_4^{EH}</td>
<td>y_5^{EH}</td>
<td>y_6^{EH}</td>
<td>y_7^{EH}</td>
<td>y_8^{EH}</td>
</tr>
<tr>
<td>/IY/</td>
<td>y_0^{IY}</td>
<td>y_1^{IY}</td>
<td>y_2^{IY}</td>
<td>y_3^{IY}</td>
<td>y_4^{IY}</td>
<td>y_5^{IY}</td>
<td>y_6^{IY}</td>
<td>y_7^{IY}</td>
<td>y_8^{IY}</td>
</tr>
<tr>
<td>/F/</td>
<td>y_0^F</td>
<td>y_1^F</td>
<td>y_2^F</td>
<td>y_3^F</td>
<td>y_4^F</td>
<td>y_5^F</td>
<td>y_6^F</td>
<td>y_7^F</td>
<td>y_8^F</td>
</tr>
<tr>
<td>/G/</td>
<td>y_0^G</td>
<td>y_1^G</td>
<td>y_2^G</td>
<td>y_3^G</td>
<td>y_4^G</td>
<td>y_5^G</td>
<td>y_6^G</td>
<td>y_7^G</td>
<td>y_8^G</td>
</tr>
</tbody>
</table>

- At each time the network outputs a probability for each output symbol given all inputs until that time
- E.g. $y_4^D = prob(s_4 = D | X_0 ... X_4)$

25
Recap: The output of a network

- Any neural network with a softmax (or logistic) output is actually outputting an estimate of the \textit{a posteriori} probability of the classes given the output

\[P(c_1|X), P(c_2|X), \ldots, P(c_K|X) \]

- Selecting the class with the highest probability results in \textit{maximum a posteriori probability} classification

\[\text{Class} = \arg\max_{i} P(Y_i|X) \]

- We use the same principle here
Overall objective

- Find most likely symbol sequence given inputs

\[S_0 \ldots S_{K-1} = \arg\max S'_{0} \ldots S'_{K-1} | X_0 \ldots X_{N-1} \]
Finding the best output

- Option 1: Simply select the most probable symbol at each time
Finding the best output

- Option 1: Simply select the most probable symbol at each time
 - Merge adjacent repeated symbols, and place the actual emission of the symbol in the final instant
Simple pseudocode

- Assuming $y(t, i), t = 1 \ldots T, i = 1 \ldots N$ is already computed using the underlying RNN

\[
\begin{align*}
n &= 1 \\
\text{best}(1) &= \text{argmax}_i (y(1, i)) \\
\text{for } t &= 1: T \\
\text{best}(t) &= \text{argmax}_i (y(t, i)) \\
\text{if } (\text{best}(t) \neq \text{best}(t-1)) &\Rightarrow \\
\text{out}(n) &= \text{best}(t-1) \\
\text{time}(n) &= t-1 \\
n &= n+1
\end{align*}
\]
Finding the best output

- Option 1: Simply select the most probable symbol at each time
 - Merge adjacent repeated symbols, and place the actual emission of the symbol in the final instant
Finding the best output

• Option 1: Simply select the most probable symbol at each time
 – *Merge* adjacent repeated symbols, and place the actual emission of the symbol in the final instant
Finding the best output

<table>
<thead>
<tr>
<th>/AH/</th>
<th>y_0^1</th>
<th>y_1^1</th>
<th>y_2^1</th>
<th>y_3^1</th>
<th>y_4^1</th>
<th>y_5^1</th>
<th>y_6^1</th>
<th>y_7^1</th>
<th>y_8^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>/B/</td>
<td>y_0^2</td>
<td>y_1^2</td>
<td>y_2^2</td>
<td>y_3^2</td>
<td>y_4^2</td>
<td>y_5^2</td>
<td>y_6^2</td>
<td>y_7^2</td>
<td>y_8^2</td>
</tr>
<tr>
<td>/D/</td>
<td>y_0^3</td>
<td>y_1^3</td>
<td>y_2^3</td>
<td>y_3^3</td>
<td>y_4^3</td>
<td>y_5^3</td>
<td>y_6^3</td>
<td>y_7^3</td>
<td>y_8^3</td>
</tr>
<tr>
<td>/EH/</td>
<td>y_0^4</td>
<td>y_1^4</td>
<td>y_2^4</td>
<td>y_3^4</td>
<td>y_4^4</td>
<td>y_5^4</td>
<td>y_6^4</td>
<td>y_7^4</td>
<td>y_8^4</td>
</tr>
<tr>
<td>/IY/</td>
<td>y_0^5</td>
<td>y_1^5</td>
<td>y_2^5</td>
<td>y_3^5</td>
<td>y_4^5</td>
<td>y_5^5</td>
<td>y_6^5</td>
<td>y_7^5</td>
<td>y_8^5</td>
</tr>
<tr>
<td>/F/</td>
<td>y_0^6</td>
<td>y_1^6</td>
<td>y_2^6</td>
<td>y_3^6</td>
<td>y_4^6</td>
<td>y_5^6</td>
<td>y_6^6</td>
<td>y_7^6</td>
<td>y_8^6</td>
</tr>
<tr>
<td>/G/</td>
<td>y_0^7</td>
<td>y_1^7</td>
<td>y_2^7</td>
<td>y_3^7</td>
<td>y_4^7</td>
<td>y_5^7</td>
<td>y_6^7</td>
<td>y_7^7</td>
<td>y_8^7</td>
</tr>
</tbody>
</table>

- Option 2: Impose external constraints on what sequences are allowed
 - *E.g.* only allow sequences corresponding to dictionary words
 - *E.g.* *Sub-symbol* units (like in HW1 – what were they?)
 - *E.g.* using special “separating” symbols to separate repetitions
Finding the best output

<table>
<thead>
<tr>
<th>/AH/</th>
<th>(y_0^1)</th>
<th>(y_1^1)</th>
<th>(y_2^1)</th>
<th>(y_3^1)</th>
<th>(y_4^1)</th>
<th>(y_5^1)</th>
<th>(y_6^1)</th>
<th>(y_7^1)</th>
<th>(y_8^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>/B/</td>
<td>(y_0^2)</td>
<td>(y_1^2)</td>
<td>(y_2^2)</td>
<td>(y_3^2)</td>
<td>(y_4^2)</td>
<td>(y_5^2)</td>
<td>(y_6^2)</td>
<td>(y_7^2)</td>
<td>(y_8^2)</td>
</tr>
<tr>
<td>/D/</td>
<td>(y_0^3)</td>
<td>(y_1^3)</td>
<td>(y_2^3)</td>
<td>(y_3^3)</td>
<td>(y_4^3)</td>
<td>(y_5^3)</td>
<td>(y_6^3)</td>
<td>(y_7^3)</td>
<td>(y_8^3)</td>
</tr>
<tr>
<td>/EH/</td>
<td>(y_0^4)</td>
<td>(y_1^4)</td>
<td>(y_2^4)</td>
<td>(y_3^4)</td>
<td>(y_4^4)</td>
<td>(y_5^4)</td>
<td>(y_6^4)</td>
<td>(y_7^4)</td>
<td>(y_8^4)</td>
</tr>
<tr>
<td>/IY/</td>
<td>(y_0^5)</td>
<td>(y_1^5)</td>
<td>(y_2^5)</td>
<td>(y_3^5)</td>
<td>(y_4^5)</td>
<td>(y_5^5)</td>
<td>(y_6^5)</td>
<td>(y_7^5)</td>
<td>(y_8^5)</td>
</tr>
<tr>
<td>/F/</td>
<td>(y_0^6)</td>
<td>(y_1^6)</td>
<td>(y_2^6)</td>
<td>(y_3^6)</td>
<td>(y_4^6)</td>
<td>(y_5^6)</td>
<td>(y_6^6)</td>
<td>(y_7^6)</td>
<td>(y_8^6)</td>
</tr>
<tr>
<td>/G/</td>
<td>(y_0^7)</td>
<td>(y_1^7)</td>
<td>(y_2^7)</td>
<td>(y_3^7)</td>
<td>(y_4^7)</td>
<td>(y_5^7)</td>
<td>(y_6^7)</td>
<td>(y_7^7)</td>
<td>(y_8^7)</td>
</tr>
</tbody>
</table>

We will refer to the process of obtaining an output from the network as *decoding*

- **Option 2:** Impose external constraints on what sequences are allowed
 - *E.g.* only allow sequences corresponding to dictionary words
 - *E.g.* *Sub-symbol* units (like in HW1 – what were they?)
 - *E.g.* using special “separating” symbols to separate repetitions
Decoding

<table>
<thead>
<tr>
<th>AH</th>
<th>y₁^{AH}</th>
<th>y₂^{AH}</th>
<th>y₃^{AH}</th>
<th>y₄^{AH}</th>
<th>y₅^{AH}</th>
<th>y₆^{AH}</th>
<th>y₇^{AH}</th>
<th>y₈^{AH}</th>
</tr>
</thead>
<tbody>
<tr>
<td>/B/</td>
<td>y₀^{B}</td>
<td>y₁^{B}</td>
<td>y₂^{B}</td>
<td>y₃^{B}</td>
<td>y₄^{B}</td>
<td>y₅^{B}</td>
<td>y₆^{B}</td>
<td>y₇^{B}</td>
</tr>
<tr>
<td>/D/</td>
<td>y₀^{D}</td>
<td>y₁^{D}</td>
<td>y₂^{D}</td>
<td>y₃^{D}</td>
<td>y₄^{D}</td>
<td>y₅^{D}</td>
<td>y₆^{D}</td>
<td>y₇^{D}</td>
</tr>
<tr>
<td>/EH/</td>
<td>y₀^{EH}</td>
<td>y₁^{EH}</td>
<td>y₂^{EH}</td>
<td>y₃^{EH}</td>
<td>y₄^{EH}</td>
<td>y₅^{EH}</td>
<td>y₆^{EH}</td>
<td>y₇^{EH}</td>
</tr>
<tr>
<td>/IY/</td>
<td>y₀^{IY}</td>
<td>y₁^{IY}</td>
<td>y₂^{IY}</td>
<td>y₃^{IY}</td>
<td>y₄^{IY}</td>
<td>y₅^{IY}</td>
<td>y₆^{IY}</td>
<td>y₇^{IY}</td>
</tr>
<tr>
<td>/F/</td>
<td>y₀^{F}</td>
<td>y₁^{F}</td>
<td>y₂^{F}</td>
<td>y₃^{F}</td>
<td>y₄^{F}</td>
<td>y₅^{F}</td>
<td>y₆^{F}</td>
<td>y₇^{F}</td>
</tr>
<tr>
<td>/G/</td>
<td>y₀^{G}</td>
<td>y₁^{G}</td>
<td>y₂^{G}</td>
<td>y₃^{G}</td>
<td>y₄^{G}</td>
<td>y₅^{G}</td>
<td>y₆^{G}</td>
<td>y₇^{G}</td>
</tr>
</tbody>
</table>

- This is in fact a suboptimal decode that actually finds the most likely time-synchronous output sequence
 - Which is not necessarily the most likely order-synchronous sequence
 - The “merging” heuristics do not guarantee optimal order-synchronous sequences
 - We will return to this topic later
The sequence-to-sequence problem

- How do we know *when* to output symbols
 - In fact, the network produces outputs at every time
 - *Which* of these are the *real* outputs

- How do we *train* these models?
• Training data: input sequence + output sequence
 – Output sequence length \(\leq\) input sequence length

• Given output symbols *at the right locations*
 – The phoneme /B/ ends at \(X_2\), /AH/ at \(X_6\), /T/ at \(X_9\)
The “alignment” of labels

- The time-stamps of the output symbols give us the “alignment” of the output sequence to the input sequence
 - Which portion of the input aligns to what symbol

- Simply knowing the output sequence does not provide us the alignment
 - This is extra information
Training with alignment

- Training data: input sequence + output sequence
 - Output sequence length <= input sequence length

- Given the *alignment* of the output to the input
 - The phoneme /B/ ends at X_2, /AH/ at X_6, /T/ at X_9
• Either just define Divergence as:
 \[DIV = KL(Y_2, B) + KL(Y_6, AH) + KL(Y_9, T) \]
• Or..
• Either just define Divergence as:
 \[\text{DIV} = X_{\text{ent}}(Y_2, B) + X_{\text{ent}}(Y_6, AH) + X_{\text{ent}}(Y_9, T) \]

• Or repeat the symbols over their duration

 \[\text{DIV} = \sum_t KL(Y_t, \text{symbol}_t) = -\sum_t \log Y(t, \text{symbol}_t) \]
Problem: No timing information provided

• Only the sequence of output symbols is provided for the training data
 – But no indication of which one occurs where

• How do we compute the divergence?
 – And how do we compute its gradient w.r.t. Y_t
Training without alignment

• We know how to train if the alignment is provided

• Problem: Alignment is not provided

• Solution:
 1. *Guess* the alignment
 2. Consider *all possible* alignments
Solution 1: *Guess the alignment*

- Guess an initial alignment and iteratively refine it as the model improves.
- Initialize: Assign an initial alignment
 - Either randomly, based on some heuristic, or any other rationale
- Iterate:
 - Train the network using the current alignment
 - *Reestimate* the alignment for each training instance
Solution 1: Guess the alignment

• Guess an initial alignment and iteratively refine it as the model improves

• Initialize: Assign an initial alignment
 – Either randomly, based on some heuristic, or any other rationale

• Iterate:
 – Train the network using the current alignment
 – Reestimate the alignment for each training instance
Characterizing the alignment

<table>
<thead>
<tr>
<th>/B/</th>
<th>/B/</th>
<th>/B/</th>
<th>/B/</th>
<th>/AH/</th>
<th>/AH/</th>
<th>/AH/</th>
<th>/AH/</th>
<th>/T/</th>
<th>/T/</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_0</td>
<td>X_1</td>
<td>X_2</td>
<td>X_3</td>
<td>X_4</td>
<td>X_5</td>
<td>X_6</td>
<td>X_7</td>
<td>X_8</td>
<td>X_9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/B/</th>
<th>/B/</th>
<th>/AH/</th>
<th>/AH/</th>
<th>/AH/</th>
<th>/AH/</th>
<th>/AH/</th>
<th>/T/</th>
<th>/T/</th>
<th>/T/</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_0</td>
<td>X_1</td>
<td>X_2</td>
<td>X_3</td>
<td>X_4</td>
<td>X_5</td>
<td>X_6</td>
<td>X_7</td>
<td>X_8</td>
<td>X_9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/B/</th>
<th>/B/</th>
<th>/B/</th>
<th>/AH/</th>
<th>/AH/</th>
<th>/AH/</th>
<th>/T/</th>
<th>/T/</th>
<th>/T/</th>
<th>/T/</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_0</td>
<td>X_1</td>
<td>X_2</td>
<td>X_3</td>
<td>X_4</td>
<td>X_5</td>
<td>X_6</td>
<td>X_7</td>
<td>X_8</td>
<td>X_9</td>
</tr>
</tbody>
</table>

• An alignment can be represented as a repetition of symbols
 – Examples show different alignments of /B/ /AH/ /T/ to $X_0 \ldots X_9$
Estimating an alignment

• Given:
 – The unaligned K-length symbol sequence $S = S_0 \ldots S_{K-1}$ (e.g. /B/ /IY/ /F/ /IY/)
 – An N-length input ($N \geq K$)
 – And a (trained) recurrent network

• Find:
 – An N-length expansion $s_0 \ldots s_{N-1}$ comprising the symbols in S in strict order
 • e.g. $S_0 S_0 S_1 S_1 S_2 \ldots S_{K-1}$
 – i.e. $s_0 = S_0, s_1 = S_0, s_2 = S_1, s_3 = S_1, s_4 = S_1, \ldots s_{N-1} = S_{K-1}$
 • E.g. /B/ /B/ /IY/ /IY/ /IY/ /F/ /F/ /F/ /IY/ ..

• Outcome: an *alignment* of the target symbol sequence $S_0 \ldots S_{K-1}$ to the input $X_0 \ldots X_{N-1}$
Estimating an alignment

• Alignment problem:

• Find

$$\arg \max P(s_0, s_1, \ldots, s_{N-1} | S_0, S_1, \ldots, S_K, X_0, X_1, \ldots, X_{N-1})$$

 – Such that

 $$\text{compress}(s_0, s_1, \ldots, s_{N-1}) \equiv S_0, S_1, \ldots, S_K$$

• $\text{compress}()$ is the operation of compressing repetitions into one
Recall: The actual output of the network

- At each time the network outputs a probability for *each* output symbol
Recall: unconstrained decoding

- We find the most likely sequence of symbols
 - (Conditioned on input $X_0 \ldots X_{N-1}$)
- This may not correspond to an expansion of the desired symbol sequence
 - E.g. the unconstrained decode may be
 - Contracts to /AH/ /D/ /AH/ /F/ /IY/
 - Whereas we want an expansion of /B//IY//F//IY/
Constraining the alignment: Try 1

<table>
<thead>
<tr>
<th>/B/</th>
<th>y_0^B</th>
<th>y_1^B</th>
<th>y_2^B</th>
<th>y_3^B</th>
<th>y_4^B</th>
<th>y_5^B</th>
<th>y_6^B</th>
<th>y_7^B</th>
<th>y_8^B</th>
</tr>
</thead>
<tbody>
<tr>
<td>/IY/</td>
<td>y_0^{IY}</td>
<td>y_1^{IY}</td>
<td>y_2^{IY}</td>
<td>y_3^{IY}</td>
<td>y_4^{IY}</td>
<td>y_5^{IY}</td>
<td>y_6^{IY}</td>
<td>y_7^{IY}</td>
<td>y_8^{IY}</td>
</tr>
<tr>
<td>/F/</td>
<td>y_0^F</td>
<td>y_1^F</td>
<td>y_2^F</td>
<td>y_3^F</td>
<td>y_4^F</td>
<td>y_5^F</td>
<td>y_6^F</td>
<td>y_7^F</td>
<td>y_8^F</td>
</tr>
</tbody>
</table>

- Block out all rows that do not include symbols from the target sequence
 - E.g. Block out rows that are not /B/ /IY/ or /F/
Blocking out unnecessary outputs

<table>
<thead>
<tr>
<th>/B/</th>
<th>y_0^B</th>
<th>y_1^B</th>
<th>y_2^B</th>
<th>y_3^B</th>
<th>y_4^B</th>
<th>y_5^B</th>
<th>y_6^B</th>
<th>y_7^B</th>
<th>y_8^B</th>
</tr>
</thead>
<tbody>
<tr>
<td>/IY/</td>
<td>y_0^{IY}</td>
<td>y_1^{IY}</td>
<td>y_2^{IY}</td>
<td>y_3^{IY}</td>
<td>y_4^{IY}</td>
<td>y_5^{IY}</td>
<td>y_6^{IY}</td>
<td>y_7^{IY}</td>
<td>y_8^{IY}</td>
</tr>
<tr>
<td>/F/</td>
<td>y_0^F</td>
<td>y_1^F</td>
<td>y_2^F</td>
<td>y_3^F</td>
<td>y_4^F</td>
<td>y_5^F</td>
<td>y_6^F</td>
<td>y_7^F</td>
<td>y_8^F</td>
</tr>
<tr>
<td>/AH/</td>
<td>y_0^{AH}</td>
<td>y_1^{AH}</td>
<td>y_2^{AH}</td>
<td>y_3^{AH}</td>
<td>y_4^{AH}</td>
<td>y_5^{AH}</td>
<td>y_6^{AH}</td>
<td>y_7^{AH}</td>
<td>y_8^{AH}</td>
</tr>
<tr>
<td>/B/</td>
<td>y_0^B</td>
<td>y_1^B</td>
<td>y_2^B</td>
<td>y_3^B</td>
<td>y_4^B</td>
<td>y_5^B</td>
<td>y_6^B</td>
<td>y_7^B</td>
<td>y_8^B</td>
</tr>
<tr>
<td>/D/</td>
<td>y_0^D</td>
<td>y_1^D</td>
<td>y_2^D</td>
<td>y_3^D</td>
<td>y_4^D</td>
<td>y_5^D</td>
<td>y_6^D</td>
<td>y_7^D</td>
<td>y_8^D</td>
</tr>
<tr>
<td>/EH/</td>
<td>y_0^{EH}</td>
<td>y_1^{EH}</td>
<td>y_2^{EH}</td>
<td>y_3^{EH}</td>
<td>y_4^{EH}</td>
<td>y_5^{EH}</td>
<td>y_6^{EH}</td>
<td>y_7^{EH}</td>
<td>y_8^{EH}</td>
</tr>
<tr>
<td>/IY/</td>
<td>y_0^{IY}</td>
<td>y_1^{IY}</td>
<td>y_2^{IY}</td>
<td>y_3^{IY}</td>
<td>y_4^{IY}</td>
<td>y_5^{IY}</td>
<td>y_6^{IY}</td>
<td>y_7^{IY}</td>
<td>y_8^{IY}</td>
</tr>
<tr>
<td>/F/</td>
<td>y_0^F</td>
<td>y_1^F</td>
<td>y_2^F</td>
<td>y_3^F</td>
<td>y_4^F</td>
<td>y_5^F</td>
<td>y_6^F</td>
<td>y_7^F</td>
<td>y_8^F</td>
</tr>
<tr>
<td>/G/</td>
<td>y_0^G</td>
<td>y_1^G</td>
<td>y_2^G</td>
<td>y_3^G</td>
<td>y_4^G</td>
<td>y_5^G</td>
<td>y_6^G</td>
<td>y_7^G</td>
<td>y_8^G</td>
</tr>
</tbody>
</table>

Compute the entire output (for all symbols)
Copy the output values for the target symbols into the secondary reduced structure
Constraining the alignment: Try 1

<table>
<thead>
<tr>
<th>/B/</th>
<th>y_0^B</th>
<th>y_1^B</th>
<th>y_2^B</th>
<th>y_3^B</th>
<th>y_4^B</th>
<th>y_5^B</th>
<th>y_6^B</th>
<th>y_7^B</th>
<th>y_8^B</th>
</tr>
</thead>
<tbody>
<tr>
<td>/IY/</td>
<td>y_0^{IY}</td>
<td>y_1^{IY}</td>
<td>y_2^{IY}</td>
<td>y_3^{IY}</td>
<td>y_4^{IY}</td>
<td>y_5^{IY}</td>
<td>y_6^{IY}</td>
<td>y_7^{IY}</td>
<td>y_8^{IY}</td>
</tr>
<tr>
<td>/F/</td>
<td>y_0^F</td>
<td>y_1^F</td>
<td>y_2^F</td>
<td>y_3^F</td>
<td>y_4^F</td>
<td>y_5^F</td>
<td>y_6^F</td>
<td>y_7^F</td>
<td>y_8^F</td>
</tr>
</tbody>
</table>

- Only decode on reduced grid
 - We are now assured that only the appropriate symbols will be hypothesized
Constraining the alignment: Try 1

- Only decode on reduced grid
 - We are now assured that only the appropriate symbols will be hypothesized

- Problem: This still doesn’t assure that the decode sequence correctly expands the target symbol sequence
 - E.g. the above decode is not an expansion of /B//IY//F//IY/

- Still needs additional constraints
Try 2: Explicitly arrange the constructed table

<table>
<thead>
<tr>
<th>/B/</th>
<th>(y_0^B)</th>
<th>(y_1^B)</th>
<th>(y_2^B)</th>
<th>(y_3^B)</th>
<th>(y_4^B)</th>
<th>(y_5^B)</th>
<th>(y_6^B)</th>
<th>(y_7^B)</th>
<th>(y_8^B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>/IY/</td>
<td>(y_0^{IY})</td>
<td>(y_1^{IY})</td>
<td>(y_2^{IY})</td>
<td>(y_3^{IY})</td>
<td>(y_4^{IY})</td>
<td>(y_5^{IY})</td>
<td>(y_6^{IY})</td>
<td>(y_7^{IY})</td>
<td>(y_8^{IY})</td>
</tr>
<tr>
<td>/F/</td>
<td>(y_0^F)</td>
<td>(y_1^F)</td>
<td>(y_2^F)</td>
<td>(y_3^F)</td>
<td>(y_4^F)</td>
<td>(y_5^F)</td>
<td>(y_6^F)</td>
<td>(y_7^F)</td>
<td>(y_8^F)</td>
</tr>
<tr>
<td>/IY/</td>
<td>(y_0^{IY})</td>
<td>(y_1^{IY})</td>
<td>(y_2^{IY})</td>
<td>(y_3^{IY})</td>
<td>(y_4^{IY})</td>
<td>(y_5^{IY})</td>
<td>(y_6^{IY})</td>
<td>(y_7^{IY})</td>
<td>(y_8^{IY})</td>
</tr>
</tbody>
</table>

Arrange the constructed table so that from top to bottom it has the exact sequence of symbols required.
Try 2: Explicitly arrange the constructed table

<table>
<thead>
<tr>
<th>/B/</th>
<th>y_0^B</th>
<th>y_1^B</th>
<th>y_2^B</th>
<th>y_3^B</th>
<th>y_4^B</th>
<th>y_5^B</th>
<th>y_6^B</th>
<th>y_7^B</th>
<th>y_8^B</th>
</tr>
</thead>
<tbody>
<tr>
<td>/IY/</td>
<td>y_0^IY</td>
<td>y_1^IY</td>
<td>y_2^IY</td>
<td>y_3^IY</td>
<td>y_4^IY</td>
<td>y_5^IY</td>
<td>y_6^IY</td>
<td>y_7^IY</td>
<td>y_8^IY</td>
</tr>
<tr>
<td>/F/</td>
<td>y_0^F</td>
<td>y_1^F</td>
<td>y_2^F</td>
<td>y_3^F</td>
<td>y_4^F</td>
<td>y_5^F</td>
<td>y_6^F</td>
<td>y_7^F</td>
<td>y_8^F</td>
</tr>
<tr>
<td>/IY/</td>
<td>y_0^IY</td>
<td>y_1^IY</td>
<td>y_2^IY</td>
<td>y_3^IY</td>
<td>y_4^IY</td>
<td>y_5^IY</td>
<td>y_6^IY</td>
<td>y_7^IY</td>
<td>y_8^IY</td>
</tr>
</tbody>
</table>

Note: If a symbol occurs multiple times, we repeat the row in the appropriate location.
E.g. the row for /IY/ occurs twice, in the 2nd and 4th positions.

Arrange the constructed table so that from top to bottom it has the exact sequence of symbols required.
Composing the graph

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#T = length of input

#First create output table
For i = 1:N
\[s(1:T,i) = y(1:T, S(i)) \]

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation
Explicitly constrain alignment

- Constrain that the first symbol in the decode must be the top left block
- The last symbol must be the bottom right
- The rest of the symbols must follow a sequence that monotonically travels down from top left to bottom right
 - I.e. symbol chosen at any time is at the same level or at the next level to the symbol at the previous time
- This guarantees that the sequence is an expansion of the target sequence
 - /B/ /IY/ /F/ /IY/ in this case
Explicitly constrain alignment

- Compose a graph such that every path in the graph from source to sink represents a valid alignment
 - Which maps on to the target symbol sequence (/B//IY//F//IY/)
- Edge scores are 1
- Node scores are the probabilities assigned to the symbols by the neural network
Path Score (probability)

- Compose a graph such that every path in the graph from source to sink represents a valid alignment
 - Which maps on to the target symbol sequence (/B/IY/F/IY/)
- Edge scores are 1
- Node scores are the probabilities assigned to the symbols by the neural network
- The “score” of a path is the product of the probabilities of all nodes along the path
- E.g. the probability of the marked path is

$$Scr(Path) = y_0^B y_1^B y_2^{IY} y_3^{IY} y_4^F$$
Path Score (probability)

- Compose a graph such that every path in the graph from source to sink represents a valid alignment
 - Which maps on to the target symbol sequence (/B//IY//F//IY/)
- Edge scores are 1
- Node scores are the probabilities assigned to the symbols by the neural network
- The “score” of a path is the product of the probabilities of all nodes along the path

Figure shows a typical end-to-end path. There are an exponential number of such paths. Challenge: Find the path with the highest score (probability)
Explicitly constrain alignment

- Find the \textit{most probable path} from source to sink using any dynamic programming algorithm
 - E.g. The Viterbi algorithm
Viterbi algorithm: Basic idea

• The best path to any node must be an extension of the best path to one of its parent nodes
 – Any other path would necessarily have a lower probability

• The best parent is simply the parent with the best-scoring best path
Viterbi algorithm: Basic idea

\[
\text{BestPath}(y_0^B \rightarrow y_3^F) = \text{BestPath}(y_0^B \rightarrow y_2^{IY})y_3^F
\]

or
\[
\text{BestPath}(y_0^B \rightarrow y_2^F)y_3^F
\]

\[
\text{BestPath}(y_0^B \rightarrow y_3^F) = \text{BestPath}(y_0^B \rightarrow \text{BestParent})y_3^F
\]

- The best parent is simply the parent with the best-scoring best path
 \[
 \text{BestParent} = \text{argmax}_{\text{Parent} \in (y_2^{IY}, y_2^F)} (\text{Score(\text{BestPath}(y_0^B \rightarrow \text{Parent})))}
 \]
Viterbi algorithm

- Dynamically track the best path (and the score of the best path) from the source node to every node in the graph
 - At each node, keep track of
 - The best incoming parent edge
 - The score of the best path from the source to the node through this best parent edge
- Eventually compute the best path from source to sink
First, some notation:

- \(y_t^{S(r)} \) is the probability of the target symbol assigned to the \(r \)-th row in the \(t \)-th time (given inputs \(X_0 \ldots X_t \))
 - E.g., \(S(0) = /B/ \)
 - The scores in the 0\(^{th} \) row have the form \(y_t^B \)
 - E.g. \(S(1) = S(3) = /IY/ \)
 - The scores in the 1\(^{st} \) and 3\(^{rd} \) rows have the form \(y_t^{IY} \)
 - E.g. \(S(2) = /F/ \)
 - The scores in the 2\(^{nd} \) row have the form \(y_t^F \)
Viterbi algorithm

- **Initialization:**

 \[BP(0, i) = \text{null}, \ i = 0 \ldots K - 1 \]

 \[Bscr(0,0) = y_0^{S(0)}, \ Bscr(0, i) = 0 \text{ for } i = 1 \ldots K - 1 \]

 \(BP := \text{Best Parent} \)

 \(Bscr := \text{Bestpath Score to node} \)
• Initialization:

\[
BP(0, i) = \text{null}, \quad i = 0 \ldots K - 1
\]

\[
Bscr(0, 0) = y^{S(0)}_0, \quad Bscr(0, i) = 0 \text{ for } i = 1 \ldots K - 1
\]

• for \(t = 1 \ldots T - 1 \)

for \(l = 0 \ldots K - 1 \)

• \(BP(t, l) = \arg\max_{p \in \text{parents}(l)} Bscr(t - 1, p) \)

• \(Bscr(t, l) = Bscr(BP(t, l)) \times y^{S(l)}_t \)
Viterbi algorithm

- Initialization:

 \[BP(0, i) = \text{null}, \ i = 0 \ldots K - 1 \]

 \[Bscr(0,0) = y_0^{S(0)}, \ Bscr(0, i) = 0 \text{ for } i = 1 \ldots K - 1 \]

- for \(t = 1 \ldots T - 1 \)

 \[BP(t, 0) = 0; \ Bscr(t, 0) = Bscr(t - 1,0) \times y_t^{S(0)} \]
Viterbi Algorithm

- **Initialization:**

 \[
 BP(0, i) = \text{null}, \quad i = 0 \ldots K - 1
 \]

 \[
 Bscr(0, 0) = y_0^{S(0)}, \quad Bscr(0, i) = 0 \quad \text{for} \quad i = 1 \ldots K - 1
 \]

- **for** \(t = 1 \ldots T - 1 \)

 \[
 BP(t, 0) = 0; \quad Bscr(t, 0) = Bscr(t - 1, 0) \times y_t^{S(0)}
 \]

 for \(l = 1 \ldots K - 1 \)

 - \(BP(t, l) = \left(l - 1 : \text{if} \left(Bscr(t - 1, l - 1) > Bscr(t - 1, l) \right) \right) \)

 - \(l : \text{else} \)

 - \(Bscr(t, l) = Bscr(BP(t, l)) \times y_t^{S(l)} \)
Viterbi algorithm

• Initialization:

\[
BP(0, i) = \text{null}, \quad i = 0 \ldots K - 1
\]

\[
Bscr(0,0) = y_0^{S(0)}, \quad Bscr(0, i) = 0 \text{ for } i = 1 \ldots K - 1
\]

• for \(t = 1 \ldots T - 1 \)

\[
BP(t, 0) = 0; \quad Bscr(t, 0) = Bscr(t - 1,0) \times y_t^{S(0)}
\]

for \(l = 1 \ldots K - 1 \)

- \(BP(t,l) = \left\{ \begin{array}{ll}
(l - 1 : \text{if } & (Bscr(t-1,l-1) > Bscr(t-1,l)) \text{ l } - 1; \\
& l : \text{else} \end{array} \right. \)

- \(Bscr(t,l) = Bscr(BP(t,l)) \times y_t^{S(l)} \)
Viterbi algorithm

- Initialization:
 \[BP(0, i) = \text{null}, \ i = 0 \ldots K - 1 \]
 \[B\text{scr}(0,0) = y_{0}^{S(0)}, \ B\text{scr}(0, i) = 0 \ for \ i = 1 \ldots K - 1 \]

- for \(t = 1 \ldots T - 1 \)
 \[BP(t, 0) = 0; B\text{scr}(t, 0) = B\text{scr}(t - 1, 0) \times y_{t}^{S(0)} \]
 for \(l = 1 \ldots K - 1 \)

- \(BP(t, l) = \begin{cases}
 l - 1 : & \text{if} \ (B\text{scr}(t - 1, l - 1) > B\text{scr}(t - 1, l)) \ l - 1; \\
 l : & \text{else}
\end{cases} \)

- \(B\text{scr}(t, l) = B\text{scr}(BP(t, l)) \times y_{t}^{S(l)} \)
Viterbi algorithm

- **Initialization:**

 \[BP(0, i) = \text{null}, \quad i = 0 \ldots K - 1 \]

 \[B_{scr}(0,0) = \gamma_0^{S(0)}, \quad B_{scr}(0, i) = 0 \quad \text{for} \quad i = 1 \ldots K - 1 \]

- **for** \(t = 1 \ldots T - 1 \)

 \[BP(t, 0) = 0; \quad B_{scr}(t, 0) = B_{scr}(t - 1,0) \times \gamma_t^{S(0)} \]

 for \(l = 1 \ldots K - 1 \)

 - \(BP(t,l) = (\text{if} \ (B_{scr}(t - 1,l - 1) > B_{scr}(t - 1,l)) \ l - 1; \ \text{else} \ l) \)

 - \(B_{scr}(t,l) = B_{scr}(BP(t,l)) \times \gamma_t^{S(l)} \)
Viterbi algorithm

- Initialization:
 \[BP(0, i) = \text{null}, \ i = 0 \ldots K - 1 \]
 \[Bscr(0,0) = y_0^{S(0)}, \ Bscr(0, i) = 0 \ for \ i = 1 \ldots K - 1 \]

- for \(t = 1 \ldots T - 1 \)
 \[BP(t, 0) = 0; \ Bscr(t, 0) = Bscr(t-1,0) \times y_t^{S(0)} \]
 for \(l = 1 \ldots K - 1 \)
 \[BP(t, l) = (\text{if } (Bscr(t-1, l-1) > Bscr(t-1, l)) l - 1; \text{ else } l) \]
 \[Bscr(t, l) = Bscr(BP(t, l)) \times y_t^{S(l)} \]
Viterbi algorithm

- Initialization:
 \[BP(0, i) = \text{null}, \; i = 0 \ldots K - 1 \]
 \[Bscr(0, 0) = y_0^{S(0)}, \; Bscr(0, i) = 0 \; \text{for} \; i = 1 \ldots K - 1 \]
- for \(t = 1 \ldots T - 1 \)
 \[BP(t, 0) = 0; \; Bscr(t, 0) = Bscr(t - 1, 0) \times y_t^{S(0)} \]
 for \(l = 1 \ldots K - 1 \)
 - \(BP(t, l) = \begin{cases} l - 1 : & \text{if} \; (Bscr(t - 1, l - 1) > Bscr(t - 1, l)) \; l - 1; \\ l : & \text{else} \end{cases} \)
 - \(Bscr(t, l) = Bscr(BP(t, l)) \times y_t^{S(l)} \)
Viterbi algorithm

- Initialization:
 \[BP(0, i) = \text{null}, \ i = 0 \ldots K - 1 \]
 \[Bscr(0, 0) = y_0^{S(0)}, \ Bscr(0, i) = 0 \ for \ i = 1 \ldots K - 1 \]

- for \(t = 1 \ldots T - 1 \)
 \[BP(t, 0) = 0; \ Bscr(t, 0) = Bscr(t - 1, 0) \times y_t^{S(0)} \]
 for \(l = 1 \ldots K - 1 \)
 - \[BP(t, l) = \begin{cases} l - 1 : & \text{if } (Bscr(t - 1, l - 1) > Bscr(t - 1, l)) \ l - 1; \\ l : & \text{else} \end{cases} \]
 - \[Bscr(t, l) = Bscr(BP(t, l)) \times y_t^{S(l)} \]
Viterbi algorithm

- Initialization:
 \[BP(0, i) = \text{null}, \quad i = 0 \ldots K - 1 \]
 \[Bscr(0, 0) = y_0^{S(0)}, \quad Bscr(0, i) = 0 \text{ for } i = 1 \ldots K - 1 \]
- for \(t = 1 \ldots T - 1 \)
 \[BP(t, 0) = 0; \quad Bscr(t, 0) = Bscr(t - 1, 0) \times y_t^{S(0)} \]
 for \(l = 1 \ldots K - 1 \)
 - \(BP(t, l) = \begin{cases} l - 1: & \text{if } (Bscr(t - 1, l - 1) > Bscr(t - 1, l)) \ l - 1; \\ l: & \text{else} \end{cases} \)
 - \(Bscr(t, l) = Bscr(BP(t, l)) \times y_t^{S(l)} \)
Viterbi algorithm

- $s(T - 1) = S(K - 1)$
Viterbi algorithm

- $s(T - 1) = S(K - 1)$
- for $t = T - 1$ down to 1
 \[s(t - 1) = BP(s(t)) \]
Viterbi algorithm

• $s(T - 1) = S(K - 1)$
• for $t = T - 1$ downto 1

\[s(t - 1) = BP(s(t)) \]
VITERBI

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#T = length of input

#First create output table
For i = 1:N
 s(1:T, i) = y(1:T, S(i))

#Now run the Viterbi algorithm
First, at t = 1
BP(1,1) = -1
Bscr(1,1) = s(1,1)
Bscr(1,2:N) = 0
for t = 2:T
 BP(t,1) = 1;
 Bscr(t,1) = Bscr(t-1,1)*s(t,1)
 for i = 1:min(t,N)
 BP(t,i) = Bscr(t-1,i) > Bscr(t-1,i-1) ? i : i-1
 Bscr(t,i) = Bscr(t-1,BP(t,i))*s(t,i)

Backtrace
AlignedSymbol(T) = N
for t = T downto 2
 AlignedSymbol(t-1) = BP(t,AlignedSymbol(t))

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation
VITERBI

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#T = length of input

#First create output table
For i = 1:N
 s(1:T,i) = y(1:T, S(i))

#Now run the Viterbi algorithm
First, at t = 1
BP(1,1) = -1
Bscr(1,1) = s(1,1)
Bscr(1,2:N) = 0
for t = 2:T
 BP(t,1) = 1;
 Bscr(t,1) = Bscr(t-1,1)*s(t,1)
 for i = 2:min(t,N)
 BP(t,i) = Bscr(t-1,i) > Bscr(t-1,i-1) ? i : i-1
 Bscr(t,i) = Bscr(t-1,BP(t,i))*s(t,i)

Backtrace
AlignedSymbol(T) = N
for t = T downto 2
 AlignedSymbol(t-1) = BP(t,AlignedSymbol(t))

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation
VITERBI

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#T = length of input

First, at t = 1
BP(1,1) = -1
Bscr(1,1) = y(1,S(1))
Bscr(1,2:N) = 0
for t = 2:T
 BP(t,1) = 1;
 Bscr(t,1) = Bscr(t-1,1)*y(t,S(1))
 for i = 2:min(t,N)
 BP(t,i) = Bscr(t-1,i) > Bscr(t-1,i-1) ? i : i-1
 Bscr(t,i) = Bscr(t-1,BP(t,i))*y(t,S(i))

Backtrace
AlignedSymbol(T) = N
for t = T downto 2
 AlignedSymbol(t-1) = BP(t,AlignedSymbol(t))

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation
Assumed targets for training with the Viterbi algorithm

\[
\begin{array}{cccccccccc}
/B/ & /B/ & /IY/ & /F/ & /F/ & /IY/ & /IY/ & /IY/ & /IY/ \\
\hline
y_0^B & y_1^B & y_2^B & y_3^B & y_4^B & y_5^B & y_6^B & y_7^B & y_8^B \\
IY & IY \\
/F/ & /F/ & /IY/ \\
\hline
y_0^F & y_1^F & y_2^F & y_3^F & y_4^F & y_5^F & y_6^F & y_7^F & y_8^F \\
IY & IY \\
\hline
y_0^{IY} & y_1^{IY} & y_2^{IY} & y_3^{IY} & y_4^{IY} & y_5^{IY} & y_6^{IY} & y_7^{IY} & y_8^{IY} \\
IY & IY \\
\end{array}
\]
Gradients from the alignment

\[
DIV = \sum_t KL(Y_t, symbol_{t}^{bestpath}) = -\sum_t \log Y(t, symbol_{t}^{bestpath})
\]

- The gradient w.r.t the \(t\)-th output vector \(Y_t\)

\[
\nabla_{Y_t} DIV = \begin{bmatrix}
0 & 0 & \ldots & \frac{-1}{Y(t, symbol_{t}^{bestpath})} & 0 & \ldots & 0
\end{bmatrix}
\]

- Zeros except at the component corresponding to the target \textit{in the estimated alignment}
Iterative Estimate and Training

The “decode” and “train” steps may be combined into a single “decode, find alignment compute derivatives” step for SGD and mini-batch updates.
Iterative update

• Option 1:
 – Determine alignments for every training instance
 – Train model (using SGD or your favorite approach) on the entire training set
 – Iterate

• Option 2:
 – During SGD, for each training instance, find the alignment during the forward pass
 – Use in backward pass
Iterative update: Problem

• Approach heavily dependent on initial alignment

• Prone to poor local optima

• Alternate solution: Do not commit to an alignment during any pass..
Next Class

• Training without explicit alignment..
 – Connectionist Temporal Classification
 – Separating repeated symbols

• The CTC decoder..