
Deep Learning
Sequence to Sequence models: 

Attention Models
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Sequence-to-sequence modelling
• Problem: 

– A sequence ଵ ே goes in
– A different sequence ଵ ெ comes out

• E.g.
– Speech recognition:  Speech goes in, a word sequence comes out

• Alternately output may be phoneme or character sequence

– Machine translation: Word sequence goes in, word sequence comes 
out

– Dialog :  User statement goes in, system response comes out
– Question answering :  Question comes in, answer goes out

• In general
– No synchrony between and .
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Sequence to sequence

• Sequence goes in,  sequence comes out
• No notion of “time synchrony” between input and output

– May even not even maintain order of symbols
• E.g.   “I ate an apple”  “Ich habe einen apfel gegessen”

– Or even seem related to the input
• E.g. “My screen is blank”  “Please check if your computer is plugged in.”
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Recap: Have dealt with the “aligned” 
case: CTC

• The input and output sequences happen in the same order
– Although they may be asynchronous

• Order-correspondence, but no time synchrony

– E.g.  Speech recognition
• The input speech corresponds to the phoneme sequence output

Time

X(t)

Y(t)

t=0

h-1
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Today

• Sequence goes in,  sequence comes out
• No notion of “time synchrony” between input and output

– May even not even maintain order of symbols
• E.g.   “I ate an apple”  “Ich habe einen apfel gegessen”

– Or even seem related to the input
• E.g. “My screen is blank”  “Please check if your computer is plugged in.”

5

Seq2seq

Seq2seqI ate an apple Ich habe einen apfel gegessen

I ate an apple

v



Recap: Predicting text

• Simple problem:  Given a series of symbols 
(characters or words) w1 w2… wn,  predict the 
next symbol (character or word) wn+1
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Language modelling using RNNs

• Problem:  Given a sequence of words (or 
characters) predict the next one
– The problem of learning the sequential structure 

of language

Four score and seven years ???

A B R A H A M L I N C O L ??
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Simple recurrence : Text Modelling

• Learn a model that can predict the next symbol 
given a sequence of symbols
– Characters or words

• After observing inputs it predicts 
– In reality, outputs a probability distribution for 

h-1

 ଵ ଶ ଷ ସ ହ 

ଵ ଶ ଷ ସ ହ  
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Generating Language: The model

• Input:  symbols as one-hot vectors
• Dimensionality of the vector is the size of the “vocabulary” 
• Projected down to lower-dimensional “embeddings”

• The hidden units are (one or more layers of) LSTM units
• Output at each time:  A probability distribution for the next word in the sequence

• All parameters are trained via backpropagation from a lot of text

ଵ ଶ ଷ ସ ହ   ଼ ଽ

ହ   ଼ ଽ ଵଶ ଷ ସ
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Training

• Input:  symbols as one-hot vectors
• Dimensionality of the vector is the size of the “vocabulary” 
• Projected down to lower-dimensional “embeddings”

• Output: Probability distribution over symbols
𝑌 𝑡, 𝑖 = 𝑃(𝑉|𝑤 … 𝑤௧ିଵ)

• 𝑉 is the i-th symbol in the vocabulary

• Divergence

𝐷𝑖𝑣 𝑤 1 … 𝑇 , 𝐘(0 … 𝑇 − 1) =  𝐾𝐿 𝑤 𝑡 + 1 , 𝐘(𝑡)

௧

= −  log 𝑌(𝑡, 𝑤௧ାଵ)

௧

Y(t)

h-1

Y(t)
DIVERGENCE

ଵ ଶ ଷ ସ ହ  

The probability assigned 
to the correct next word
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Generating Language: Synthesis

• On trained model : Provide the first few words
– One-hot vectors

• After the last input word, the network generates a probability distribution 
over words
– Outputs an N-valued probability distribution rather than a one-hot vector

ଵ ଶ ଷ
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Generating Language: Synthesis

• On trained model : Provide the first few words
– One-hot vectors

• After the last input word, the network generates a probability distribution over words
– Outputs an N-valued probability distribution rather than a one-hot vector

• Draw a word by sampling from the distribution
– And set it as the next word in the series

ଵ ଶ ଷ

ସ
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Generating Language: Synthesis

• Feed the drawn word as the next word in the series
– And draw the next word by sampling from the output probability distribution

• Continue this process until we terminate generation
– In some cases, e.g. generating programs, there may be a natural termination

ଵ ଶ ଷ

ସ
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Generating Language: Synthesis

• Feed the drawn word as the next word in the series
– And draw the next word by sampling from the output 

probability distribution

ଵ ଶ ଷ

ହସ
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Generating Language: Synthesis

• Feed the drawn word as the next word in the series
– And draw the next word by sampling from the output probability distribution

• When do we stop?
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A note on beginnings and ends
• A sequence of words by itself does not indicate if it is a 

complete sentence or not

… four score and eight …
– Unclear if this is the start of a sentence, the end of a 

sentence, or both (i.e. a complete sentence)

• To make it explicit, we will add two additional symbols 
(in addition to the words) to the base vocabulary
– <sos>  :  Indicates start of a sentence

– <eos> : Indicates end of a sentence
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A note on beginnings and ends
• Some examples:

four score and eight
– This is clearly the middle of sentence

<sos> four score and eight
– This is a fragment from the start of a sentence

four score and eight <eos>
– This is the end of a sentence

<sos> four score and eight <eos>
– This is a full sentence

• In situations where the start of sequence is obvious, the <sos> may not be needed, 
but <eos> is required to terminate sequences

• Sometimes we will use a single symbol to represent both start and end of 
sentence, e.g just <eos> , or even a separate symbol, e.g. <s>
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Generating Language: Synthesis

• Feed the drawn word as the next word in the series
– And draw the next word by sampling from the output probability distribution

• Continue this process until we draw an <eos>
– Or we decide to terminate generation based on some other criterion

ଵ ଶ ଷ

ହ   ଼ ଽ ଵସ
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Returning our problem

• Problem: 
– A sequence goes in

– A different sequence comes out

• No expected synchrony between input and 
output

19

Seq2seqI ate an apple Ich habe einen apfel gegessen



Modelling the problem

• Delayed sequence to sequence
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Modelling the problem

• Delayed sequence to sequence
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First process the input
and generate a hidden
representation for it



Pseudocode
# First run the inputs through the network

# Assuming h(-1,l) is available for all layers

for t = 0:T-1  # Including both ends of the index

[h(t),..] = RNN_input_step(x(t),h(t-1),...)

H = h(T-1)
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“RNN_input” may be
a multi-layer RNN of
any kind



Modelling the problem

• Delayed sequence to sequence
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Then use it to generate
an output

First process the input
and generate a hidden
representation for it



Pseudocode
# First run the inputs through the network
# Assuming h(-1,l) is available for all layers
for t = 0:T-1  # Including both ends of the index

[h(t),..] = RNN_input_step(x(t),h(t-1),...)
H = h(T-1)

# Now generate the output yout(1),yout(2),…
t = 0
hout(0) = H
do

t = t+1
[y(t),hout(t)] = RNN_output_step(hout(t-1))
yout(t) = draw_word_from(y(t))

until yout(t) == <eos>
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Pseudocode
# First run the inputs through the network
# Assuming h(-1,l) is available for all layers
for t = 0:T-1  # Including both ends of the index

[h(t),..] = RNN_input_step(x(t),h(t-1),...)
H = h(T-1)

# Now generate the output yout(1),yout(2),…
t = 0
hout(0) = H
do

t = t+1
[y(t),hout(t)] = RNN_output_step(hout(t-1))
yout(t) = draw_word_from(y(t))

until yout(t) == <eos>
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The output at each time is a probability distribution
over symbols.
We draw a word from this distribution



Modelling the problem

• Problem: Each word that is output depends only on 
current hidden state, and not on previous outputs
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Then use it to generate
an output

First process the input
and generate a hidden
representation for it



Pseudocode
# First run the inputs through the network
# Assuming h(-1,l) is available for all layers
for t = 0:T-1  # Including both ends of the index

[h(t),..] = RNN_input_step(x(t),h(t-1),...)
H = h(T-1)

# Now generate the output yout(1),yout(2),…
t = 0
hout(0) = H
do

t = t+1
[y(t),hout(t)] = RNN_output_step(hout(t-1))
yout(t) = draw_word_from(y(t))

until yout(t) == <eos>
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Changing this output at time t does not affect the output at t+1

E.g.   If we have drawn “It was a”  vs “It was an”,  the probability
that the next word is “dark” remains the same (dark must ideally
not follow “an”)

This is because the output at time t does not influence the
computation at t+1

The RNN recursion only considers the hidden 
state h(t-1) from the previous time and not the 
actual output word yout(t-1)



Modelling the problem

• Delayed sequence to sequence
– Delayed self-referencing sequence-to-sequence 28



The “simple” translation model

• The input sequence feeds into a recurrent structure
• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

• Subsequently a second RNN uses the hidden activation as initial state to 
produce a sequence of outputs
– The output at each time becomes the input at the next time
– Output production continues until an <eos> is produced

29

I ate an apple <eos>



The “simple” translation model

• The input sequence feeds into a recurrent structure
• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

• Subsequently a second RNN uses the hidden activation as initial state, and 
<sos> as initial symbol, to produce a sequence of outputs
– The output at each time becomes the input at the next time
– Output production continues until an <eos> is produced

30

I ate an apple <eos>



The “simple” translation model

• The input sequence feeds into a recurrent structure
• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

• Subsequently a second RNN uses the hidden activation as initial state to 
produce a sequence of outputs
– The output at each time becomes the input at the next time
– Output production continues until an <eos> is produced
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<sos>

Ich

I ate an apple <eos>



The “simple” translation model

• The input sequence feeds into a recurrent structure
• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

• Subsequently a second RNN uses the hidden activation as initial state to 
produce a sequence of outputs
– The output at each time becomes the input at the next time
– Output production continues until an <eos> is produced

32

Ich habe

Ich<sos>I ate an apple <eos>



The “simple” translation model

• The input sequence feeds into a recurrent structure
• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

• Subsequently a second RNN uses the hidden activation as initial state to 
produce a sequence of outputs
– The output at each time becomes the input at the next time
– Output production continues until an <eos> is produced

33
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The “simple” translation model

• The input sequence feeds into a recurrent structure
• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

• Subsequently a second RNN uses the hidden activation as initial state to 
produce a sequence of outputs
– The output at each time becomes the input at the next time
– Output production continues until an <eos> is produced
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<sos>

Ich habe einen apfel gegessen <eos>

Ich habe einen apfel gegessenI ate an apple <eos>



The “simple” translation model

35

<sos>

Ich habe einen apfel gegessen <eos>

Ich habe einen apfel gegessenI ate an apple <eos>

Note that drawing a different word here

Would result in a different word being input here, and as a 
result the output here and subsequent outputs would all change



• We will illustrate with a single hidden layer, but the 
discussion generalizes to more layers

36

I ate an apple <sos>
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I ate an apple <eos>
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Pseudocode
# First run the inputs through the network
# Assuming h(-1,l) is available for all layers
t = 0
do

[h(t),..] = RNN_input_step(x(t),h(t-1),...)
until x(t) == “<eos>”
H = h(T-1)

# Now generate the output yout(1),yout(2),…
t = 0
hout(0) = H

# Note: begins with a “start of sentence” symbol
#       <sos> and <eos> may be identical
yout(0) = <sos>
do

t = t+1
[y(t),hout(t)] = RNN_output_step(hout(t-1), yout(t-1))
yout(t) = draw_word_from(y(t))

until yout(t) == <eos>
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Pseudocode
# First run the inputs through the network
# Assuming h(-1,l) is available for all layers
t = 0
do

[h(t),..] = RNN_input_step(x(t),h(t-1),...)
until x(t) == “<eos>”
H = h(T-1)

# Now generate the output yout(1),yout(2),…
t = 0
hout(0) = H

# Note: begins with a “start of sentence” symbol
#       <sos> and <eos> may be identical
yout(0) = <sos>
do

t = t+1
[y(t),hout(t)] = RNN_output_step(hout(t-1), yout(t-1))
yout(t) = draw_word_from(y(t))

until yout(t) == <eos>
38

Drawing a different word at t will change the
next output since yout(t) is fed back as input



The “simple” translation model

• The recurrent structure that extracts the hidden 
representation from the input sequence is the encoder

• The recurrent structure that utilizes this representation 
to produce the output sequence is the decoder

39

ENCODER

DECODER
<sos>

Ich habe einen apfel gegessen <eos>

Ich habe einen apfel gegessenI ate an apple <eos>



The “simple” translation model

• A more detailed look:  The one-hot word 
representations may be compressed via embeddings
– Embeddings will be learned along with the rest of the net
– In the following slides we will not represent the projection 

matrices
40

Ich habe einen apfel gegessen <eos>

I ate an apple <sos> Ich habe einen apfel gegessen

ଵ ଵ ଵ ଵ ଵ ଶ ଶ ଶ ଶ ଶଶ
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What the network actually produces

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary
– 𝑦

௪ = 𝑃 𝑂 = 𝑤|𝑂ିଵ, … , 𝑂ଵ, 𝐼ଵ, … , 𝐼ே

– The probability given the entire input sequence 𝐼ଵ, … , 𝐼ே and the partial output sequence 𝑂ଵ, … , 𝑂ିଵ until 𝑘

• At each time a word is drawn from the output distribution
• The drawn word is provided as input to the next time
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I ate an apple <sos>
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What the network actually produces

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary
– 𝑦

௪ = 𝑃 𝑂 = 𝑤|𝑂ିଵ, … , 𝑂ଵ, 𝐼ଵ, … , 𝐼ே

– The probability given the entire input sequence 𝐼ଵ, … , 𝐼ே and the partial output sequence 𝑂ଵ, … , 𝑂ିଵ until 𝑘

• At each time a word is drawn from the output distribution
• The drawn word is provided as input to the next time

42

𝑦


𝑦


𝑦


𝑦
ழ௦வ

…

Ich

I ate an apple <sos><eos>



What the network actually produces

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary
– 𝑦

௪ = 𝑃 𝑂 = 𝑤|𝑂ିଵ, … , 𝑂ଵ, 𝐼ଵ, … , 𝐼ே

– The probability given the entire input sequence 𝐼ଵ, … , 𝐼ே and the partial output sequence 𝑂ଵ, … , 𝑂ିଵ until 𝑘

• At each time a word is drawn from the output distribution
• The drawn word is provided as input to the next time
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What the network actually produces

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary
– 𝑦

௪ = 𝑃 𝑂 = 𝑤|𝑂ିଵ, … , 𝑂ଵ, 𝐼ଵ, … , 𝐼ே

– The probability given the entire input sequence 𝐼ଵ, … , 𝐼ே and the partial output sequence 𝑂ଵ, … , 𝑂ିଵ until 𝑘

• At each time a word is drawn from the output distribution
• The drawn word is provided as input to the next time
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What the network actually produces

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary
– 𝑦

௪ = 𝑃 𝑂 = 𝑤|𝑂ିଵ, … , 𝑂ଵ, 𝐼ଵ, … , 𝐼ே

– The probability given the entire input sequence 𝐼ଵ, … , 𝐼ே and the partial output sequence 𝑂ଵ, … , 𝑂ିଵ until 𝑘

• At each time a word is drawn from the output distribution
• The drawn word is provided as input to the next time
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What the network actually produces

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary
– 𝑦

௪ = 𝑃 𝑂 = 𝑤|𝑂ିଵ, … , 𝑂ଵ, 𝐼ଵ, … , 𝐼ே

– The probability given the entire input sequence 𝐼ଵ, … , 𝐼ே and the partial output sequence 𝑂ଵ, … , 𝑂ିଵ until 𝑘

• At each time a word is drawn from the output distribution
• The drawn word is provided as input to the next time
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What the network actually produces

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary
– 𝑦

௪ = 𝑃 𝑂 = 𝑤|𝑂ିଵ, … , 𝑂ଵ, 𝐼ଵ, … , 𝐼ே

– The probability given the entire input sequence 𝐼ଵ, … , 𝐼ே and the partial output sequence 𝑂ଵ, … , 𝑂ିଵ until 𝑘

• At each time a word is drawn from the output distribution
• The drawn word is provided as input to the next time
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What the network actually produces

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary
– 𝑦

௪ = 𝑃 𝑂 = 𝑤|𝑂ିଵ, … , 𝑂ଵ, 𝐼ଵ, … , 𝐼ே

– The probability given the entire input sequence 𝐼ଵ, … , 𝐼ே and the partial output sequence 𝑂ଵ, … , 𝑂ିଵ until 𝑘

• At each time a word is drawn from the output distribution
• The drawn word is provided as input to the next time
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What the network actually produces

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary
– 𝑦

௪ = 𝑃 𝑂 = 𝑤|𝑂ିଵ, … , 𝑂ଵ, 𝐼ଵ, … , 𝐼ே

– The probability given the entire input sequence 𝐼ଵ, … , 𝐼ே and the partial output sequence 𝑂ଵ, … , 𝑂ିଵ until 𝑘

• At each time a word is drawn from the output distribution
• The drawn word is provided as input to the next time
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Generating an output from the net

• At each time the network produces a probability distribution over words, given the entire input and 
entire output sequence so far

• At each time a word is drawn from the output distribution
• The drawn word is provided as input to the next time
• The process continues until an <eos> is generated
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Pseudocode
# First run the inputs through the network
# Assuming h(-1,l) is available for all layers
t = 0
do

[h(t),..] = RNN_input_step(x(t),h(t-1),...)
until x(t) == “<eos>”
H = h(T-1)

# Now generate the output yout(1),yout(2),…
t = 0
hout(0) = H

# Note: begins with a “start of sentence” symbol
#       <sos> and <eos> may be identical
yout(0) = <sos>
do

t = t+1
[y(t),hout(t)] = RNN_output_step(hout(t-1), yout(t-1))
yout(t) = draw_word_from(y(t))

until yout(t) == <eos>
51What is this magic operation?



The probability of the output
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The probability of the output

• The objective of drawing:  Produce the most likely output (that ends in an <eos>)
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Greedy drawing

• So how do we draw words at each time to get the most likely word 
sequence?

• Greedy answer – select the most probable word at each time
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Pseudocode
# First run the inputs through the network
# Assuming h(-1,l) is available for all layers
t = 0
do

[h(t),..] = RNN_input_step(x(t),h(t-1),...)
until x(t) == “<eos>”
H = h(T-1)

# Now generate the output yout(1),yout(2),…
t = 0
hout(0) = H

# Note: begins with a “start of sentence” symbol
#       <sos> and <eos> may be identical
yout(0) = <sos>
do

t = t+1
[y(t),hout(t)] = RNN_output_step(hout(t-1), yout(t-1))
yout(t) = argmaxi(y(t,i))

until yout(t) == <eos>
55Select the most likely output at each time



Greedy drawing

• Cannot just pick the most likely symbol at each time
– That may cause the distribution to be more “confused” at the next time
– Choosing a different, less likely word could cause the distribution at the next 

time to be more peaky, resulting in a more likely output overall
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Greedy is not good

• Hypothetical example (from English speech recognition : Input is speech, output 
must be text)

• “Nose” has highest probability at t=2 and is selected
– The model is very confused at t=3 and assigns low probabilities to many words at the next 

time
– Selecting any of these will result in low probability for the entire 3-word sequence

• “Knows” has slightly lower probability than “nose”, but is still high and is selected
– “he knows” is a reasonable beginning and the model assigns high probabilities to words such 

as “something”
– Selecting one of these results in higher overall probability for the 3-word sequence
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Greedy is not good

• Problem: Impossible to know a priori which word leads to 
the more promising future
– Should we draw “nose” or “knows”?
– Effect may not be obvious until several words down the line
– Or the choice of the wrong word early may cumulatively lead to 

a poorer overall score over time
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Greedy is not good

• Problem: Impossible to know a priori which word leads to the more 
promising future
– Even earlier:  Choosing the lower probability “the” instead of “he” at T=0 may 

have made a choice of “nose” more reasonable at T=1..

• In general, making a poor choice at any time commits us to a poor future
– But we cannot know at that time the choice was poor
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Drawing by random sampling

• Alternate option:  Randomly draw a word at each 
time according to the output probability 
distribution
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Pseudocode
# First run the inputs through the network
# Assuming h(-1,l) is available for all layers
t = 0
do

[h(t),..] = RNN_input_step(x(t),h(t-1),...)
until x(t) == “<eos>”
H = h(T-1)

# Now generate the output yout(1),yout(2),…
t = 0
hout(0) = H

# Note: begins with a “start of sentence” symbol
#       <sos> and <eos> may be identical
yout(0) = <sos>
do

t = t+1
[y(t),hout(t)] = RNN_output_step(hout(t-1), yout(t-1))
yout(t) = sample(y(t))

until yout(t) == <eos>
61
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Drawing by random sampling

• Alternate option:  Randomly draw a word at each time according to the 
output probability distribution
– Unfortunately, not guaranteed to give you the most likely output
– May sometimes give you more likely outputs than greedy drawing though
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Your choices can get you stuck

• Problem: making a poor choice at any time 
commits us to a poor future
– But we cannot know at that time the choice was poor

• Solution:  Don’t choose..
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Optimal Solution: Multiple choices

• Retain all choices and fork the network
– With every possible word as input
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Problem: Multiple choices

• Problem: This will blow up very quickly
– For an output vocabulary of size , after output steps 

we’d have forked out branches
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Solution: Prune

• Solution: Prune
– At each time, retain only the top K scoring forks

66

I

He

We

The

 ଵ ଵ ே

<sos>



Solution: Prune

• Solution: Prune
– At each time, retain only the top K scoring forks
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Solution: Prune

• Solution: Prune
– At each time, retain only the top K scoring forks
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Solution: Prune

• Solution: Prune
– At each time, retain only the top K scoring forks
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Solution: Prune

• Solution: Prune
– At each time, retain only the top K scoring forks
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Solution: Prune

• Solution: Prune
– At each time, retain only the top K scoring forks
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Solution: Prune

• Solution: Prune
– At each time, retain only the top K scoring forks
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Terminate

• Terminate
– When the current most likely path overall ends in <eos>

• Or continue producing more outputs (each of which terminates in <eos>) to 
get N-best outputs 73
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Termination: <eos>

• Terminate
– Paths cannot continue once the output an <eos>

• So paths may be different lengths
– Select the most likely sequence ending in <eos> across all terminating sequences 74
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Pseudocode: Beam search
# Assuming encoder output H is available
path = <sos>
beam = {path}
pathscore = [path] = 1
state[path] = h[0]  # Output of encoder
do  # Step forward

nextbeam = {}
nextpathscore = []
nextstate = {}
for path in beam:

cfin = path[end]
hpath = state[path]
[y,h] = RNN_output_step(hpath,cfin)
for c in Symbolset

newpath = path + c
nextstate[newpath] = h
nextpathscore[newpath] = pathscore[path]*y[c]
nextbeam += newpath # Set addition

end
end
beam, pathscore, state, bestpath = prune(nextstate,nextpathscore,nextbeam,bw)

until bestpath[end] = <eos>
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Pseudocode: Prune
# Note, there are smarter ways to implement this

function prune (state, score, beam, beamwidth)
sortedscore = sort(score)
threshold = sortedscore[beamwidth]

prunedstate = {}
prunedscore = []
prunedbeam = {}

bestscore = -inf
bestpath = none
for path in beam:

if score[path] > threshold:
prunedbeam += path # set addition
prunedstate[path] = state[path]
prunedscore[path] = score[path]
if score[path] > bestscore

bestscore = score[path]
bestpath = path

end
end

end
return prunedbeam, prunedscore, prunedstate, bestpath
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Training the system

• Must learn to make predictions appropriately
– Given “I ate an apple <eos>”, produce “Ich habe

einen apfel gegessen <eos>”.
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Training : Forward pass

• Forward pass:  Input the source and target sequences, 
sequentially
– Output will be a probability distribution over target symbol set 

(vocabulary)
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Training : Backward pass

• Backward pass:  Compute the divergence 
between the output distribution and target word 
sequence
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Training : Backward pass

• Backward pass:  Compute the divergence between the output 
distribution and target word sequence

• Backpropagate the derivatives of the divergence through the 
network to learn the net
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Training : Backward pass

• In practice,  if we apply SGD, we may randomly sample words from the 
output to actually use for the backprop and update
– Typical usage:  Randomly select one word from each input training instance 

(comprising an input-output pair)
• For each iteration

– Randomly select training instance: (input, output)
– Forward pass
– Randomly select a single output y(t) and corresponding desired output d(t) for backprop 81
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Overall training

• Given several training instance 
• For each training instance

– Forward pass:  Compute the output of the network for 

• Note, both and are used in the forward pass

– Backward pass: Compute the divergence between 
selected words of the desired target and the actual 
output 
• Propagate derivatives of divergence for updates

• Update parameters
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Trick of the trade: Reversing the input

• Standard trick of the trade: The input 
sequence is fed in reverse order
– Things work better this way
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Trick of the trade: Reversing the input

• Standard trick of the trade: The input 
sequence is fed in reverse order
– Things work better this way
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Trick of the trade: Reversing the input

• Standard trick of the trade: The input sequence is fed 
in reverse order
– Things work better this way

• This happens both for training and during inference on 
test data
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Overall training

• Given several training instance 
• Forward pass:  Compute the output of the 

network for with input in reverse order
– Note, both and are used in the forward pass

• Backward pass: Compute the divergence 
between the desired target and the actual 
output 
– Propagate derivatives of divergence for updates
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Applications

• Machine Translation
– My name is Tom  Ich heisse Tom/Mein name ist

Tom
• Automatic speech recognition

– Speech recording  “My name is Tom”
• Dialog

– “I have a problem”  “How may I help you”
• Image to text

– Picture  Caption for picture
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Machine Translation Example

• Hidden state clusters by meaning!
– From “Sequence-to-sequence learning with neural networks”, 

Sutskever, Vinyals and Le 88



Machine Translation Example

• Examples of translation
– From “Sequence-to-sequence learning with neural networks”, 

Sutskever, Vinyals and Le 89



Human Machine Conversation: Example

• From “A neural conversational model”, Orin Vinyals and Quoc Le
• Trained on human-human converstations
• Task:  Human text in,  machine response out 90



Generating Image Captions

• Not really a seq-to-seq problem, more an image-to-sequence problem
• Initial state is produced by a state-of-art CNN-based image classification 

system
– Subsequent model is just the decoder end of a seq-to-seq model

• “Show and Tell: A Neural Image Caption Generator”, O. Vinyals, A. Toshev, S. Bengio, D. 
Erhan
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Generating Image Captions

• Decoding: Given image
– Process it with CNN to get output of classification layer
– Sequentially generate words by drawing from the conditional 

output distribution ௧  ଵ ௧ିଵ

– In practice, we can perform the beam search explained earlier
92



Generating Image Captions

• Decoding: Given image
– Process it with CNN to get output of classification layer
– Sequentially generate words by drawing from the conditional 

output distribution ௧  ଵ ௧ିଵ

– In practice, we can perform the beam search explained earlier
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Generating Image Captions

• Decoding: Given image
– Process it with CNN to get output of classification layer
– Sequentially generate words by drawing from the conditional 

output distribution ௧  ଵ ௧ିଵ

– In practice, we can perform the beam search explained earlier
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Generating Image Captions

• Decoding: Given image
– Process it with CNN to get output of classification layer
– Sequentially generate words by drawing from the conditional 

output distribution ௧  ଵ ௧ିଵ

– In practice, we can perform the beam search explained earlier
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Generating Image Captions

• Decoding: Given image
– Process it with CNN to get output of classification layer
– Sequentially generate words by drawing from the conditional 

output distribution ௧  ଵ ௧ିଵ

– In practice, we can perform the beam search explained earlier
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Generating Image Captions

• Decoding: Given image
– Process it with CNN to get output of classification layer
– Sequentially generate words by drawing from the conditional 

output distribution ௧  ଵ ௧ିଵ

– In practice, we can perform the beam search explained earlier
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Generating Image Captions

• Decoding: Given image
– Process it with CNN to get output of classification layer
– Sequentially generate words by drawing from the conditional 

output distribution ௧  ଵ ௧ିଵ

– In practice, we can perform the beam search explained earlier
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Training

• Training:  Given several (Image, Caption) pairs
– The image network is pretrained on a large corpus, e.g. image net

• Forward pass: Produce output distributions given the image and caption
• Backward pass: Compute the divergence w.r.t. training caption, and backpropagate

derivatives
– All components of the network, including final classification layer of the image classification net are 

updated
– The CNN portions of the image classifier are not modified (transfer learning) 99
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• Training:  Given several (Image, Caption) pairs
– The image network is pretrained on a large corpus, e.g. image net

• Forward pass: Produce output distributions given the image and caption
• Backward pass: Compute the divergence w.r.t. training caption, and backpropagate

derivatives
– All components of the network, including final classification layer of the image classification net are 

updated
– The CNN portions of the image classifier are not modified (transfer learning) 100
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• Training:  Given several (Image, Caption) pairs
– The image network is pretrained on a large corpus, e.g. image net

• Forward pass: Produce output distributions given the image and caption
• Backward pass: Compute the divergence w.r.t. training caption, and backpropagate

derivatives
– All components of the network, including final classification layer of the image classification net are 

updated
– The CNN portions of the image classifier are not modified (transfer learning) 101
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Examples from Vinyals et al.
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Variants

103
<sos>

Iateanapple<eos>

<sos>

A better model: Encoded
input embedding is input to
all output timesteps

A boy on a surfboard

A boy on surfboarda <eos>

Ich habe einen apfel gegessen <eos>



Translating Videos to Natural Language Using Deep 
Recurrent Neural Networks 

Translating Videos to Natural Language Using Deep Recurrent Neural Networks 
Subhashini Venugopalan, Huijun Xu, Jeff Donahue, Marcus Rohrbach, Raymond Mooney, Kate Saenko
North American Chapter of the Association for Computational Linguistics, Denver, Colorado, June 2015. 
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Pseudocode
# Assuming encoded input H (from text, image, video) 
# is available
# Now generate the output yout(1),yout(2),…
t = 0
hout(0) = H   # Encoder embedding

# Note: begins with a “start of sentence” symbol
#       <sos> and <eos> may be identical
yout(0) = <sos>
do

t = t+1
[y(t),hout(t)] = RNN_output_step(hout(t-1), yout(t-1), H)
yout(t) = generate(y(t)) # Beam search, random, or greedy

until yout(t) == <eos>
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Pseudocode
# Assuming encoded input H (from text, image, video) 
# is available
# Now generate the output yout(1),yout(2),…
t = 0
hout(0) = H   # Encoder embedding

# Note: begins with a “start of sentence” symbol
#       <sos> and <eos> may be identical
yout(0) = <sos>
do

t = t+1
[y(t),hout(t)] = RNN_output_step(hout(t-1), yout(t-1), H)
yout(t) = generate(y(t)) # Beam search, random, or greedy

until yout(t) == <eos>
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Also consider
encoder embedding



A problem with this framework

• All the information about the input sequence is 
embedded into a single vector
– The “hidden” node layer at the end of the input sequence

– This one node is “overloaded” with information
• Particularly if the input is long
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Ich habe einen apfel gegessen

 ଵ ଶ ଷ ସ ହ

Ich habe einen apfel gegessen <eos>

<sos>I ate an apple <eos>



A problem with this framework

• In reality: All hidden values carry information
– Some of which may be diluted downstream

108

I ate an apple <eos>



A problem with this framework

• In reality: All hidden values carry information
– Some of which may be diluted downstream

• Different outputs are related to different inputs
– Recall input and output may not be in sequence 

109

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>



A problem with this framework

• In reality: All hidden values carry information
– Some of which may be diluted downstream

• Different outputs are related to different inputs
– Recall input and output may not be in sequence
– Have no way of knowing a priori which input must connect to what 

output

110

an apple <eos> Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

<sos>I ate



A problem with this framework

• In reality: All hidden values carry information
– Some of which may be diluted downstream

• Different outputs are related to different inputs
– Recall input and output may not be in sequence
– Have no way of knowing a priori which input must connect to what output

• Connecting everything to everything is infeasible
– Variable sized inputs and outputs
– Overparametrized
– Connection pattern ignores the actual asynchronous dependence of output on input 111

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

<sos>



Solution: Attention models

• Separating the encoder and decoder in illustration
112

I ate an apple <eos>

 ଵ ଶ ଷିଵ

ିଵ

<sos>

 ଵ ଶ ଷ ସ ହ



Solution: Attention models

• Compute a weighted combination of all the hidden 
outputs into a single vector
– Weights vary by output time 113

I ate an apple <eos>

 ଵ ଶ ଷ ସିଵ

ିଵ  ଵ ଶ ଷ ସ ହ

 𝑤 1 𝒉



 𝑤 2 𝒉



 𝑤 3 𝒉



 𝑤 4 𝒉



 𝑤 5 𝒉



 𝑤 6 𝒉





Solution: Attention models

• Compute a weighted combination of all the hidden 
outputs into a single vector
– Weights vary by output time 114

I ate an apple <eos>

 ଵ ଶ ଷ ସିଵ

ିଵ  ଵ ଶ ଷ ସ ହ

 𝑤 1 𝒉



 𝑤 2 𝒉



 𝑤 3 𝒉



 𝑤 4 𝒉



 𝑤 5 𝒉



 𝑤 6 𝒉



Note: Weights vary
with output time

Input to hidden decoder layer:    

Weights:   are scalars



Solution: Attention models

• Require a time-varying weight that specifies 
relationship of output time to input time
– Weights are functions of current output state 115

I ate an apple <eos>

 ଵ ଶ ଷ ସିଵ

ିଵ  ଵ ଶ ଷ ସ ହ

 𝑤 1 𝒉



 𝑤 2 𝒉



 𝑤 3 𝒉



 𝑤 4 𝒉



 𝑤 5 𝒉



 𝑤 6 𝒉



Input to hidden decoder
layer:    



Attention models

• The weights are a distribution over the input
– Must automatically highlight the most important input 

components for any output 116

I ate an apple <eos>

 ଵ ଶ ଷ ସିଵ

ିଵ  ଵ ଶ ଷ ସ ହ

Input to hidden decoder
layer:    

Ich habe einen

Ich habe einen

Sum to 1.0

<sos>



Attention models

• “Raw” weight at any time: A function that works on the 
two hidden states

• Actual weight:  softmax over raw weights 117

I ate an apple <eos>

 ଵ ଶ ଷ ସିଵ

ିଵ  ଵ ଶ ଷ ସ ହ

Input to hidden decoder
layer:    

Ich habe einen

Ich habe einen

Sum to 1.0

<sos>



Attention models

• Typical options for …
– Variables in red are to be learned 118

I ate an apple <eos>

 ଵ ଶ ଷ ସିଵ

ିଵ  ଵ ଶ ଷ ସ ହ

Ich habe einen

Ich habe einen

 ௧ିଵ 
்

௧ିଵ

 ௧ିଵ 
்

 ௧ିଵ

 ௧ିଵ 
்




௧ିଵ

 ௧ିଵ  ௧ିଵ

<sos>



Modification: Query key value

• Encoder outputs an explicit “key” and “value” at each input time
– Key is used to evaluate the importance of the input at that time, for a given output

• Decoder outputs an explicit “query” at each output time
– Query is used to evaluate which inputs to pay attention to

• The weight is a function of key and query
• The actual context is a weighted sum of value 119

ିଵ ଵ

Ich

Ich habe

<sos>



 ଵ ଶ

I ate an apple <eos>

𝒉 𝒉ଵ 𝒉ଶ 𝒉ଷ 𝒉ସ𝒉ିଵ

𝑣𝑘 𝑣ଵ𝑘ଵ 𝑣ଶ𝑘ଶ 𝑣ଷ𝑘ଷ 𝑣ସ𝑘ସ

  ௧

 

Input to hidden decoder
layer:    



Modification: Query key value

• Encoder outputs an explicit “key” and “value” at each input time
– Key is used to evaluate the importance of the input at that time, for a given output

• Decoder outputs an explicit “query” at each output time
– Query is used to evaluate which inputs to pay attention to

• The weight is a function of key and query
• The actual context is a weighted sum of value 120

ିଵ ଵ

Ich

Ich habe

<sos>



 ଵ ଶ

I ate an apple <eos>

𝒉 𝒉ଵ 𝒉ଶ 𝒉ଷ 𝒉ସ𝒉ିଵ

𝑣𝑘 𝑣ଵ𝑘ଵ 𝑣ଶ𝑘ଶ 𝑣ଷ𝑘ଷ 𝑣ସ𝑘ସ

  ௧

 

Input to hidden decoder
layer:    

Special case:  

We will continue using this assumption in the following slides
but in practice the query-key-value format is used



Converting an input (forward pass)

• Pass the input through the encoder to 
produce hidden representations 121

I ate an apple <eos>

 ଵ ଶ ଷ ସିଵ



• Initialize decoder hidden state
122

I ate an apple <eos>

 ଵ ଶ ଷ ସିଵ

ିଵ

Converting an input (forward pass)
What is this?
Multiple options

Simplest:  ିଵ ே

If and are different sizes:
ିଵ ௦ ே

௦ is  learnable parameter



• Compute weights (for every ) for first 
output 123

I ate an apple <eos>

 ଵ ଶ ଷ ସିଵ

ିଵ

Converting an input (forward pass)

 ିଵ 
்

 ିଵ



• Compute weights (for every ) for first output

• Compute weighted combination of hidden values124

I ate an apple <eos>

 ଵ ଶ ଷ ସିଵ

ିଵ

Converting an input (forward pass)

  



 ିଵ 
்

 ିଵ



<sos>

• Produce the first output
– Will be distribution over words 125

I ate an apple <eos>

 ଵ ଶ ଷ ସିଵ

ିଵ 

Converting an input (forward pass)

  






ௗ௨


௧







<sos>

• Produce the first output
– Will be distribution over words
– Draw a word from the distribution 126

I ate an apple <eos>

 ଵ ଶ ଷ ସିଵ

ିଵ 

Ich

Converting an input (forward pass)

  






ௗ௨


௧







• Compute the weights for all instances for 
time = 1 127

I ate an apple <eos>

 ଵ ଶ ଷ ସିଵ

ିଵ 





Ich

  
்

 

<sos>



• Compute the weighted sum of hidden input 
values at t=1 128

I ate an apple <eos>

 ଵ ଶ ଷ ସିଵ

ିଵ 



Ich

  
்

 

ଵ  





<sos>



• Compute the output at t=1
– Will be a probability distribution over words 129

I ate an apple <eos>

 ଵ ଶ ଷ ସିଵ

ିଵ 



Ich

ଵ  



ଵ

Ich

ଵ


ଵ
ௗ௨

ଵ
௧

ଵ

ଵ



<sos>



• Draw a word from the output distribution at 
t=1 130

I ate an apple <eos>

 ଵ ଶ ଷ ସିଵ

ିଵ 



Ich

ଵ  



ଵ

Ich

ଵ habe

ଵ


ଵ
ௗ௨

ଵ
௧

ଵ



<sos>
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I ate an apple <eos>

 ଵ ଶ ଷ ସିଵ

ିଵ 



Ich

ଵ

Ich

ଵ

habe

ଵ

• Compute the weights for all instances for 
time = 2

 ଵ 
்

 ଵ



<sos>
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I ate an apple <eos>

 ଵ ଶ ଷ ସିଵ

ିଵ 



Ich

ଵ

Ich

ଵ

habe

ଵ  ଵ 
்

 ଵ

• Compute the weighted sum of hidden input 
values at t=2

ଶ  





<sos>



• Compute the output at t=2
– Will be a probability distribution over words 133

I ate an apple <eos>

 ଵ ଶ ଷ ସିଵ

ିଵ 



Ich

ଶ  



ଵ

Ich

ଶ


ଶ
ௗ௨

ଶ
௧

ଵ

ଶ

ଵ

ଶ

habe

ଶ

habe



<sos>



• Draw a word from the distribution
134

I ate an apple <eos>

 ଵ ଶ ଷ ସିଵ

ିଵ 



Ich

ଶ  



ଵ

Ich

ଵ

ଵ

ଶ

habe

ଶ

habe

einen

ଶ


ଶ
ௗ௨

ଶ
௧

ଶ



<sos>
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I ate an apple <eos>

 ଵ ଶ ଷ ସିଵ

ିଵ 



Ich

ଵ

Ich

ଵ

habe

ଵ

• Compute the weights for all instances for 
time = 3

ଶ

ଶ

einen

ଶ

habe



<sos>
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I ate an apple <eos>

 ଵ ଶ ଷ ସିଵ

ିଵ

• Compute the weighted sum of hidden input 
values at t=3

ଷ  







Ich

ଵ

Ich

ଵ

habe

ଵ

ଶ

ଶ

einen

ଶ

habe



<sos>



• Compute the output at t=3
– Will be a probability distribution over words
– Draw a word from the distribution 137

I ate an apple <eos>

 ଵ ଶ ଷ ସିଵ

ିଵ 



Ich

ଷ  



ଵ

Ich

ଶ


ଶ
ௗ௨

ଶ
௧

ଵ

ଷ

ଵ

ଶ

habe

ଶ

habe einen

ଶ

ଷ

einen

ଷ
apfel



<sos>



• Continue the process until an end-of-sequence 
symbol is produced 138

I ate an apple <eos>

 ଵ ଶ ଷ ସିଵ

ିଵ 



Ich

ଵ

Ich

ଵ

ଵ

ଶ

habe

ଶ

habe einen

ଶ

ଷ

einen

ଷ

apfel gegessen <eos>

ସ

apfel

ସ

ହ

gegessen

ହ

ଷ ସ ହ



<sos>



Pseudocode
# Assuming encoded input 
#      (K,V) = [kenc[0]… kenc[T]], [venc[0]… venc[T]] 
# is available

t = -1
hout[-1] = 0   # Initial Decoder hidden state
q[0] = 0      # Initial query

# Note: begins with a “start of sentence” symbol
#       <sos> and <eos> may be identical
Yout[0] = <sos>
do

t = t+1
C = compute_context_with_attention(q[t], K, V)
y[t],hout[t],q[t+1] = RNN_decode_step(hout[t-1], yout[t-1], C)
yout[t] = generate(y[t]) # Random, or greedy

until yout[t] == <eos>
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Pseudocode : Computing context with 
attention

# Takes in previous state, encoder states, outputs attention-weighted context
function compute_context_with_attention(q, K, V)

# First compute attention
e = []
for t = 1:T  # Length of input

e[t] = raw_attention(q, K[t])
end
maxe = max(e) # subtract max(e) from everything to prevent underflow
a[1..T] = exp(e[1..T] - maxe)   # Component-wise exponentiation
suma = sum(a)  # Add all elements of a
a[1..T] = a[1..T]/suma

C = 0    
for t = 1..T

C += a[t] * V[t]
end

return C
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I ate an apple <eos>

 ଵ ଶ ଷ ସିଵ

ିଵ 



Ich

ଵ

Ich

ଵ

ଵ

ଶ

habe

ଶ

habe einen

ଶ

ଷ

einen

ଷ

apfel gegessen <eos>

ସ

apfel

ସ

ହ

gegessen

ହ

ଷ ସ ହ

• As before, the objective of drawing:  Produce the most likely output (that ends in an <eos>)

argmax
ைభ,…,ைಽ

𝑦ଵ
ைభ𝑦ଵ

ைమ … 𝑦ଵ
ைಽ

• Simply selecting the most likely symbol at each time may result in suboptimal output

<sos>





Solution: Multiple choices

• Retain all choices and fork the network
– With every possible word as input

142

I

He

We

The

<sos>



To prevent blowup: Prune

• Prune
– At each time, retain only the top K scoring forks
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I

He

We

The

 ଵ ଵ ே



Decoding

• At each time, retain only the top K scoring forks
144

He

The



Decoding

• At each time, retain only the top K scoring forks
145

He

The

 ଶ ଵ ଵ ே

Note: based on product

 ଶ ଵ ଵ ே ଵ ଵ ே

I

Knows

…

I

Nose

…
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He

The

 ଶ ଵ ଵ ே

Note: based on product

 ଶ ଵ ଵ ே ଵ ଵ ே

I

Knows

…

I

Nose

…

Decoding

• At each time, retain only the top K scoring forks
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He

The

 ଶ ଵ ଵ ே

ଶ ଵ ଵ ே

ଵ ଵ ே

Knows

Nose

…

Decoding

• At each time, retain only the top K scoring forks
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He

The

 ଶ ଵ ଵ ே

ଶ ଵ ଵ ே

ଵ ଵ ே

Knows

Nose

…

Decoding

• At each time, retain only the top K scoring forks
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He

The

  ଵ ିଵ ଵ ே



௧ୀଵ

Knows

Nose

Decoding

• At each time, retain only the top K scoring forks



Terminate

• Terminate
– When the current most likely path overall ends in <eos>

• Or continue producing more outputs (each of which terminates in <eos>) to 
get N-best outputs 150

He

The

Knows

<eos>

Nose



Termination: <eos>

• Terminate
– Paths cannot continue once the output an <eos>

• So paths may be different lengths
– Select the most likely sequence ending in <eos> across all terminating sequences 151

He

The

Knows

<eos>

Nose

<eos>

<eos>

Example has K = 2



Pseudocode: Beam search
# Assuming encoder output H = hin[1]… hin[T] is available
path = <sos>
beam = {path}
pathscore = [path] = 1
state[path] = h[0]  # initial state (computed using your favorite method)
do  # Step forward

nextbeam = {}
nextpathscore = []
nextstate = {}
for path in beam:

cfin = path[end]
hpath = state[path]
C = compute_context_with_attention(hpath, H)
y,h = RNN_decode_step(hpath, cfin, C)
for c in Symbolset

newpath = path + c
nextstate[newpath] = h
nextpathscore[newpath] = pathscore[path]*y[c]
nextbeam += newpath # Set addition

end
end
beam, pathscore, state, bestpath = prune(nextstate,nextpathscore,nextbeam)

until bestpath[end] = <eos>
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Pseudocode: Beam search
# Assuming encoder output H = hin[1]… hin[T] is available
path = <sos>
beam = {path}
pathscore = [path] = 1
state[path] = h[0]  # computed using your favorite method
context[path] = compute_context_with_attention(h[0], H)
do  # Step forward

nextbeam = {}
nextpathscore = []
nextstate = {}
nextcontext = {}
for path in beam:

cfin = path[end]
hpath = state[path]
C = context[path]
y,h = RNN_decode_step(hpath, cfin, C)
nextC = compute_context_with_attention(h, H)
for c in Symbolset

newpath = path + c
nextstate[newpath] = h
nextcontext[newpath] = nextC
nextpathscore[newpath] = pathscore[path]*y[c]
nextbeam += newpath # Set addition

end
end
beam, pathscore, state, context, bestpath = 

prune (nextstate, nextpathscore, nextbeam, nextcontext)
until bestpath[end] = <eos>
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Slightly more efficient.

Does not perform redundant
context computation



• The key component of this model is the attention weight
– It captures the relative importance of each position in the input 

to the current output 154

I ate an apple <eos>

 ଵ ଶ ଷ ସିଵ
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ଵ  



ଵ

Ich

ଵ

What does the attention learn?

  
்

 <sos>





“Alignments” example: Bahdanau et al.

155i

t

t

Plot of 𝒊

Color shows value (white
is larger)

Note how most important
input words for any output
word get automatically
highlighted

The general trend is 
somewhat linear because
word order is roughly
similar in both languages

i



Translation Examples

• Bahdanau et al. 2016
156



Training the network

• We have seen how a trained network can be 
used to compute outputs
– Convert one sequence to another

• Lets consider training..

157



• Given training input (source sequence, target sequence) pairs
• Forward pass:  Pass the actual Pass the input sequence through the encoder

– At each time the output is a probability distribution over words 158

I ate an apple <eos>

 ଵ ଶ ଷ ସିଵ

ିଵ  ଵ ଶ ଷ ସ ହ

Ich habe einen apfel gegessen

𝑦


𝑦
ௗ௨

𝑦
௧

…

𝑦ଵ


𝑦ଵ
ௗ௨

𝑦ଵ
௧

…

𝑦ଶ


𝑦ଶ
ௗ௨

𝑦ଶ
௧

…
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𝑦ଷ
ௗ௨

𝑦ଷ
௧
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𝑦ସ


𝑦ସ
ௗ௨

𝑦ସ
௧

…

𝑦ହ


𝑦ହ
ௗ௨

𝑦ହ
௧

…

<sos>



• Backward pass:  Compute a divergence between target 
output and output distributions
– Backpropagate derivatives through the network 159
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…
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Ich habe einen apfel gegessen<eos>
Div Div Div Div Div Div

<sos>



<sos>

• Backward pass:  Compute a divergence between target 
output and output distributions
– Backpropagate derivatives through the network 160
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Ich habe einen apfel gegessen
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…
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Ich habe einen apfel gegessen<eos>
Div Div Div Div Div Div

Back propagation also 
updates parameters of 
the “attention” function 



• Backward pass:  Compute a divergence between target 
output and output distributions
– Backpropagate derivatives through the network 161

I ate an apple <eos>
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…
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𝑦ଷ
ௗ௨

𝑦ଷ
௧

…

𝑦ସ
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Ich habe einen apfel gegessen<eos>
Div Div Div Div Div Div

***<sos>

Occasionally pass drawn output
instead of ground truth, as input

Some tricks of the trade
ein



Tricks of the trade…
• Teacher forcing:

– Ideally we only use the decoder output
during inference

– This will not be stable
– Passing in ground truth instead is “teacher forcing”

• Sampling the output: 
– Sample the system output and 
– as input during training for only some of the time

• The “Gumbel noise” trick:  
– Sampling is not differentiable, and gradients cannot be passed through it
– The “Gumbel noise” approach recasts sampling as computing the argmax of a 

Gumbel distribution, with the network output as parameters
– The “argmax” can be replaced by a “softmax”, making the process 

differentiable w.r.t. network outputs
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Various extensions

• Bidirectional processing of input sequence
– Bidirectional networks in encoder

– E.g. “Neural Machine Translation by Jointly Learning 
to Align and Translate”, Bahdanau et al. 2016

• Attention:  Local attention vs global attention
– E.g. “Effective Approaches to Attention-based Neural 

Machine Translation”,  Luong et al., 2015

– Other variants
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Extensions: Multihead attention

• Have multiple query/key/value sets.
– Each attention “head” uses one of these sets
– The combined contexts from all heads are passed to the decoder

• Each “attender” focuses on a different aspect of the input that’s 
important for the decode 164
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Some impressive results..

• Attention-based models are currently 
responsible for the state of the art in many 
sequence-conversion systems
– Machine translation

• Input: Text in source language
• Output: Text in target language

– Speech recognition
• Input: Speech audio feature vector sequence
• Output: Transcribed word or character sequence
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Attention models in image captioning

• “Show attend and tell: Neural image caption generation with visual 
attention”, Xu et al., 2016

• Encoder network is a convolutional neural network
– Filter outputs at each location are the equivalent of 𝑖 in the regular 

sequence-to-sequence model 
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In closing

• Have looked at various forms of sequence-to-sequence 
models

• Generalizations of recurrent neural network formalisms

• For more details, please refer to papers
– Post on piazza if you have questions

• Will appear in HW4:  Speech recognition with 
attention models
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