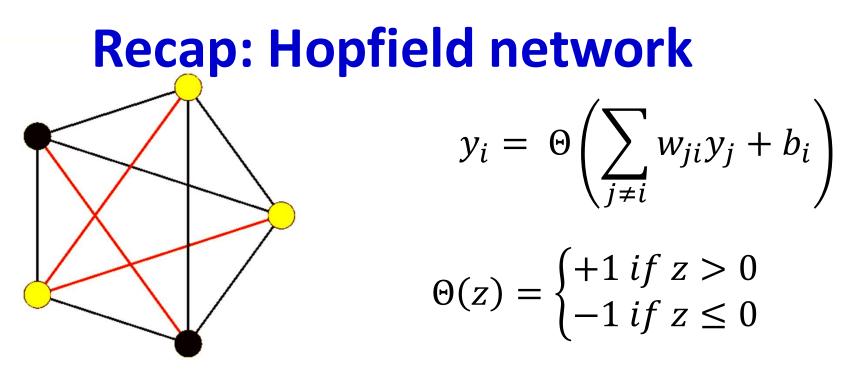
Neural Networks

Hopfield Nets and Boltzmann Machines Spring 2021

Recap: Hopfield network

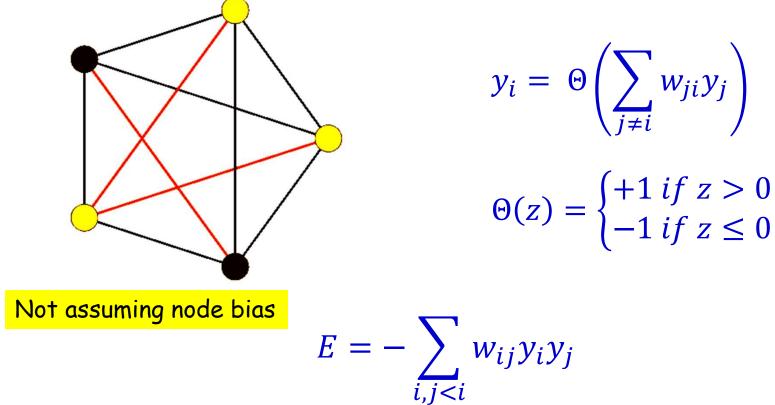
$$\Theta(z) = \begin{cases} +1 \text{ if } z > 0 \\ -1 \text{ if } z \le 0 \end{cases} \qquad y_i = \Theta\left(\sum_{j \neq i} w_{ji}y_j + b_i\right)$$

- Symmetric loopy network
- Each neuron is a perceptron with +1/-1 output



- At each time each neuron receives a "field" $\sum_{j \neq i} w_{ji} y_j + b_i$
- If the sign of the field matches its own sign, it does not respond
- If the sign of the field opposes its own sign, it "flips" to match the sign of the field

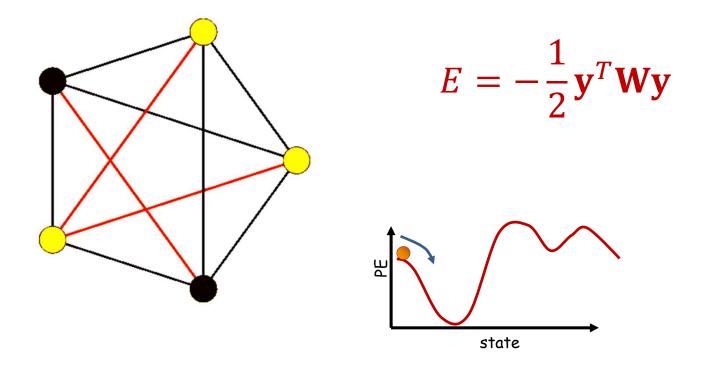
Recap: Energy of a Hopfield Network



- The system will evolve until the energy hits a local minimum
- In vector form, including a bias term (not typically used in Hopfield nets)

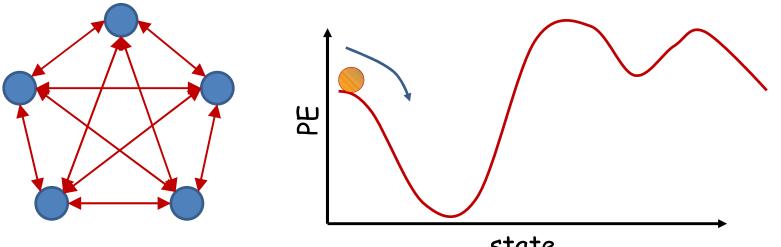
$$E = -\frac{1}{2}\mathbf{y}^T\mathbf{W}\mathbf{y} - \mathbf{b}^T\mathbf{y}$$

Recap: Evolution



• The network will evolve until it arrives at a local minimum in the energy contour

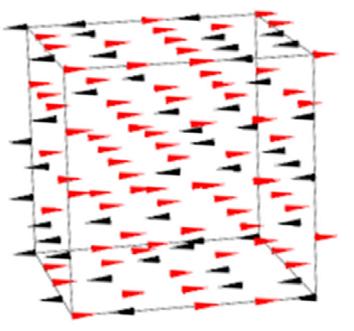
Recap: Content-addressable memory



state

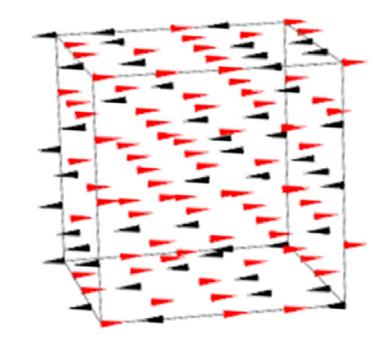
- Each of the minima is a "stored" pattern
 - If the network is initialized close to a stored pattern, it will inevitably evolve to the pattern
- This is a *content addressable memory*
 - Recall memory content from partial or corrupt values
- Also called *associative memory*

Recap – Analogy: Spin Glasses



- Magnetic diploes
- Each dipole tries to *align* itself to the local field
 - In doing so it may flip
- This will change fields at *other* dipoles
 - Which may flip
- Which changes the field at the current dipole...

Recap – Analogy: Spin Glasses



Total field at current dipole:

$$f(p_i) = \sum_{j \neq i} J_{ij} x_j + b_i$$

Response of current diplose

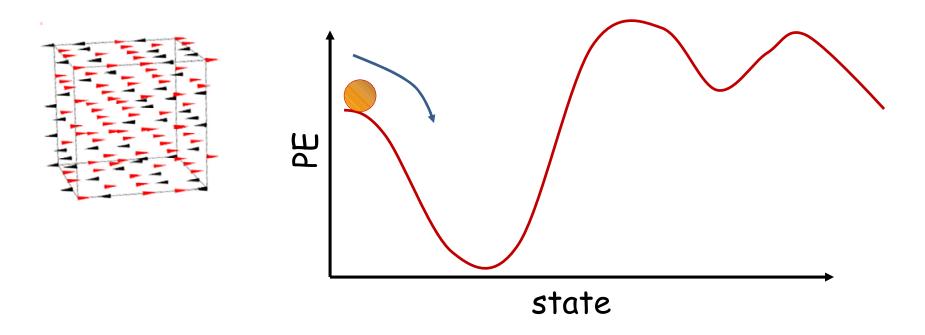
$$x_{i} = \begin{cases} x_{i} \text{ if } sign(x_{i} f(p_{i})) = 1 \\ -x_{i} \text{ otherwise} \end{cases}$$

• The total energy of the system

$$E(s) = C - \frac{1}{2} \sum_{i} x_{i} f(p_{i}) = -\sum_{i} \sum_{j>i} J_{ij} x_{i} x_{j} - \sum_{i} b_{i} x_{j}$$

- The system *evolves* to minimize the energy
 - Dipoles stop flipping if flips result in increase of energy

Recap : Spin Glasses



- The system stops at one of its *stable* configurations
 - Where energy is a local minimum
- Any small jitter from this stable configuration *returns it* to the stable configuration
 - I.e. the system *remembers* its stable state and returns to it

Recap: Hopfield net computation

1. Initialize network with initial pattern

$$y_i(0) = x_i, \qquad 0 \le i \le N - 1$$

2. Iterate until convergence $\langle \mathbf{\nabla} \rangle$

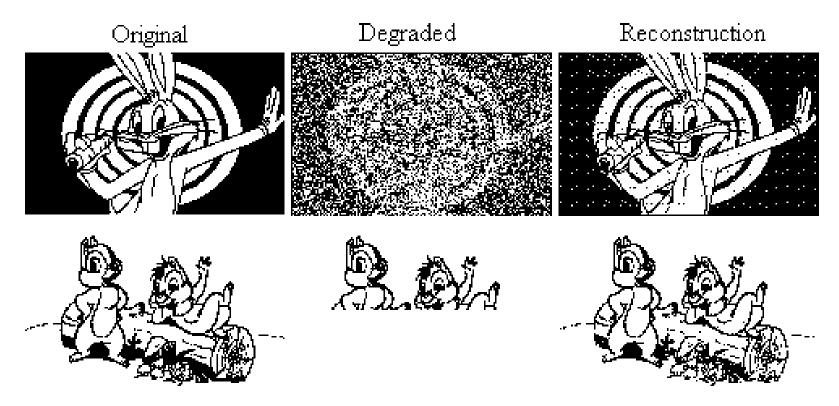
$$y_i(t+1) = \Theta\left(\sum_{j \neq i} w_{ji} y_j\right), \qquad 0 \le i \le N-1$$

- Very simple
- Updates can be done sequentially, or all at once
- Convergence

$$E = -\sum_{i} \sum_{j>i} w_{ji} y_j y_i$$

does not change significantly any more

Examples: Content addressable memory



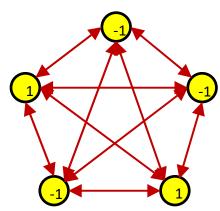
Hopfield network reconstructing degraded images from noisy (top) or partial (bottom) cues.

http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/11

"Training" the network

- How do we make the network store *a specific* pattern or set of patterns?
 - Hebbian learning
 - Geometric approach
 - Optimization
- Secondary question
 - How many patterns can we store?

Recap: Hebbian Learning to Store a Specific Pattern

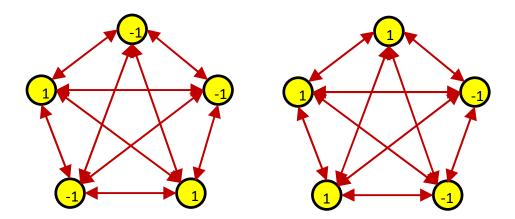


HEBBIAN LEARNING:
$$w_{ji} = y_j y_i$$

$$\mathbf{W} = \mathbf{y}_p \mathbf{y}_p^T - \mathbf{I}$$

 For a single stored pattern, Hebbian learning results in a network for which the target pattern is a global minimum

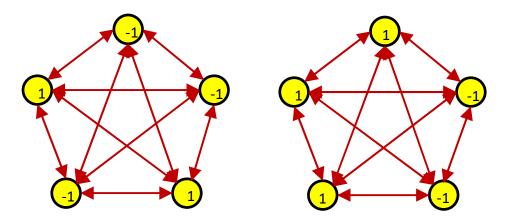
Storing multiple patterns



$$w_{ji} = \sum_{p \in \{y_p\}} y_i^p y_j^p$$

- {*y*_{*p*}} is the set of patterns to store
- Superscript *p* represents the specific pattern

Storing multiple patterns

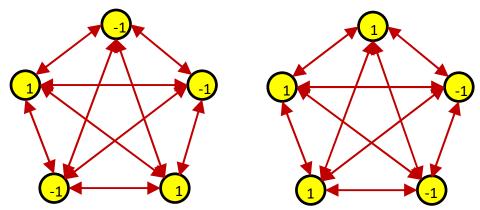


- Let \mathbf{y}_p be the vector representing p-th pattern
- Let $\mathbf{Y} = [\mathbf{y}_1 \ \mathbf{y}_2 \ \dots]$ be a matrix with all the stored patterns
- Then..

$$\mathbf{W} = \sum_{p} (\mathbf{y}_{p} \mathbf{y}_{p}^{T} - \mathbf{I}) = \mathbf{Y}\mathbf{Y}^{T} - N_{p}\mathbf{I}$$

Number of patterns

Recap: Hebbian Learning to Store Multiple Patterns



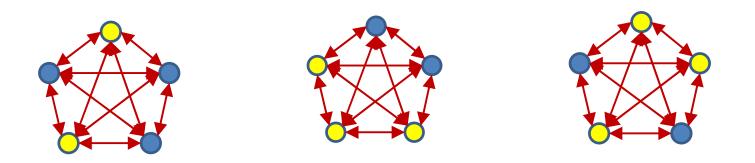
$$w_{ji} = \sum_{p \in \{p\}} y_i^p y_j^p \qquad \qquad \mathbf{W} = \sum_p (\mathbf{y}_p \mathbf{y}_p^T - \mathbf{I}) = \mathbf{Y}\mathbf{Y}^T - N_p \mathbf{I}$$

• {p} is the set of patterns to store

– Superscript p represents the specific pattern

• N_p is the number of patterns to store

How many patterns can we store?



- Hopfield: For a network of *N* neurons can store up to 0.14*N* random patterns
- In reality, seems possible to store K > 0.14N patterns
 - i.e. obtain a weight matrix W such that K > 0.14N patterns are stationary

Bold Claim

- I can *always* store (upto) N orthogonal patterns such that they are stationary!
 - Although not necessarily stable
- Why?

"Training" the network

- How do we make the network store a specific pattern or set of patterns?
 - Hebbian learning
 - Geometric approach
 - Optimization
- Secondary question
 - How many patterns can we store?

A minor adjustment

• Note behavior of $\mathbf{E}(\mathbf{y}) = \mathbf{y}^T \mathbf{W} \mathbf{y}$ with

 $\mathbf{W} = \mathbf{Y}\mathbf{Y}^T - N_p\mathbf{I}$

Is identical to behavior with
 W = YY^T

Energy landscape only differs by an additive constant

Gradients and location of minima remain same

• Since

$$\mathbf{y}^T (\mathbf{Y}\mathbf{Y}^T - N_p \mathbf{I}) \mathbf{y} = \mathbf{y}^T \mathbf{Y}\mathbf{Y}^T \mathbf{y} - NN_p$$

• But $\mathbf{W} = \mathbf{Y}\mathbf{Y}^T$ is easier to analyze. Hence in the following slides we will use $\mathbf{W} = \mathbf{Y}\mathbf{Y}^T$

A minor adjustment

• Note behavior of $\mathbf{E}(\mathbf{y}) = \mathbf{y}^T \mathbf{W} \mathbf{y}$ with

 $\mathbf{W} = \mathbf{Y}\mathbf{Y}^T - N_p\mathbf{I}$

Both have the same Eigen vectors

behavior with $\mathbf{W} = \mathbf{Y}\mathbf{Y}^T$

Energy landscape only differs by an additive constant

Gradients and location of minima remain same

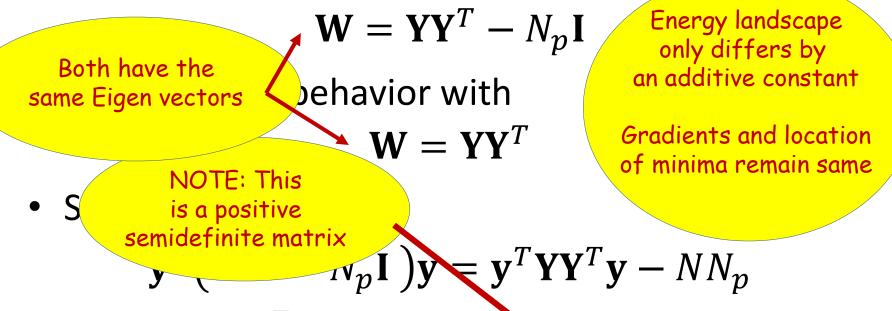
Since

$$\mathbf{y}^T (\mathbf{Y}\mathbf{Y}^T - N_p \mathbf{I}) \mathbf{y} = \mathbf{y}^T \mathbf{Y}\mathbf{Y}^T \mathbf{y} - NN_p$$

• But $\mathbf{W} = \mathbf{Y}\mathbf{Y}^T$ is easier to analyze. Hence in the following slides we will use $\mathbf{W} = \mathbf{Y}\mathbf{Y}^T$

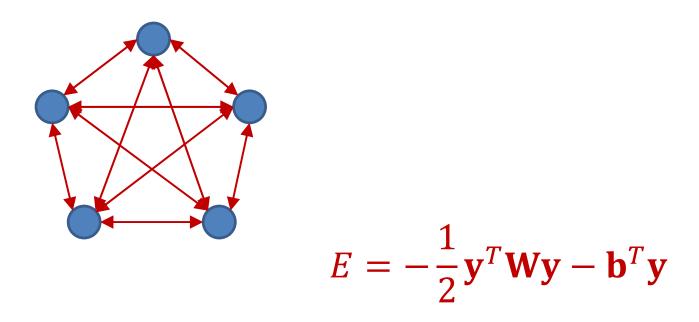
A minor adjustment

• Note behavior of $\mathbf{E}(\mathbf{y}) = \mathbf{y}^T \mathbf{W} \mathbf{y}$ with



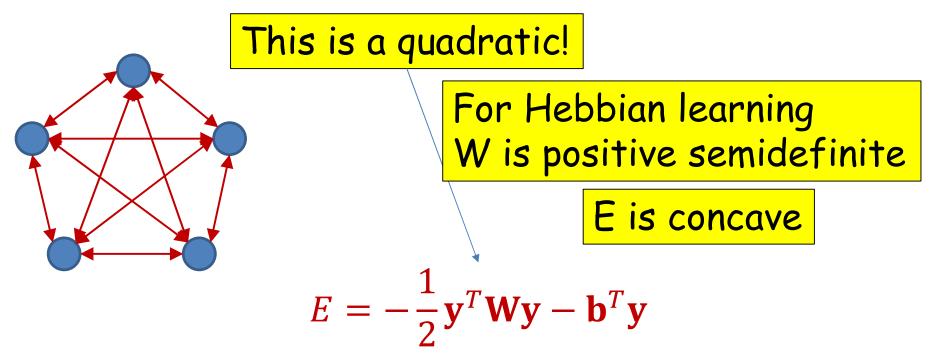
• But $\mathbf{W} = \mathbf{Y}\mathbf{Y}^T$ is easier to analyze. Hence in the following slides we will use $\mathbf{W} = \mathbf{Y}\mathbf{Y}^T$

Consider the energy function



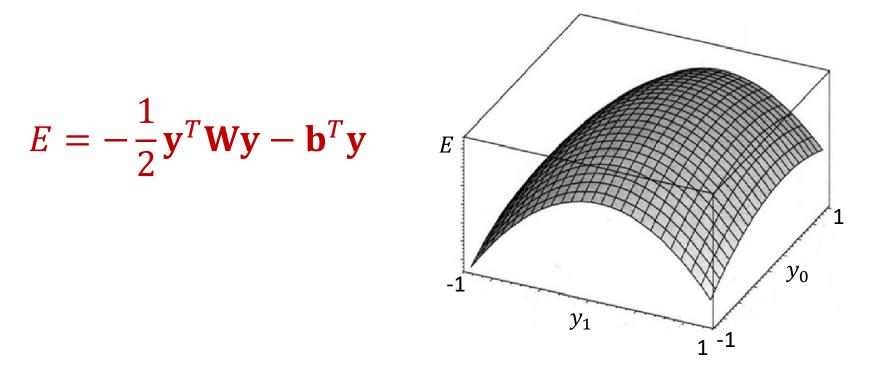
Reinstating the bias term for completeness sake

Consider the energy function

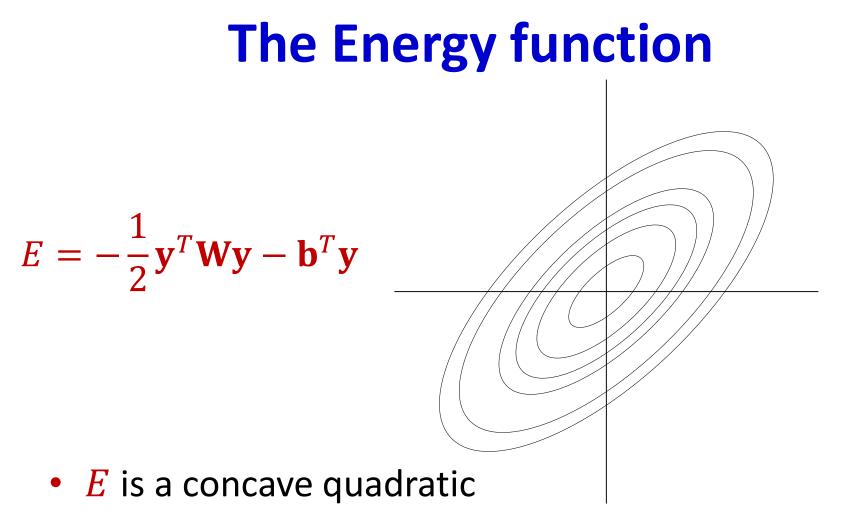


Reinstating the bias term for completeness sake

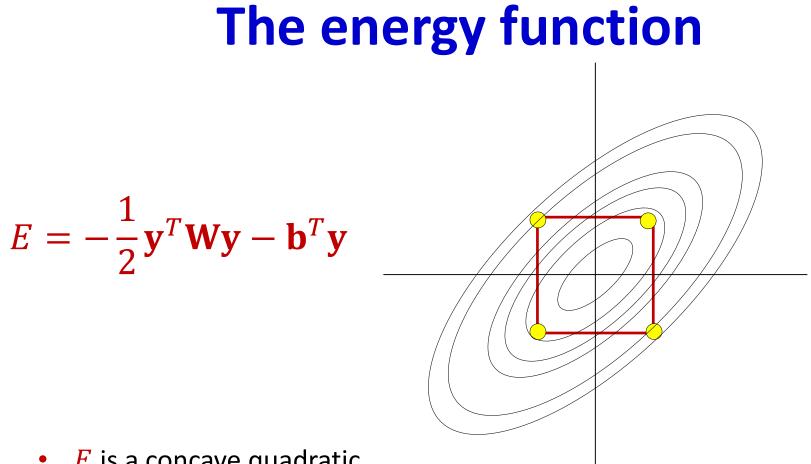
The Energy function



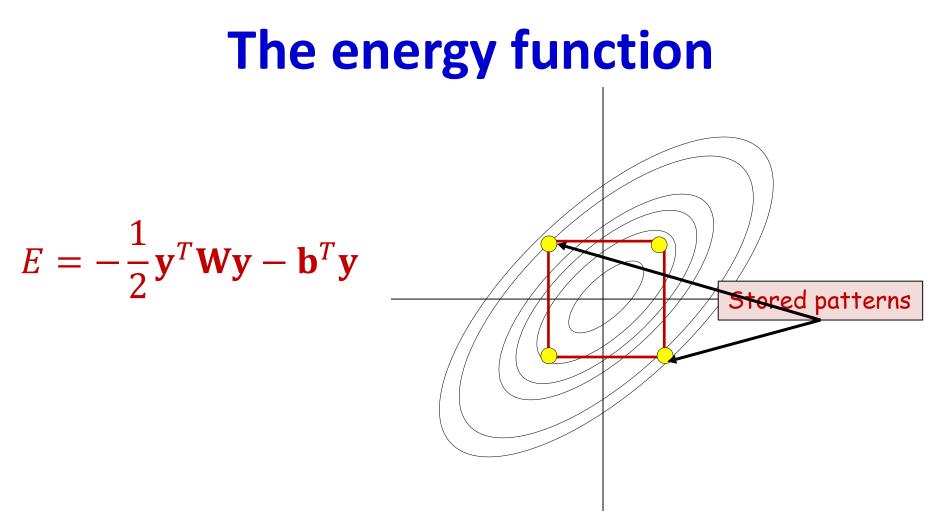
• *E* is a concave quadratic



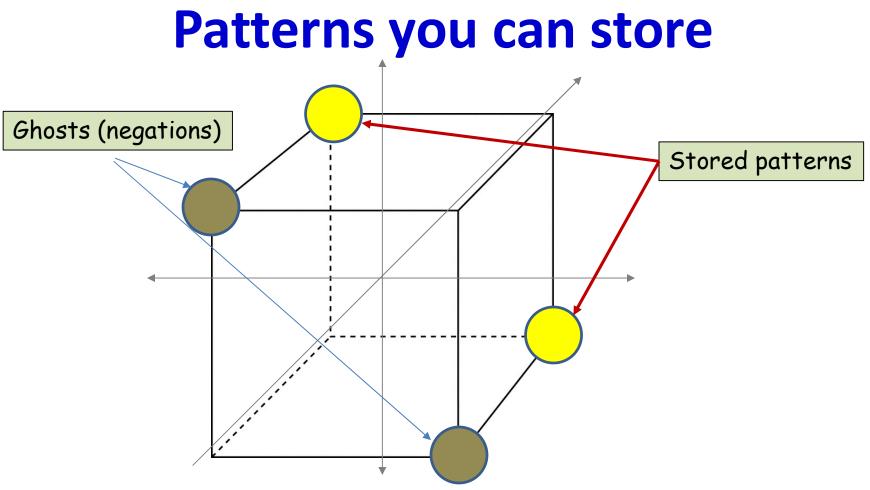
- Shown from above (assuming 0 bias)



- *E* is a concave quadratic
 - Shown from above (assuming 0 bias)
- The minima will lie on the boundaries of the hypercube ۲
 - But components of y can only take values ± 1
 - I.e. y lies on the corners of the unit hypercube



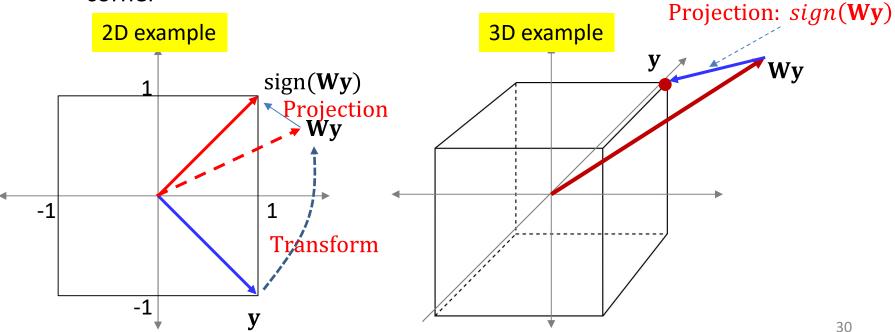
• The stored values of **y** are the ones where all adjacent corners are lower on the quadratic



- All patterns are on the corners of a hypercube
 - If a pattern is stored, it's "ghost" is stored as well
 - Intuitively, patterns must ideally be maximally far apart
 - Though this doesn't seem to hold for Hebbian learning

Evolution of the network

- Note: for real vectors $sign(\mathbf{y})$ is a projection
 - Projects y onto the nearest corner of the hypercube
 - It "quantizes" the space into orthants
- Response to field: $\mathbf{y} \leftarrow sign(\mathbf{W}\mathbf{y})$
 - Each step rotates the vector y and then projects it onto the nearest corner



Storing patterns

• A pattern \mathbf{y}_P is stored if:

 $-sign(\mathbf{W}\mathbf{y}_p) = \mathbf{y}_p$ for all target patterns

- Training: Design W such that this holds
- Simple solution: y_p is an Eigenvector of W

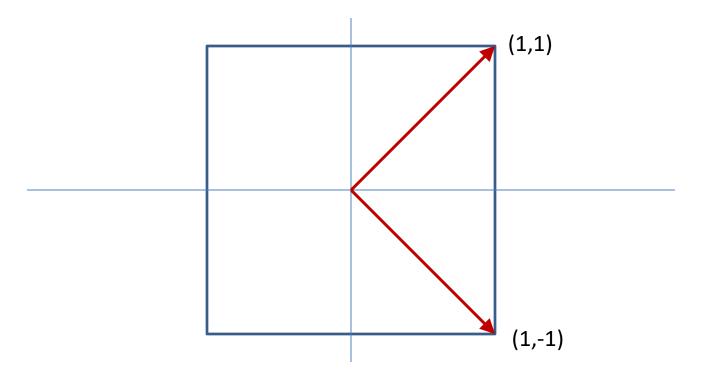
 And the corresponding Eigenvalue is positive
 Wy_p = λy_p
 More generally orthant(Wy_p) = orthant(y_p)
- How many such **y**_p can we have?

Random fact that should interest you

- Number of ways of selecting two *N*-bit binary patterns y_1 and y_2 such that they differ from one another in exactly *N*/2 bits is $O\left(2^{\frac{3N}{2}}\right)$
- The size of the largest set of N-bit binary patterns {y₁, y₂, ... } that all differ from one another in exactly N/2 bits is at most N

– Trivial proof.. 😳

Only N patterns?



- Patterns that differ in N/2 bits are orthogonal
- You can have max *N* orthogonal vectors in an *N*-dimensional space

random fact that should interest you

- The Eigenvectors of any symmetric matrix W are orthogonal
- The Eigen*values* may be positive or negative

Storing more than one pattern

- Requirement: Given $\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_P$
 - Design \boldsymbol{W} such that
 - $sign(\mathbf{W}\mathbf{y}_p) = \mathbf{y}_p$ for all target patterns
 - There are no other *binary* vectors for which this holds
- What is the largest number of patterns that can be stored?

Storing K orthogonal patterns

• Simple solution: Design W such that y_1 ,

 $\mathbf{y}_2, \dots, \mathbf{y}_K$ are the Eigen vectors of \mathbf{W}

 $-\operatorname{Let} \mathbf{Y} = [\mathbf{y}_1 \ \mathbf{y}_2 \ \dots \ \mathbf{y}_K]$

 $\mathbf{W} = \mathbf{Y} \Lambda \mathbf{Y}^T$

 $-\lambda_1, \ldots, \lambda_K$ are positive

— For $\lambda_1 = \lambda_2 = \lambda_K = 1$ this is exactly the Hebbian rule

• The patterns are provably stationary

Hebbian rule

• In reality

 $-\operatorname{Let} \mathbf{Y} = [\mathbf{y}_1 \ \mathbf{y}_2 \dots \mathbf{y}_K \ \mathbf{r}_{K+1} \ \mathbf{r}_{K+2} \dots \mathbf{r}_N]$

 $\mathbf{W} = \mathbf{Y} \Lambda \mathbf{Y}^T$

- $\mathbf{r}_{K+1} \mathbf{r}_{K+2} \dots \mathbf{r}_N$ are orthogonal to $\mathbf{y}_1 \mathbf{y}_2 \dots \mathbf{y}_K$ - $\lambda_1 = \lambda_2 = \lambda_K = 1$ - $\lambda_{K+1}, \dots, \lambda_N = 0$

Storing N orthogonal patterns

• When we have N orthogonal (or near orthogonal) patterns $y_1, y_2, ..., y_N$

 $-Y = [\mathbf{y}_1 \ \mathbf{y}_2 \dots \mathbf{y}_N]$

 $\mathbf{W} = \mathbf{Y} \Lambda \mathbf{Y}^T$

 $-\lambda_1 = \lambda_2 = \lambda_N = 1$

- The Eigen vectors of W span the space
- Also, for any **y**_k

 $\mathbf{W}\mathbf{y}_k = \mathbf{y}_k$

Storing N orthogonal patterns

- The N orthogonal patterns y₁, y₂, ..., y_N span the space
- Any pattern **y** can be written as

 $\mathbf{y} = a_1 \mathbf{y}_1 + a_2 \mathbf{y}_2 + \dots + a_N \mathbf{y}_N$ $\mathbf{W} = a_1 \mathbf{W} \mathbf{y}_1 + a_2 \mathbf{W} \mathbf{y}_2 + \dots + a_N \mathbf{W} \mathbf{y}_N$ $= a_1 \mathbf{y}_1 + a_2 \mathbf{y}_2 + \dots + a_N \mathbf{y}_N = \mathbf{y}$

- All patterns are stable
 - Remembers everything
 - Completely useless network

Storing K orthogonal patterns

- Even if we store fewer than *N* patterns
 - Let $Y = [\mathbf{y}_1 \ \mathbf{y}_2 \dots \mathbf{y}_K \ \mathbf{r}_{K+1} \ \mathbf{r}_{K+2} \dots \mathbf{r}_N]$

 $W = Y\Lambda Y^T$

- $\mathbf{r}_{K+1} \mathbf{r}_{K+2} \dots \mathbf{r}_N$ are orthogonal to $\mathbf{y}_1 \mathbf{y}_2 \dots \mathbf{y}_K$

$$-\lambda_1=\lambda_2=\lambda_K=1$$

- λ_{K+1} , ... , $\lambda_N=0$
- Any pattern that is *entirely* in the subspace spanned by y₁
 y₂ ... y_K is also stable (same logic as earlier)
- Only patterns that are *partially* in the subspace spanned by $\mathbf{y}_1 \ \mathbf{y}_2 \ \dots \ \mathbf{y}_K$ are unstable
 - Get projected onto subspace spanned by $\mathbf{y}_1 \ \mathbf{y}_2 \ ... \ \mathbf{y}_K$

Problem with Hebbian Rule

• Even if we store fewer than N patterns

 $-\operatorname{Let} Y = [\mathbf{y}_1 \ \mathbf{y}_2 \dots \mathbf{y}_K \ \mathbf{r}_{K+1} \ \mathbf{r}_{K+2} \dots \mathbf{r}_N]$

 $W = Y\Lambda Y^T$

- $\mathbf{r}_{K+1} \mathbf{r}_{K+2} \dots \mathbf{r}_N$ are orthogonal to $\mathbf{y}_1 \mathbf{y}_2 \dots \mathbf{y}_K$

 $-\lambda_1 = \lambda_2 = \lambda_K = 1$

Problems arise because Eigen values are all 1.0

- Ensures stationarity of vectors in the subspace
- All stored patterns are equally important
- What if we get rid of this requirement?

Hebbian rule and general (nonorthogonal) vectors

$$w_{ji} = \sum_{p \in \{p\}} y_i^p y_j^p$$

- What happens when the patterns are *not* orthogonal
- What happens when the patterns are presented *more* than once
 - Different patterns presented different numbers of times
 - Equivalent to having unequal Eigen values..
- Can we predict the evolution of any vector **y**
 - Hint: For real valued vectors, use Lanczos iterations
 - Can write $\mathbf{Y}_P = \mathbf{U}_P \Lambda \mathbf{V}_p^T$, $\rightarrow \mathbf{W} = \mathbf{U}_P \Lambda^2 \mathbf{U}_p^T$
 - Tougher for binary vectors (NP)

The bottom line

- With a network of *N* units (i.e. *N*-bit patterns)
- The maximum number of stationary patterns is actually *exponential* in *N*
 - McElice and Posner, 84'
 - E.g. when we had the Hebbian net with N orthogonal base patterns, all patterns are stationary
- For a *specific* set of K patterns, we can *always* build a network for which all K patterns are stable provided K ≤ N
 - Mostafa and St. Jacques 85'
 - For large N, the upper bound on K is actually N/4logN
 - McElice et. Al. 87'
 - But this may come with many "parasitic" memories

The bottom line

- With an network of N units (i.e. N-bit patterns)
- The maximum number of stable patterns is actually *exponential* in *N*
 - McElice and Posner, 84'
 E.g. when we had the How do we find this network?
 patterns, all patterns are stable
- For a *specific* set of K patterns, we can *always* build a network for which all K patterns are stable provided K ≤ N
 - Mostafa and St. Jacques 85'
 - For large N, the upper bound on K is actually N/4logN
 - McElice et. Al. 87'
 - But this may come with many "parasitic" memories

The bottom line

- With an network of N units (i.e. N-bit patterns)
- The maximum number of stable patterns is actually *exponential* in *N*
 - McElice and Posner, 84'
 E.g. when we had the How do we find this network? is network?
- For a specific set of K patterns, we can always build a network for which all K patterns are stable provided K ≤ N
 - Mostafa and St. Jacques 85'
 - For large N, the upper bound on K is actuary reported.
 - McElice et. Al. 87'
 - But this may come with many "parasitic" memories

Can we do something

Story so far

- Hopfield nets with N neurons can store up to 0.14N random patterns through Hebbian learning with 0.996 probability of recall
 - The recalled patterns are the Eigen vectors of the weights matrix with the highest Eigen values
- Hebbian learning assumes all patterns to be stored are equally important
 - For orthogonal patterns, the patterns are the Eigen vectors of the constructed weights matrix
 - All Eigen values are identical
- In theory the number of stationary states in a Hopfield network can be exponential in N
- The number of *intentionally* stored patterns (stationary *and* stable) can be as large as N
 - But comes with many parasitic memories

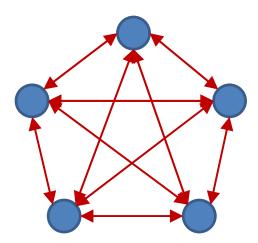
A different tack

- How do we make the network store *a specific* pattern or set of patterns?
 - Hebbian learning
 - Geometric approach

– Optimization

- Secondary question
 - How many patterns can we store?

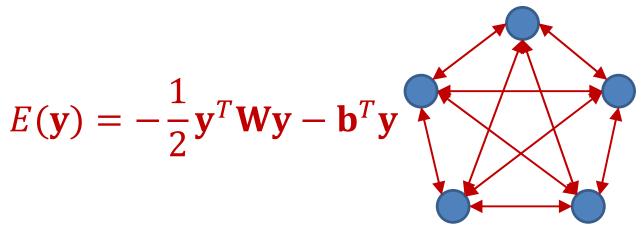
Consider the energy function



$$E = -\frac{1}{2}\mathbf{y}^T\mathbf{W}\mathbf{y} - \mathbf{b}^T\mathbf{y}$$

- This must be *maximally* low for target patterns
- Must be *maximally* high for *all other patterns*
 - So that they are unstable and evolve into one of the target patterns

Alternate Approach to Estimating the Network



- Estimate W (and b) such that
 - E is minimized for $\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_P$
 - -E is maximized for all other **y**
- Caveat: Unrealistic to expect to store more than *N* patterns, but can we make those *N* patterns *memorable*

Optimizing W (and b)

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y}$$

$$\widehat{\mathbf{W}} = \underset{\mathbf{W}}{\operatorname{argmin}} \sum_{\mathbf{y} \in \mathbf{Y}_{P}} E(\mathbf{y})$$

The bias can be captured by another fixed-value component

- Minimize total energy of target patterns
 - Problem with this?

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T\mathbf{W}\mathbf{y}$$

$$\widehat{\mathbf{W}} = \underset{\mathbf{W}}{\operatorname{argmin}} \sum_{\mathbf{y} \in \mathbf{Y}_{P}} E(\mathbf{y}) - \sum_{\mathbf{y} \notin \mathbf{Y}_{P}} E(\mathbf{y})$$

- Minimize total energy of target patterns
- Maximize the total energy of all *non-target* patterns

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y} \quad \widehat{\mathbf{W}} = \underset{\mathbf{W}}{\operatorname{argmin}} \sum_{\mathbf{y} \in \mathbf{Y}_P} E(\mathbf{y}) - \sum_{\mathbf{y} \notin \mathbf{Y}_P} E(\mathbf{y})$$

• Simple gradient descent:

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T \right)$$

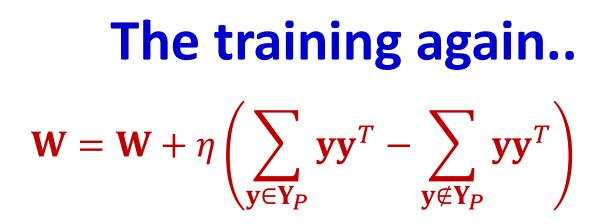
$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T \right)$$

 Can "emphasize" the importance of a pattern by repeating

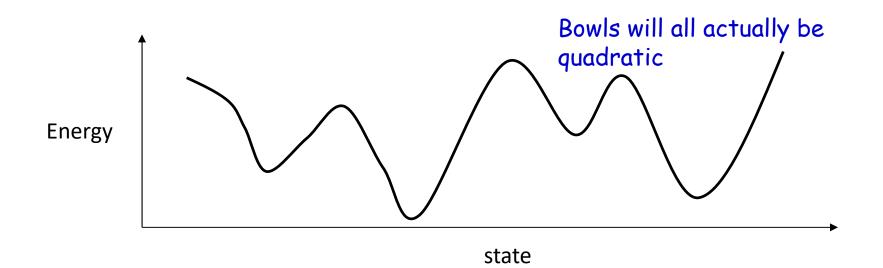
- More repetitions \rightarrow greater emphasis

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T \right)$$

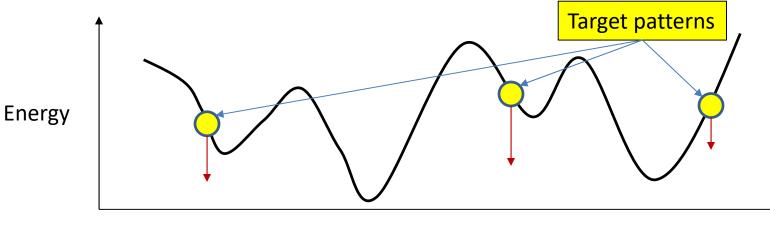
- Can "emphasize" the importance of a pattern by repeating
 - More repetitions \rightarrow greater emphasis
- How many of these?
 - Do we need to include *all* of them?
 - Are all equally important?

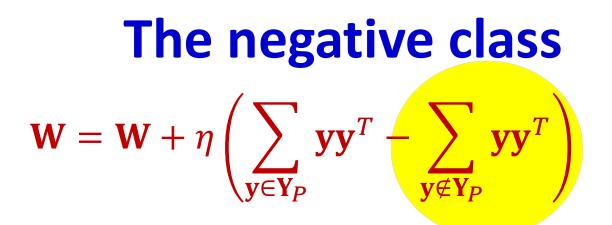


 Note the energy contour of a Hopfield network for any weight W



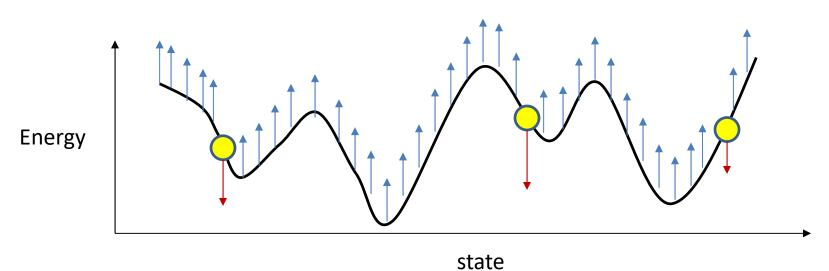
- The first term tries to *minimize* the energy at target patterns
 - Make them local minima
 - Emphasize more "important" memories by repeating them more frequently





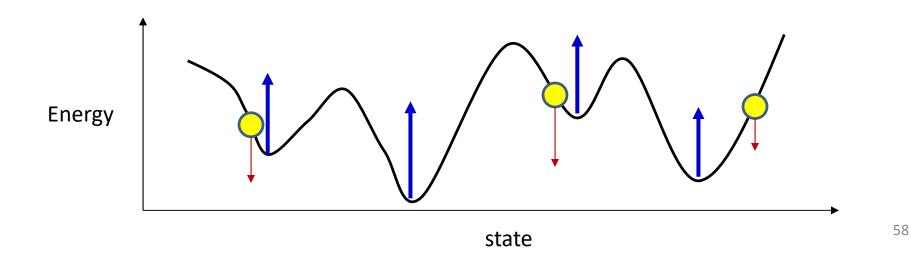
The second term tries to "raise" all non-target patterns

– Do we need to raise everything?



Option 1: Focus on the valleys $\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P \& \mathbf{y} = valley} \mathbf{y} \mathbf{y}^T \right)$

- Focus on raising the valleys
 - If you raise *every* valley, eventually they'll all move up above the target patterns, and many will even vanish

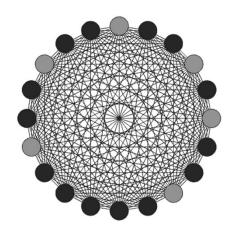


Identifying the valleys. $\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_{P}} \mathbf{y} \mathbf{y}^{T} - \sum_{\mathbf{y} \notin \mathbf{Y}_{P} \& \mathbf{y} = valley} \mathbf{y} \mathbf{y}^{T} \right)$

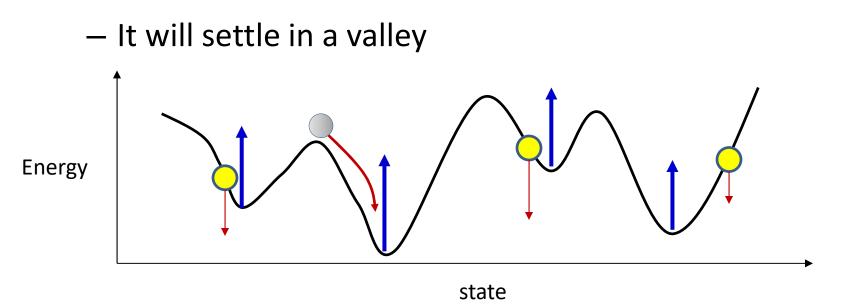
 Problem: How do you identify the valleys for the current W?



Identifying the valleys..



• Initialize the network randomly and let it evolve



60

Training the Hopfield network $\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P \& \mathbf{y} = valley} \mathbf{y} \mathbf{y}^T \right)$

- Initialize W
- Compute the total outer product of all target patterns
 - More important patterns presented more frequently
- Randomly initialize the network several times and let it evolve
 - And settle at a valley
- Compute the total outer product of valley patterns
- Update weights

Training the Hopfield network: SGD version $\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P \& \mathbf{y} = valley} \mathbf{y} \mathbf{y}^T \right)$

- Initialize W
- Do until convergence, satisfaction, or death from boredom:
 - Sample a target pattern \mathbf{y}_p
 - Sampling frequency of pattern must reflect importance of pattern
 - Randomly initialize the network and let it evolve
 - And settle at a valley $y_{\boldsymbol{\mathcal{V}}}$
 - Update weights
 - $\mathbf{W} = \mathbf{W} + \eta (\mathbf{y}_p \mathbf{y}_p^T \mathbf{y}_v \mathbf{y}_v^T)$

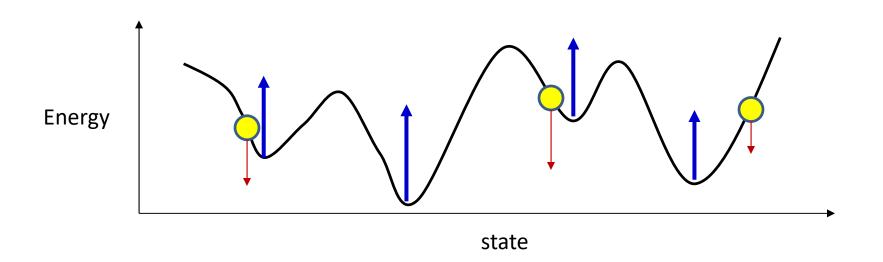
Training the Hopfield network

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_{P}} \mathbf{y} \mathbf{y}^{T} - \sum_{\mathbf{y} \notin \mathbf{Y}_{P} \& \mathbf{y} = valley} \mathbf{y} \mathbf{y}^{T} \right)$$

- Initialize W
- Do until convergence, satisfaction, or death from boredom:
 - Sample a target pattern \mathbf{y}_p
 - Sampling frequency of pattern must reflect importance of pattern
 - Randomly initialize the network and let it evolve
 - And settle at a valley \mathbf{y}_{v}
 - Update weights
 - $\mathbf{W} = \mathbf{W} + \eta (\mathbf{y}_p \mathbf{y}_p^T \mathbf{y}_v \mathbf{y}_v^T)$

Which valleys?

- Should we *randomly* sample valleys?
 - Are all valleys equally important?

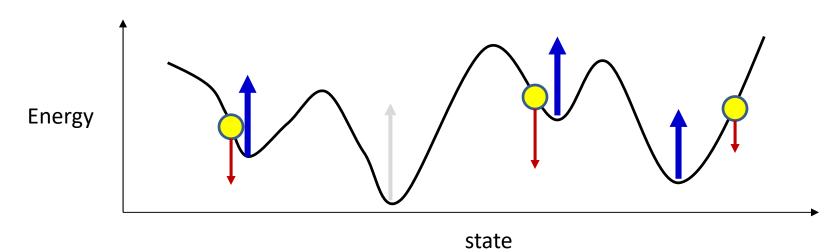


Which valleys?

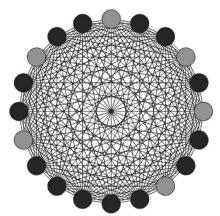
• Should we *randomly* sample valleys?

– Are all valleys equally important?

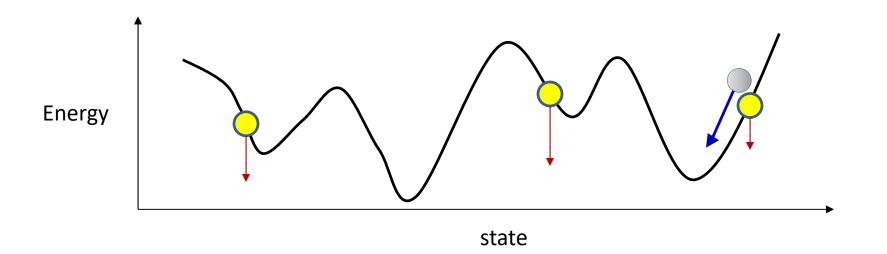
- Major requirement: memories must be stable
 - They *must* be broad valleys
- Spurious valleys in the neighborhood of memories are more important to eliminate



Identifying the valleys..



- Initialize the network at valid memories and let it evolve
 - It will settle in a valley. If this is not the target pattern, raise it



Training the Hopfield network $\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P \& \mathbf{y} = valley} \mathbf{y} \mathbf{y}^T \right)$

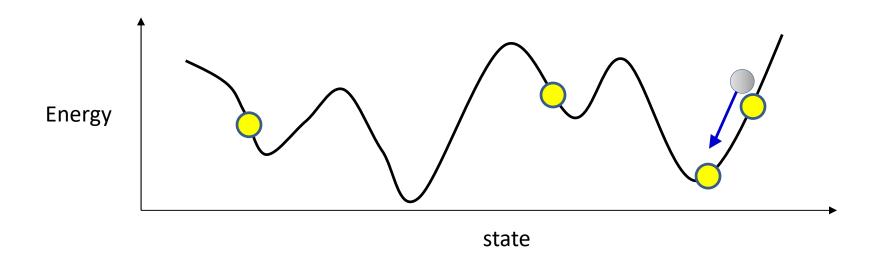
- Initialize W
- Compute the total outer product of all target patterns
 - More important patterns presented more frequently
- Initialize the network with each target pattern and let it evolve
 - And settle at a valley
- Compute the total outer product of valley patterns
- Update weights

Training the Hopfield network: SGD version $\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P \& \mathbf{y} = valley} \mathbf{y} \mathbf{y}^T \right)$

- Initialize W
- Do until convergence, satisfaction, or death from boredom:
 - Sample a target pattern \mathbf{y}_p
 - Sampling frequency of pattern must reflect importance of pattern
 - Initialize the network at \mathbf{y}_p and let it evolve
 - And settle at a valley $y_{\boldsymbol{\mathcal{V}}}$
 - Update weights
 - $\mathbf{W} = \mathbf{W} + \eta (\mathbf{y}_p \mathbf{y}_p^T \mathbf{y}_v \mathbf{y}_v^T)$

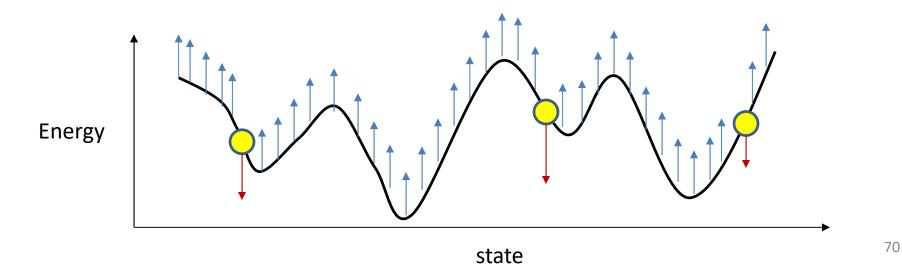
A possible problem

- What if there's another target pattern downvalley
 - Raising it will destroy a better-represented or stored pattern!



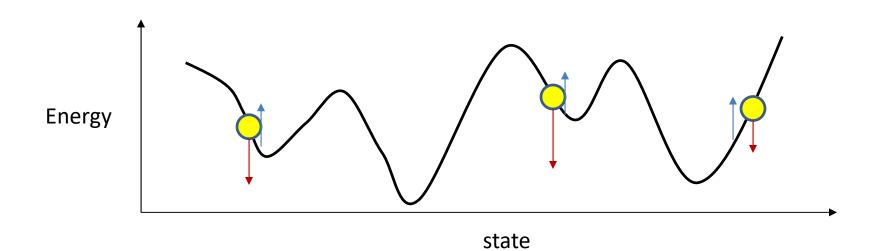
A related issue

 Really no need to raise the entire surface, or even every valley



A related issue

- Really no need to raise the entire surface, or even every valley
- Raise the *neighborhood* of each target memory
 - Sufficient to make the memory a valley
 - The broader the neighborhood considered, the broader the valley

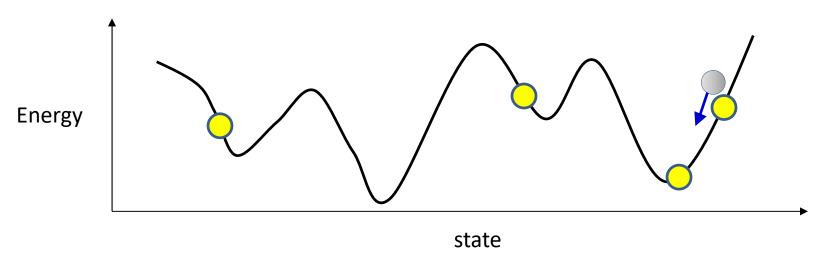


Raising the neighborhood

• Starting from a target pattern, let the network evolve only a few steps

Try to raise the resultant location

- Will raise the neighborhood of targets
- Will avoid problem of down-valley targets



Training the Hopfield network: SGD version $\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P \& \mathbf{y} = valley} \mathbf{y} \mathbf{y}^T \right)$

- Initialize W
- Do until convergence, satisfaction, or death from boredom:
 - Sample a target pattern \mathbf{y}_p
 - Sampling frequency of pattern must reflect importance of pattern
 - Initialize the network at \mathbf{y}_p and let it evolve *a few steps (2-4)*
 - And arrive at a down-valley position \mathbf{y}_d
 - Update weights
 - $\mathbf{W} = \mathbf{W} + \eta (\mathbf{y}_p \mathbf{y}_p^T \mathbf{y}_d \mathbf{y}_d^T)$

Story so far

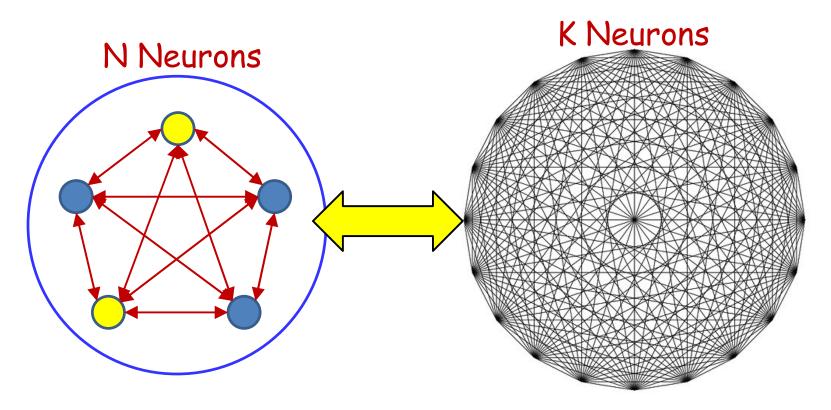
- Hopfield nets with *N* neurons can store up to 0.14*N* patterns through Hebbian learning
 - Issue: Hebbian learning assumes all patterns to be stored are equally important
- In theory the number of *intentionally* stored patterns (stationary *and* stable) can be as large as N
 - But comes with many parasitic memories
- Networks that store O(N) memories can be trained through optimization
 - By minimizing the energy of the target patterns, while increasing the energy of the neighboring patterns

Storing more than N patterns

- The memory capacity of an *N*-bit network is at most *N*
 - Stable patterns (not necessarily even stationary)
 - Abu Mustafa and St. Jacques, 1985
 - Although "information capacity" is $\mathcal{O}(N^3)$
- How do we increase the capacity of the network

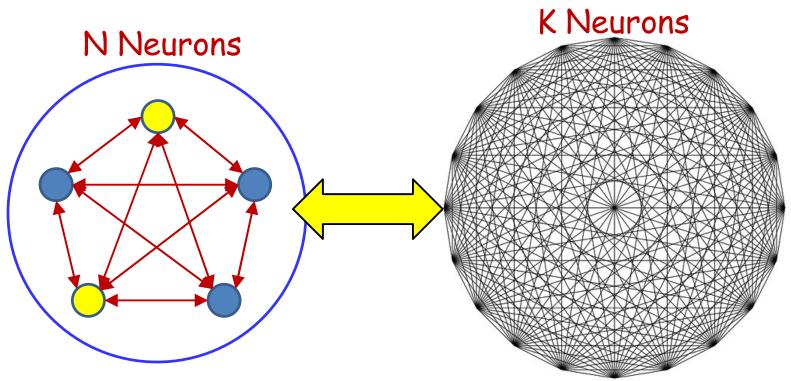
– How to store more than N patterns

Expanding the network

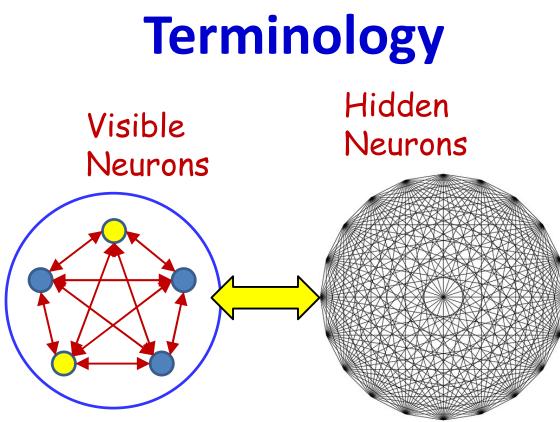


 Add a large number of neurons whose actual values you don't care about!

Expanded Network



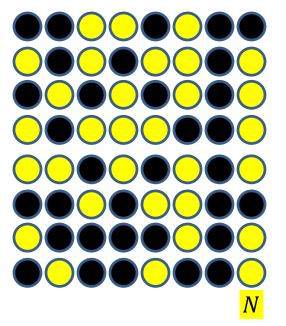
- New capacity: $\sim (N + K)$ patterns
 - Although we only care about the pattern of the first N neurons
 - We're interested in *N-bit* patterns



- Terminology:
 - The neurons that store the actual patterns of interest: Visible neurons
 - The neurons that only serve to increase the capacity but whose actual values are not important: *Hidden neurons*
 - These can be set to anything in order to store a visible pattern

Increasing the capacity: bits view

Visible bits



• The maximum number of patterns the net can store is bounded by the width *N* of the patterns..

Increasing the capacity: bits view

Visible bits

Hidden bits

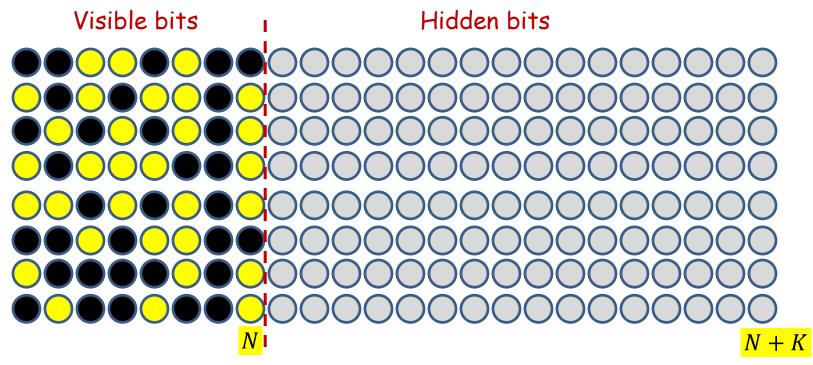
N + K

- The maximum number of patterns the net can store is bounded by the width *N* of the patterns..
- So lets *pad* the patterns with *K* "don't care" bits
 - The new width of the patterns is N+K
 - Now we can store N+K patterns!

Issues: Storage Visible bits Hidden bits NI N + K

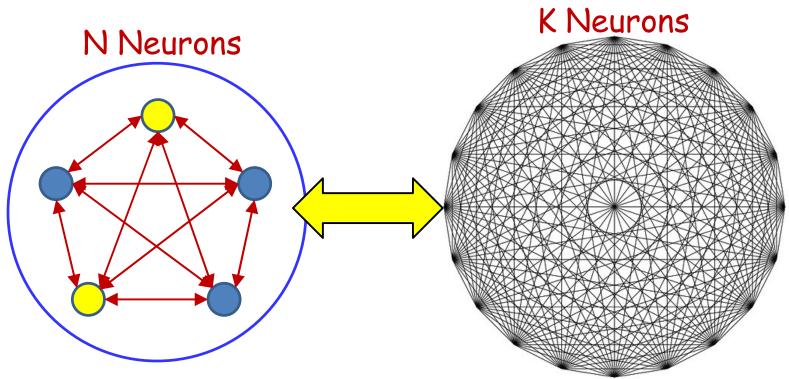
- What patterns do we fill in the don't care bits?
 - Simple option: Randomly
 - Flip a coin for each bit
 - We could even compose *multiple* extended patterns for a base pattern to increase the probability that it will be recalled properly
 - Recalling any of the extended patterns from a base pattern will recall the base pattern
- How do we store the patterns?
 - Standard optimization method should work

Issues: Recall



- How do we retrieve a memory?
- Can do so using usual "evolution" mechanism
- But this is not taking advantage of a key feature of the extended patterns:
 - Making errors in the don't care bits doesn't matter

Robustness of recall



- The value taken by the K hidden neurons during recall doesn't really matter
 - Even if it doesn't match what we actually tried to store
- Can we take advantage of this somehow?

Taking advantage of don't care bits

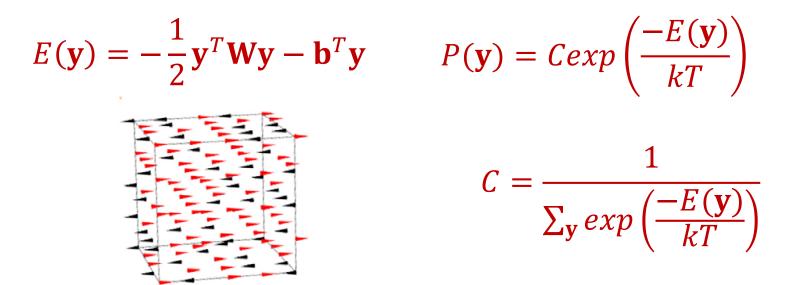
- Simple random setting of don't care bits, and using the usual training and recall strategies for Hopfield nets should work
- However, it doesn't sufficiently exploit the redundancy of the don't care bits
- To exploit it properly, it helps to view the Hopfield net differently: as a probabilistic machine

A probabilistic interpretation of Hopfield Nets

- For *binary* y the energy of a pattern is the analog of the negative log likelihood of a *Boltzmann distribution*
 - Minimizing energy maximizes log likelihood

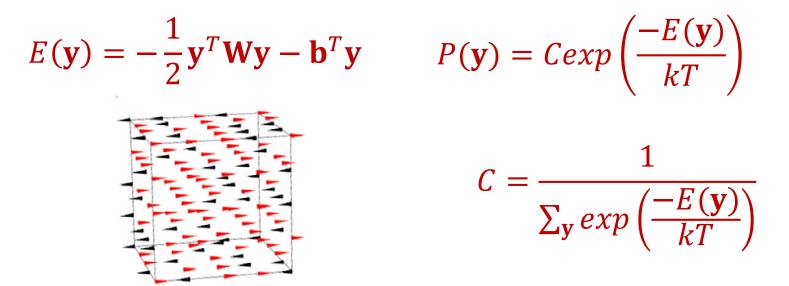
$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y} \quad P(\mathbf{y}) = Cexp(-E(\mathbf{y}))$$

The Boltzmann Distribution

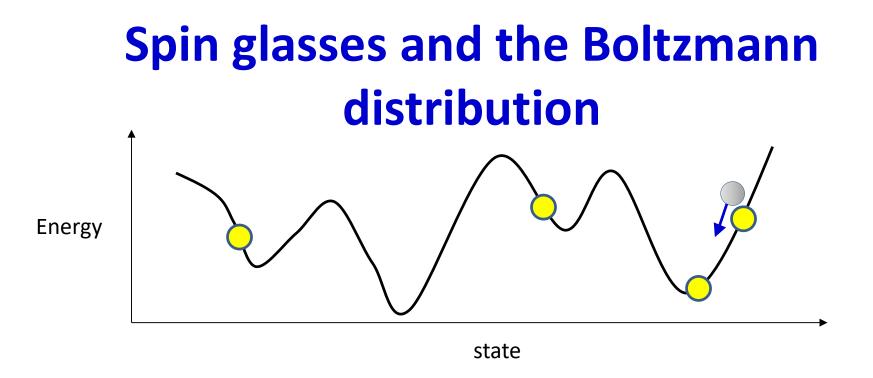


- *k* is the Boltzmann constant
- *T* is the temperature of the system
- The energy terms are the negative loglikelihood of a Boltzmann distribution at T = 1 to within an additive constant
 - Derivation of this probability is in fact quite trivial..

Continuing the Boltzmann analogy



- The system *probabilistically* selects states with lower energy
 - With infinitesimally slow cooling, at T = 0, it arrives at the global minimal state



- Selecting a next state is analogous to drawing a sample from the Boltzmann distribution at T = 1, in a universe where k = 1
 - Energy landscape of a spin-glass model: Exploration and characterization, Zhou and Wang, Phys. Review E 79, 2009

Hopfield nets: Optimizing W

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y} \quad \widehat{\mathbf{W}} = \underset{\mathbf{W}}{\operatorname{argmin}} \sum_{\mathbf{y} \in \mathbf{Y}_P} E(\mathbf{y}) - \sum_{\mathbf{y} \notin \mathbf{Y}_P} E(\mathbf{y})$$

• Simple gradient descent:

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_{P}} \alpha_{\mathbf{y}} \mathbf{y} \mathbf{y}^{T} - \sum_{\mathbf{y} \notin \mathbf{Y}_{P}} \beta(E(\mathbf{y})) \mathbf{y} \mathbf{y}^{T} \right)$$

More importance to more frequently More importance to more attraction

presented memories

ve spurious memories

Hopfield nets: Optimizing W

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y}$$
 $\widehat{\mathbf{W}} = \underset{\mathbf{W}}{\operatorname{argmin}} \sum_{\mathbf{y} \in \mathbf{Y}_P} E(\mathbf{y}) - \sum_{\mathbf{y} \notin \mathbf{Y}_P} E(\mathbf{y})$

• Simple gradient descent:

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_{P}} \alpha_{\mathbf{y}} \mathbf{y} \mathbf{y}^{T} - \sum_{\mathbf{y} \notin \mathbf{Y}_{P}} \beta(E(\mathbf{y})) \mathbf{y} \mathbf{y}^{T} \right)$$

More importance to more frequently presented memories
More importance to more attractive spurious memories

THIS LOOKS LIKE AN EXPECTATION!

Hopfield nets: Optimizing W

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y} \quad \widehat{\mathbf{W}} = \underset{\mathbf{W}}{\operatorname{argmin}} \sum_{\mathbf{y} \in \mathbf{Y}_P} E(\mathbf{y}) - \sum_{\mathbf{y} \notin \mathbf{Y}_P} E(\mathbf{y})$$

• Update rule

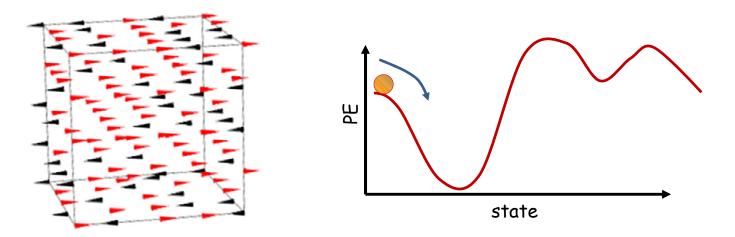
$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_{P}} \alpha_{\mathbf{y}} \mathbf{y} \mathbf{y}^{T} - \sum_{\mathbf{y} \notin \mathbf{Y}_{P}} \beta(E(\mathbf{y})) \mathbf{y} \mathbf{y}^{T} \right)$$
$$\mathbf{W} = \mathbf{W} + \eta \left(E_{\mathbf{y} \sim \mathbf{Y}_{P}} \mathbf{y} \mathbf{y}^{T} - E_{\mathbf{y} \sim Y} \mathbf{y} \mathbf{y}^{T} \right)$$

Natural distribution for variables: The Boltzmann Distribution

From Analogy to Model

- The behavior of the Hopfield net is analogous to annealed dynamics of a spin glass characterized by a Boltzmann distribution
- So let's explicitly model the Hopfield net as a distribution..

Revisiting Thermodynamic Phenomena



- Is the system actually in a specific state at any time?
- No the state is actually continuously changing
 - Based on the temperature of the system
 - At higher temperatures, state changes more rapidly
- What is actually being characterized is the *probability* of the state
 - And the *expected* value of the state

- A thermodynamic system at temperature *T* can exist in one of many states
 - Potentially infinite states
 - At any time, the probability of finding the system in state sat temperature T is $P_T(s)$
- At each state s it has a potential energy E_s
- The *internal energy* of the system, representing its capacity to do work, is the average:

$$U_T = \sum_{s} P_T(s) E_s$$

• The capacity to do work is counteracted by the internal disorder of the system, i.e. its entropy

$$H_T = -\sum_s P_T(s) \log P_T(s)$$

• The *Helmholtz* free energy of the system measures the *useful* work derivable from it and combines the two terms

$$F_T = U_T + kTH_T$$

$$= \sum_{s} P_T(s) E_s - kT \sum_{s} P_T(s) \log P_T(s)$$

$$F_T = \sum_{s} P_T(s) E_s - kT \sum_{s} P_T(s) \log P_T(s)$$

- A system held at a specific temperature *anneals* by varying the rate at which it visits the various states, to reduce the free energy in the system, until a minimum free-energy state is achieved
- The probability distribution of the states at steady state is known as the *Boltzmann distribution*

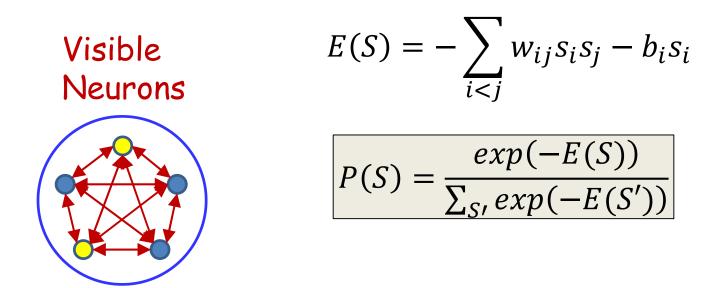
$$F_T = \sum_{s} P_T(s) E_s - kT \sum_{s} P_T(s) \log P_T(s)$$

• Minimizing this w.r.t $P_T(s)$, we get

$$P_T(s) = \frac{1}{Z} exp\left(\frac{-E_s}{kT}\right)$$

- Also known as the *Gibbs* distribution
- -Z is a normalizing constant
- Note the dependence on T
- A T = 0, the system will always remain at the lowestenergy configuration with prob = 1.

The Energy of the Network



- We can define the energy of the system as before
- Since neurons are stochastic, there is disorder or entropy (with T = 1)
- The *equilibribum* probability distribution over states is the Boltzmann distribution at T=1
 - This is the probability of different states that the network will wander over at equilibrium

The Hopfield net is a distribution

Neurons

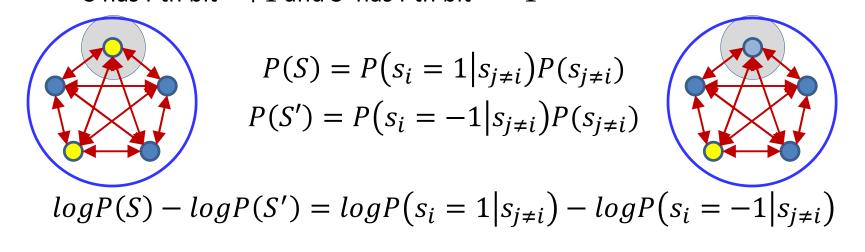
Visible

$$E(S) = -\sum_{i < j} w_{ij} s_i s_j - b_i s_i$$
$$P(S) = \frac{exp(-E(S))}{\sum_{S'} exp(-E(S'))}$$

- The stochastic Hopfield network models a *probability distribution* over states
 - Where a state is a binary string
 - Specifically, it models a *Boltzmann distribution*
 - The parameters of the model are the weights of the network
- The probability that (at equilibrium) the network will be in any state is P(S)
 - It is a *generative* model: generates states according to P(S)

The field at a single node

Let S and S' be otherwise identical states that only differ in the i-th bit
 S has i-th bit = +1 and S' has i-th bit = -1



$$logP(S) - logP(S') = log \frac{P(s_i = 1|s_{j\neq i})}{1 - P(s_i = 1|s_{j\neq i})}$$

The field at a single node

• Let S and S' be the states with the ith bit in the +1 and -1 states $\log P(S) = -F(S) + C$

$$\log P(S) = -E(S) + C$$

$$E(S) = -\frac{1}{2} \left(E_{not i} + \sum_{j \neq i} w_j s_j + b_i \right)$$

$$E(S') = -\frac{1}{2} \left(E_{not i} - \sum_{j \neq i} w_j s_j - b_i \right)$$

• $logP(S) - logP(S') = E(S') - E(S) = \sum_{j \neq i} w_j s_j + b_i$

The field at a single node

$$log\left(\frac{P(s_{i}=1|s_{j\neq i})}{1-P(s_{i}=1|s_{j\neq i})}\right) = \sum_{j\neq i} w_{j}s_{j} + b_{i}$$

• Giving us

$$P(s_{i} = 1 | s_{j \neq i}) = \frac{1}{1 + e^{-(\sum_{j \neq i} w_{j} s_{j} + b_{i})}}$$

• The probability of any node taking value 1 given other node values is a logistic

Redefining the network



$$z_i = \sum_j w_{ji} s_j + b_i$$

$$P(s_i = 1 | s_{j \neq i}) = \frac{1}{1 + e^{-z_i}}$$

- First try: Redefine a regular Hopfield net as a stochastic system
- Each neuron is *now a stochastic unit* with a binary state s_i, which can take value 0 or 1 with a probability that depends on the local field
 - Note the slight change from Hopfield nets
 - Not actually necessary; only a matter of convenience

The Hopfield net is a distribution

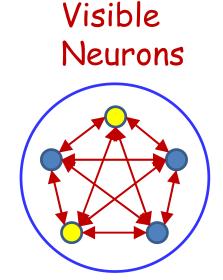
Visible Neurons

$$z_i = \sum_j w_{ji} s_j + b_i$$

$$P(s_i = 1 | s_{j \neq i}) = \frac{1}{1 + e^{-z_i}}$$

- The Hopfield net is a probability distribution over binary sequences
 - The Boltzmann distribution
- The *conditional* distribution of individual bits in the sequence is a logistic

Running the network



$$z_i = \sum_j w_{ji} s_j + b_i$$

$$P(s_i = 1 | s_{j \neq i}) = \frac{1}{1 + e^{-z_i}}$$

- Initialize the neurons
- Cycle through the neurons and randomly set the neuron to 1 or -1 according to the probability given above
 - Gibbs sampling: Fix N-1 variables and sample the remaining variable
 - As opposed to energy-based update (mean field approximation): run the test $z_i > 0$?
- After many many iterations (until "convergence"), *sample* the individual neurons

Exploiting the probabilistic view

• Next..