Neural Networks
Learning the network: Part 1

11-785, Spring 2021
Lecture 3
Topics for the day

• The problem of learning
• The perceptron rule for perceptrons
 – And its inapplicability to multi-layer perceptrons
• Greedy solutions for classification networks: ADALINE and MADALINE
• Learning through Empirical Risk Minimization
• Intro to function optimization and gradient descent
Recap

• **Neural networks are universal function approximators**
 – Can model any Boolean function
 – Can model any classification boundary
 – Can model any continuous valued function

• **Provided the network satisfies minimal architecture constraints**
 – Networks with fewer than the required number of parameters can be very poor approximators
These boxes are functions

- Take an input
- Produce an output
- Can be modeled by a neural network!
Questions

• Preliminaries:
 – How do we represent the input?
 – How do we represent the output?

• How do we compose the network that performs the requisite function?
Questions

• Preliminaries:
 – How do we represent the input?
 – How do we represent the output?

• How do we compose the network that performs the requisite function?
Preliminaries: The units in the network – the perceptron

- **Perceptron**
 - General setting, inputs are real valued
 - A *bias* b representing a threshold to trigger the perceptron
 - Activation functions are not necessarily threshold functions

- The parameters of the perceptron (which determine how it behaves) are its weights and bias
Preliminaries: Redrawing the neuron

The bias can also be viewed as the weight of another input component that is always set to 1

- If the bias is not explicitly mentioned, we will implicitly be assuming that every perceptron has an additional input that is always fixed at 1
First: the structure of the network

- We will assume a *feed-forward* network
 - No loops: Neuron outputs do not feed back to their inputs directly or indirectly
 - Loopy networks are a future topic
- **Part of the design of a network: The architecture**
 - How many layers/neurons, which neuron connects to which and how, etc.
- For now, assume the architecture of the network is capable of representing the needed function
What we learn: The parameters of the network

- **Given**: the architecture of the network
- **The parameters of the network**: The weights and biases
 - The weights associated with the blue arrows in the picture
- **Learning the network**: Determining the values of these parameters such that the network computes the desired function
• Moving on..
The MLP *can* represent anything

- The MLP *can be constructed* to represent anything
- But *how* do we construct it?
Option 1: Construct by hand

- Given a function, *handcraft* a network to satisfy it
- E.g.: Build an MLP to classify this decision boundary
Option 1: Construct by hand

Assuming simple perceptrons:
output = 1 if $\sum_i w_i x_i + b_i \geq 0$, else 0

$x_1 - x_2 + 1 = 0$
Option 1: Construct by hand

Assuming simple perceptrons:
output = 1 if $\sum_i w_i x_i + b_i \geq 0$, else 0
Option 1: Construct by hand

Assuming simple perceptrons:
output = 1 if $\sum_i w_i x_i + b_i \geq 0$, else 0
Option 1: Construct by hand

Assuming simple perceptrons:
output = 1 if $\sum_i w_i x_i + b_i \geq 0$, else 0
Option 1: Construct by hand

Assuming simple perceptrons:
output = 1 if $\sum_i w_i x_i + b_i \geq 0$, else 0
Option 1: Construct by hand

- Given a function, *handcraft* a network to satisfy it
- E.g.: Build an MLP to classify this decision boundary
- Not possible for all but the simplest problems..
Option 2: Automatic estimation of an MLP

More generally, given the function $g(X)$ to model, we can derive the parameters of the network to model it, through computation.
How to learn a network?

- When \(f(X; W) \) has the capacity to exactly represent \(g(X) \)

 \[
 \hat{W} = \arg\min_{W} \int_{X} \text{div}(f(X; W), g(X)) dX
 \]

- \(\text{div}() \) is a divergence function that goes to zero when \(f(X; W) = g(X) \)
Problem $g(X)$ is unknown

- Function $g(X)$ must be fully specified
 - Known everywhere, i.e. for every input X
- In practice we will not have such specification
Sampling the function

- **Sample** \(g(X) \)
 - Basically, get input-output pairs for a number of samples of input \(X_i \)
 - Many samples \((X_i, d_i)\), where \(d_i = g(X_i) + \text{noise} \)

- Very easy to do in most problems: just gather training data
 - E.g. set of images and their class labels
 - E.g. speech recordings and their transcription
• We must *learn* the *entire* function from these few examples
 – The “training” samples
Learning the function

• Estimate the network parameters to “fit” the training points exactly
 – Assuming network architecture is sufficient for such a fit
 – Assuming unique output \(d \) at any \(X \)
 • And hopefully the resulting function is also correct where we don’t have training samples
Story so far

- “Learning” a neural network == determining the parameters of the network (weights and biases) required for it to model a desired function
 - The network must have sufficient capacity to model the function

- Ideally, we would like to optimize the network to represent the desired function everywhere

- However this requires knowledge of the function everywhere

- Instead, we draw “input-output” training instances from the function and estimate network parameters to “fit” the input-output relation at these instances
 - And hope it fits the function elsewhere as well
Let’s begin with a simple task

• Learning a *classifier*
 – Simpler than regressions

• This was among the earliest problems addressed using MLPs

• Specifically, consider *binary* classification
 – Generalizes to multi-class
History: The original MLP

• The original MLP as proposed by Minsky: a network of threshold units
 – But how do you train it?
 • Given only “training” instances of input-output pairs
The simplest MLP: a single perceptron

• Learn this function
 – A step function across a hyperplane
• Learn this function
 – A step function across a hyperplane
 – Given only samples from it
Learning the perceptron

• Given a number of input output pairs, learn the weights and bias

- \(y = \begin{cases} 1 & \text{if } \sum_{i=1}^{N} w_i x_i + b \geq 0 \\ 0 & \text{otherwise} \end{cases} \)

- Learn \(W = [w_1 \ldots w_N]^T \) and \(b \), given several \((X, y)\) pairs
Restating the perceptron

- Restating the perceptron equation by adding another dimension to X

$$y = \begin{cases}
1 & \text{if } \sum_{i=1}^{N+1} w_i X_i \geq 0 \\
0 & \text{otherwise}
\end{cases}$$

where $X_{N+1} = 1$

- Note that the boundary $\sum_{i=1}^{N+1} w_i X_i = 0$ is now a hyperplane through origin
The Perceptron Problem

• Find the hyperplane $\sum_{i=1}^{N+1} w_i X_i = 0$ that perfectly separates the two groups of points
• Find the hyperplane $\sum_{i=1}^{N+1} w_i x_i = 0$ that perfectly separates the two groups of points
 – Let vector $W = [w_1, w_2, ..., w_{N+1}]^T$ and vector $X = [x_1, x_2, ..., x_N, 1]^T$
 – $\sum_{i=1}^{N+1} w_i x_i = W^T X$ is an inner product
 – $W^T X = 0$ is the hyperplane comprising all X's orthogonal to vector W

• Learning the perceptron = finding the weight vector W for the separating hyperplane
 • W points in the direction of the positive class
The Perceptron Problem

- Learning the perceptron: Find the weights vector \mathbf{W} such that the plane described by $\mathbf{W}^T \mathbf{X} = 0$ perfectly separates the classes
 - $\mathbf{W}^T \mathbf{X}$ is positive for all red dots and negative for all blue ones

Key: Red 1, Blue = -1
A simple solution

• Reflect all the negative instances across the origin
 – Negate every component of vector X
• If we use class $y \in \{+1, -1\}$ notation for the labels (instead of $y \in \{0,1\}$), we can simply write the “reflected” values as $X' = yX$
 – Will retain the features X for the positive class, but reflect/negate them for the negative class
• Learning the perceptron: Find a plane such that all the modified \(X' \) features lie on one side of the plane
 – Such a plane can always be found if the classes are linearly separable
The Perceptron Solution: Linearly separable case

- When classes are linearly separable: a trivial solution

\[
W = \frac{1}{N} \sum_{i} X_i' = \frac{1}{N} \sum_{i} y_i X_i
\]

- Other solutions are also possible, e.g. max-margin solution
The Perceptron Solution: when classes are not linearly separable

• When classes are not linearly separable, not possible to find a “support” plane
 – Some points will always lie on the other side
 – Model does not support perfect classification of this data
The *online* perceptron solution

- The more popular solution, originally proposed by Rosenblatt is an *online* algorithm
 - The famous “perceptron” algorithm

- Initializes W and incrementally updates it each time we encounter an instance that is incorrectly classified
 - Guaranteed to find the correct solution for linearly separable data
 - On following slides, but will not cover in class
History: A more complex problem

• Learn an MLP for this function
 – 1 in the yellow regions, 0 outside
• Using just the samples
• We know this can be perfectly represented using an MLP
More complex decision boundaries

- Even using the perfect architecture...
- ... can we use perceptron learning rules to learn this classification function?
The pattern to be learned at the lower level

- The lower-level neurons are linear classifiers
 - They require linearly separated labels to be learned
 - The actually provided labels are not linearly separated
 - Challenge: *Must also learn the labels for the lowest units!*
The pattern to be learned at the lower level

• Consider a single linear classifier that must be learned from the training data
 – Can it be learned from this data?
The pattern to be learned at the lower level

Consider a single linear classifier that must be learned from the training data

- Can it be learned from this data?
- The individual classifier actually requires the kind of labelling shown here

 • Which is not given!!
The pattern to be learned at the lower level

- The lower-level neurons are linear classifiers
 - They require linearly separated labels to be learned
 - The actually provided labels are not linearly separated
 - Challenge: *Must also learn the labels for the lowest units!*

![Diagram showing the pattern to be learned and the structure of the lower-level neurons.](image-url)
The pattern to be learned at the lower level

• For a single line:
 – Try out every possible way of relabeling the blue dots such that we can learn a line that keeps all the red dots on one side!
The pattern to be learned at the lower level

• This must be done for *each* of the lines (perceptrons)
• Such that, when all of them are combined by the higher-level perceptrons we get the desired pattern
 – Basically an exponential search over inputs
Must know the output of every neuron for every training instance, in order to learn this neuron.
The outputs should be such that the neuron individually has a linearly separable task.
The linear separators must combine to form the desired boundary.

Individual neurons represent one of the lines that compose the figure (linear classifiers).

This must be done for every neuron.

Getting any of them wrong will result in incorrect output!
Learning a multilayer perceptron

- Training this network using the perceptron rule is a combinatorial optimization problem.
- We don’t know the outputs of the individual intermediate neurons in the network for any training input.
- Must also determine the correct output for each neuron for every training instance.
- At least exponential (in inputs) time complexity!!!!!!

Training data only specifies input and output of network
Intermediate outputs (outputs of individual neurons) are not specified.
Greedy algorithms: Adaline and Madaline

- Perceptron learning rules cannot directly be used to learn an MLP
 - Exponential complexity of assigning intermediate labels
 - Even worse when classes are not actually separable

- Can we use a *greedy* algorithm instead?
 - Adaline / Madaline
 - On slides, will skip in class (check the quiz)
Story so far

• “Learning” a network = learning the weights and biases to compute a target function
 – Will require a network with sufficient “capacity”

• In practice, we learn networks by “fitting” them to match the input-output relation of “training” instances drawn from the target function

• A linear decision boundary can be learned by a single perceptron (with a threshold-function activation) in linear time if classes are linearly separable

• Non-linear decision boundaries require networks of perceptrons

• Training an MLP with threshold-function activation perceptrons will require knowledge of the input-output relation for every training instance, for every perceptron in the network
 – These must be determined as part of training
 – For threshold activations, this is an NP-complete combinatorial optimization problem
History..

• The realization that training an entire MLP was a combinatorial optimization problem stalled development of neural networks for well over a decade!
Why this problem?

- The perceptron is a flat function with zero derivative everywhere, except at 0 where it is non-differentiable
 - You can vary the weights a lot without changing the error
 - There is no indication of which direction to change the weights to reduce error

\[\sigma(z) = \]
This only compounds on larger problems

- Individual neurons’ weights can change significantly without changing overall error
- The simple MLP is a flat, non-differentiable function
 - Actually a function with 0 derivative nearly everywhere, and no derivatives at the boundaries
A second problem: What we actually model

- Real-life data are rarely clean
 - Not linearly separable
 - Rosenblatt’s perceptron wouldn’t work in the first place
Solution

- Lets make the neuron differentiable, with non-zero derivatives over much of the input space
 - Small changes in weight can result in non-negligible changes in output
 - This enables us to estimate the parameters using gradient descent techniques.
Differentiable activation function

- Threshold activation: shifting the threshold from T_1 to T_2 does not change classification error
 - Does not indicate if moving the threshold left was good or not

- Smooth, continuously varying activation: Classification based on whether the output is greater than 0.5 or less
 - Can now quantify how much the output differs from the desired target value (0 or 1)
 - Moving the function left or right changes this quantity, even if the classification error itself doesn’t change
The sigmoid activation is special

- This particular one has a nice interpretation
- It can be interpreted as $P(y = 1|x)$
Perceptrons and probabilities

• We will return to the fact that perceptrons with sigmoidal activations actually model class probabilities in a later lecture

• But for now moving on..
Perceptrons with differentiable activation functions

- $\sigma(z)$ is a differentiable function of z
 - $\frac{d\sigma(z)}{dz}$ is well-defined and finite for all z
- Using the chain rule, y is a differentiable function of both inputs x_i and weights w_i
- This means that we can compute the change in the output for *small* changes in either the input or the weights
Overall network is differentiable

- Every individual perceptron is differentiable w.r.t its inputs and its weights (including “bias” weight)
- By the chain rule, the overall function is differentiable w.r.t every parameter (weight or bias)
 - Small changes in the parameters result in measurable changes in output

\[y = \sigma(w_{1,1}^3 y_1^2 + w_{2,1}^3 y_2^2 + w_{3,1}^3) \]

\[y = \text{output of overall network} \]
\[w_{i,j}^k = \text{weight connecting the } i\text{th unit of the } (k-1)\text{th layer to the } j\text{th unit of the } k\text{th layer} \]
\[y_i^k = \text{output of the } i\text{th unit of the } k\text{th layer} \]
\[\sigma() \text{ is differentiable w.r.t both } w \text{ and } y_i^k \]

Figure does not show bias connections
Overall function is differentiable

- The overall function is differentiable w.r.t every parameter
 - We can compute how small changes in the parameters change the output
 - For non-threshold activations the derivative are finite and generally non-zero
 - We will derive the actual derivatives using the chain rule later

\[y_j^k = \sigma \left(\sum_i w_{i,j}^{k-1} y_i^{k-1} \right) \]
Overall setting for “Learning” the MLP

- Given a training set of input-output pairs \((X_1, d_1), (X_2, d_2), \ldots, (X_N, d_N)\) ...
 - \(d\) is the desired output of the network in response to \(X\)
 - \(X\) and \(d\) may both be vectors
- ...we must find the network parameters such that the network produces the desired output for each training input
 - Or a close approximation of it
 - The architecture of the network must be specified by us
Recap: Learning the function

When \(f(X; W) \) has the capacity to exactly represent \(g(X) \)

\[
\overline{W} = \arg\min_W \int_X \text{div}(f(X; W), g(X))dX
\]

- \(\text{div()} \) is a divergence function that goes to zero when \(f(X; W) = g(X) \)
More generally, assuming X is a random variable

$$\hat{W} = \arg\min_W \int_X \text{div}(f(X; W), g(X))P(X)dX$$

$$= \arg\min_W E[W\text{div}(f(X; W), g(X))]$$
Recap: Sampling the function

• *We don’t have $g(X)$ so sample $g(X)$*
 – Obtain input-output pairs for a number of samples of input X_i
 – Good sampling: the samples of X will be drawn from $P(X)$

• Estimate function from the samples
The *Empirical* risk

- The *expected* divergence (or risk) is the average divergence over the entire input space

\[
E[\text{div}(f(X;W), g(X))] = \int_X \text{div}(f(X;W), g(X))P(X)dX
\]

- The *empirical estimate* of the expected risk is the *average* divergence over the samples

\[
E[\text{div}(f(X;W), g(X))] \approx \frac{1}{N} \sum_{i=1}^{N} \text{div}(f(X_i;W), d_i)
\]
Empirical Risk Minimization

\[Y = f(X; W) \]

- Given a training set of input-output pairs \((X_1, d_1), (X_2, d_2), \ldots, (X_N, d_N)\)
 - Quantification of error on the \(i\)th instance: \(\text{div}(f(X_i; W), d_i)\)
 - Empirical average divergence (Empirical Risk) on all training data:
 \[\text{Loss}(W) = \frac{1}{N} \sum_i \text{div}(f(X_i; W), d_i) \]

- Estimate the parameters to minimize the empirical estimate of expected divergence (empirical risk)
 \[\hat{W} = \arg\min_W \text{Loss}(W) \]
 - I.e. minimize the empirical risk over the drawn samples
Empirical Risk Minimization

\[Y = f(X; W) \]

Note: It's really a measure of error, but using standard terminology, we will call it a “Loss”

Note 2: The empirical risk \(Loss(W) \) is only an empirical approximation to the true risk \(E[div(f(X; W), g(X))] \) which is our actual minimization objective

Note 3: For a given training set the loss is only a function of \(W \)

\[
Loss(W) = \frac{1}{N} \sum_i div(f(X_i; W), d_i)
\]

- Estimate the parameters to minimize the empirical estimate of expected error

\[
\overline{W} = \arg\min_W Loss(W)
\]

- I.e. minimize the empirical error over the drawn samples
Problem Statement

• Given a training set of input-output pairs \((X_1, d_1), (X_2, d_2), \ldots, (X_N, d_N)\)

• Minimize the following function

\[
Loss(W) = \frac{1}{N} \sum_i \text{div}(f(X_i; W), d_i)
\]

w.r.t \(W\)

• This is problem of function minimization
 – An instance of optimization
• We learn networks by “fitting” them to training instances drawn from a target function.

• Learning networks of threshold-activation perceptrons requires solving a hard combinatorial-optimization problem.
 – Because we cannot compute the influence of small changes to the parameters on the overall error.

• Instead we use continuous activation functions with non-zero derivatives to enable us to estimate network parameters.
 – This makes the output of the network differentiable w.r.t every parameter in the network.
 – The logistic activation perceptron actually computes the a posteriori probability of the output given the input.

• We define differentiable divergence between the output of the network and the desired output for the training instances.
 – And a total error, which is the average divergence over all training instances.

• We optimize network parameters to minimize this error.
 – Empirical risk minimization.

• This is an instance of function minimization.
• A CRASH COURSE ON FUNCTION OPTIMIZATION
 – With an initial discussion of derivatives
A brief note on derivatives..

- A derivative of a function at any point tells us how much a minute increment to the argument of the function will increment the value of the function.
 - For any $y = f(x)$, expressed as a multiplier α to a tiny increment Δx to obtain the increments Δy to the output $\Delta y = \alpha \Delta x$.
 - Based on the fact that at a fine enough resolution, any smooth, continuous function is locally linear at any point.
Scalar function of scalar argument

- When x and y are scalar
 \[y = f(x) \]
 - Derivative:
 \[\Delta y = \alpha \Delta x \]
 - Often represented (using somewhat inaccurate notation) as \[\frac{dy}{dx} \]
 - Or alternately (and more reasonably) as \[f'(x) \]
Scalar function of scalar argument

- Derivative $f'(x)$ is the rate of change of the function at x
 - How fast it increases with increasing x
 - The magnitude of $f'(x)$ gives you the steepness of the curve at x
 - Larger $|f'(x)|$ \rightarrow the function is increasing or decreasing more rapidly

- It will be positive where a small increase in x results in an increase of $f(x)$
 - Regions of positive slope

- It will be negative where a small increase in x results in a decrease of $f(x)$
 - Regions of negative slope

- It will be 0 where the function is locally flat (neither increasing nor decreasing)
Multivariate scalar function:
Scalar function of vector argument

\[\Delta y = \alpha \Delta x \]

- Giving us that \(\alpha \) is a row vector: \(\alpha = [\alpha_1 \ \cdots \ \alpha_D] \)
 \[\Delta y = \alpha_1 \Delta x_1 + \alpha_2 \Delta x_2 + \cdots + \alpha_D \Delta x_D \]
- The partial derivative \(\alpha_i \) gives us how \(y \) increments when only \(x_i \) is incremented
- Often represented as \(\frac{\partial y}{\partial x_i} \)
 \[\Delta y = \frac{\partial y}{\partial x_1} \Delta x_1 + \frac{\partial y}{\partial x_2} \Delta x_2 + \cdots + \frac{\partial y}{\partial x_D} \Delta x_D \]
Multivariate scalar function:
Scalar function of vector argument

\[
\Delta y = \nabla_x y \Delta x
\]

• Where

\[
\nabla_x y = \begin{bmatrix}
\frac{\partial y}{\partial x_1} & \cdots & \frac{\partial y}{\partial x_D}
\end{bmatrix}
\]

○ You may be more familiar with the term “gradient” which is actually defined as the transpose of the derivative.
Gradient of a scalar function of a vector

• The derivative $\nabla_X f(X)$ of a scalar function $f(X)$ of a multi-variate input X is a multiplicative factor that gives us the change in $f(X)$ for tiny variations in X

$$df(X) = \nabla_X f(X)dX$$

$$\nabla_X f(X) = \left[\frac{\partial f(X)}{\partial x_1} \quad \frac{\partial f(X)}{\partial x_2} \quad \cdots \quad \frac{\partial f(X)}{\partial x_n}\right]$$

• The gradient is the transpose of the derivative $\nabla_X f(X)^T$
 – A column vector of the same dimensionality as X
Gradient of a scalar function of a vector

- The *derivative* $\nabla_X f(X)$ of a scalar function $f(X)$ of a multi-variate input X is a multiplicative factor that gives us the change in $f(X)$ for tiny variations in X

$$df(X) = \nabla_X f(X) dX$$

$$\nabla_X f(X) = \begin{bmatrix} \frac{\partial f(X)}{\partial x_1} & \frac{\partial f(X)}{\partial x_2} & \cdots & \frac{\partial f(X)}{\partial x_n} \end{bmatrix}$$

The gradient is the transpose of the derivative $\nabla_X f(X)^T$.

This is a vector inner product. To understand its behavior let's consider a well-known property of inner products.
A well-known vector property

\[u^T v = |u||v| \cos \theta \]

- The inner product between two vectors of fixed lengths is maximum when the two vectors are aligned
 - i.e. when \(\theta = 0 \)
Properties of Gradient

- \(df(X) = \nabla_X f(X) \, dx \)

- For an increment \(dx \) of any given length \(df(X) \) is max if \(dx \) is aligned with \(\nabla_X f(X)^T \)
 - The function \(f(X) \) increases most rapidly if the input increment \(dx \) is exactly in the direction of \(\nabla_X f(X)^T \)

- The gradient is the direction of fastest increase in \(f(X) \)
Gradient

Gradient vector $\nabla_x f(X)^T$
Gradient

Moving in this direction *increases* $f(X)$ fastest.

Gradient vector $\nabla_X f(X)^T$
Gradient

Moving in this direction decreases $f(X)$ fastest

Gradient vector $\nabla_X f(X)^T$

Moving in this direction increases $f(X)$ fastest
Gradient

Gradient here is 0

Gradient here is 0
Properties of Gradient: 2

- The gradient vector $\nabla_X f (X)^T$ is perpendicular to the level curve
The Hessian

• The Hessian of a function $f(x_1, x_2, \ldots, x_n)$ is given by the second derivative

$$
\nabla_x^2 f(x_1, \ldots, x_n) :=
\begin{bmatrix}
\frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\
\frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2}
\end{bmatrix}
$$
Next up

• Continuing on function optimization

• Gradient descent to train neural networks

• A.K.A. Back propagation