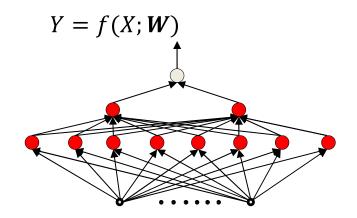
Neural Networks Learning the network: Backprop

11-785, Spring 2021 Lecture 4

Recap: Empirical Risk Minimization



- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
 - Divergence on the i-th instance: $div(f(X_i; W), d_i)$
 - Empirical average divergence on all training data:

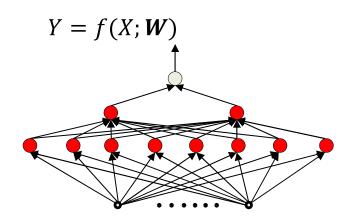
$$Loss(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

Estimate the parameters to minimize the empirical estimate of expected divergence

$$\widehat{\boldsymbol{W}} = \underset{W}{\operatorname{argmin}} Loss(W)$$

I.e. minimize the *empirical risk* over the drawn samples

Recap: Empirical Risk Minimization



This is an instance of function minimization (optimization)

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
 - Error on the i-th instance: $div(f(X_i; W), d_i)$
 - Empirical average error on all training data:

$$Loss(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

Estimate the parameters to minimize the empirical estimate of expected error

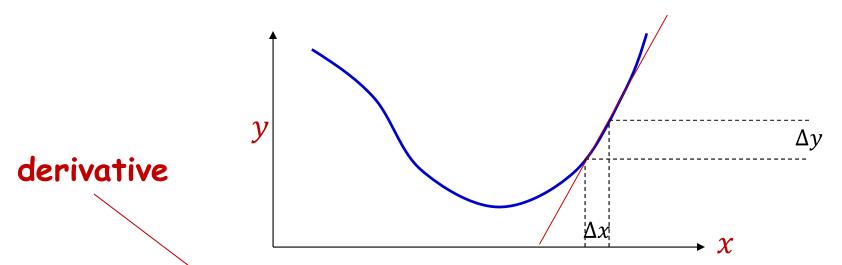
$$\widehat{\boldsymbol{W}} = \operatorname*{argmin}_{W} Loss(W)$$

I.e. minimize the *empirical error* over the drawn samples

A quick intro to function optimization

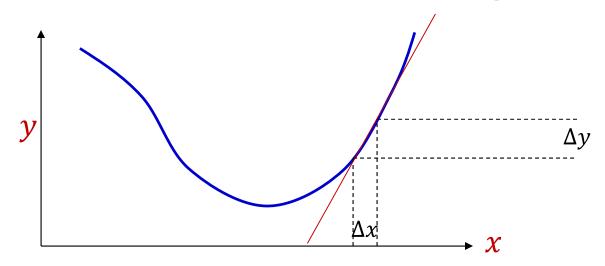
with an initial discussion of derivatives

A brief note on derivatives...



- A derivative of a function at any point tells us how much a minute increment to the *argument* of the function will increment the *value* of the function
 - For any y=f(x), expressed as a multiplier α to a tiny increment Δx to obtain the increments Δy to the output $\Delta y = \alpha \Delta x$
 - Based on the fact that at a fine enough resolution, any smooth, continuous function is locally linear at any point

Scalar function of scalar argument



When x and y are scalar

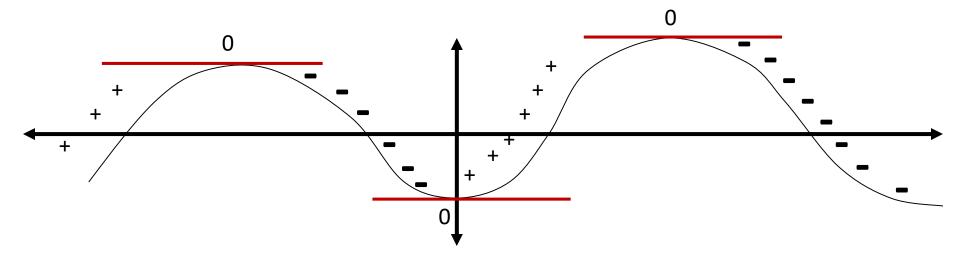
$$y = f(x)$$

Derivative:

$$\Delta y = \alpha \Delta x$$

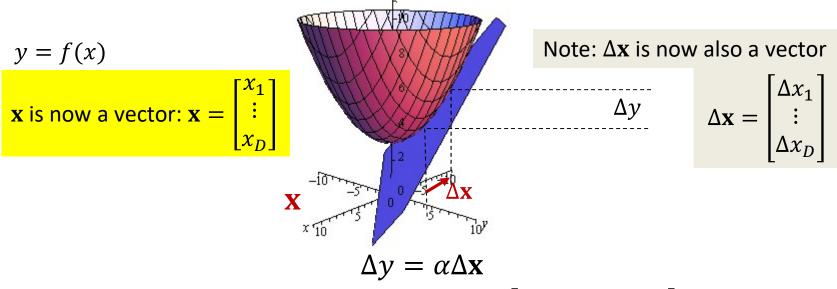
- Often represented (using somewhat inaccurate notation) as $\frac{dy}{dx}$
- Or alternately (and more reasonably) as f'(x)

Scalar function of scalar argument



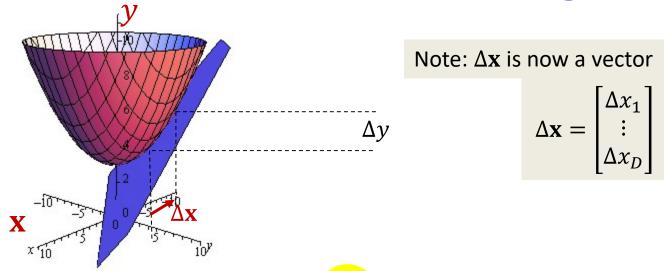
- Derivative f'(x) is the *rate of change* of the function at x
 - How fast it increases with increasing x
 - The magnitude of f'(x) gives you the steepness of the curve at x
 - Larger $|f'(x)| \rightarrow$ the function is increasing or decreasing more rapidly
- It will be positive where a small increase in x results in an increase of f(x)
 - Regions of positive slope
- It will be negative where a small increase in x results in a decrease of f(x)
 - Regions of negative slope
- It will be 0 where the function is locally flat (neither increasing nor decreasing)

Multivariate scalar function: Scalar function of vector argument



- Giving us that α is a row vector: $\alpha = \begin{bmatrix} \alpha_1 & \cdots & \alpha_D \end{bmatrix}$ $\Delta y = \alpha_1 \Delta x_1 + \alpha_2 \Delta x_2 + \cdots + \alpha_D \Delta x_D$
- The partial derivative α_i gives us how y increments when only x_i is incremented
- Often represented as $\frac{\partial y}{\partial x_i}$ $\Delta y = \frac{\partial y}{\partial x_1} \Delta x_1 + \frac{\partial y}{\partial x_2} \Delta x_2 + \dots + \frac{\partial y}{\partial x_D} \Delta x_D$

Multivariate scalar function: Scalar function of *vector* argument



$$\Delta y = \nabla_{\mathbf{x}} y \Delta \mathbf{x}$$

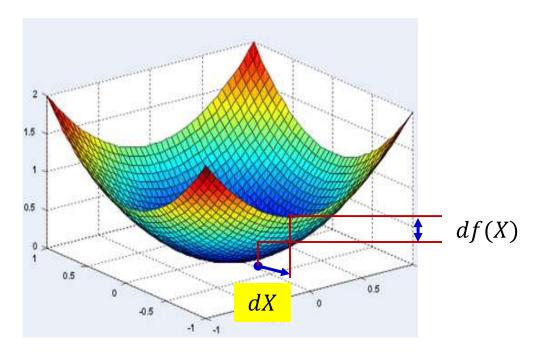
Where

$$\nabla_{\mathbf{x}} y = \begin{bmatrix} \frac{\partial y}{\partial x_1} & \cdots & \frac{\partial y}{\partial x_D} \end{bmatrix}$$

We will be using this symbol for vector and matrix derivatives

 You may be more familiar with the term "gradient" which is actually defined as the transpose of the derivative

Gradient of a scalar function of a vector



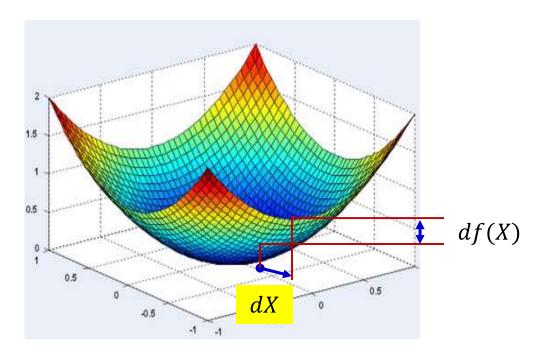
• The derivative $\nabla_X f(X)$ of a scalar function f(X) of a multi-variate input X is a multiplicative factor that gives us the change in f(X) for tiny variations in X

$$df(X) = \nabla_X f(X) dX$$

$$- \nabla_X f(X) = \begin{bmatrix} \frac{\partial f(X)}{\partial x_1} & \frac{\partial f(X)}{\partial x_2} & \cdots & \frac{\partial f(X)}{\partial x_n} \end{bmatrix}$$

- The **gradient** is the transpose of the derivative $\nabla_X f(X)^T$
 - A column vector of the same dimensionality as X

Gradient of a scalar function of a vector



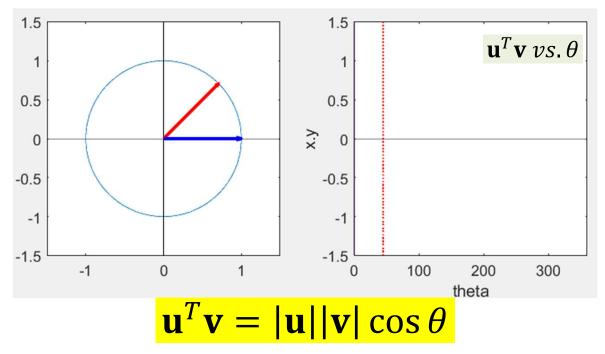
• The derivative $\nabla_X f(X)$ of a scalar function f(X) of a multi-variate input X is a multiplicative factor that gives us the change in f(X) for tiny variations in X

$$df(X) = \nabla_X f(X) dX$$

$$- \nabla_X f(X) = \begin{bmatrix} \frac{\partial f(X)}{\partial x_1} & \frac{\partial f(X)}{\partial x_2} & \cdots & \frac{\partial f(X)}{\partial x_n} \end{bmatrix}$$

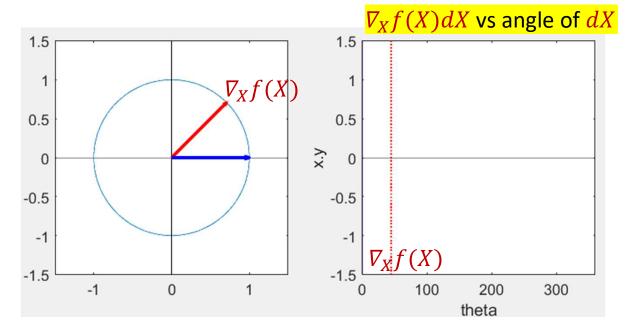
This is a vector inner product. To understand its behavior lets consider a well-known property of inner products

A well-known vector property

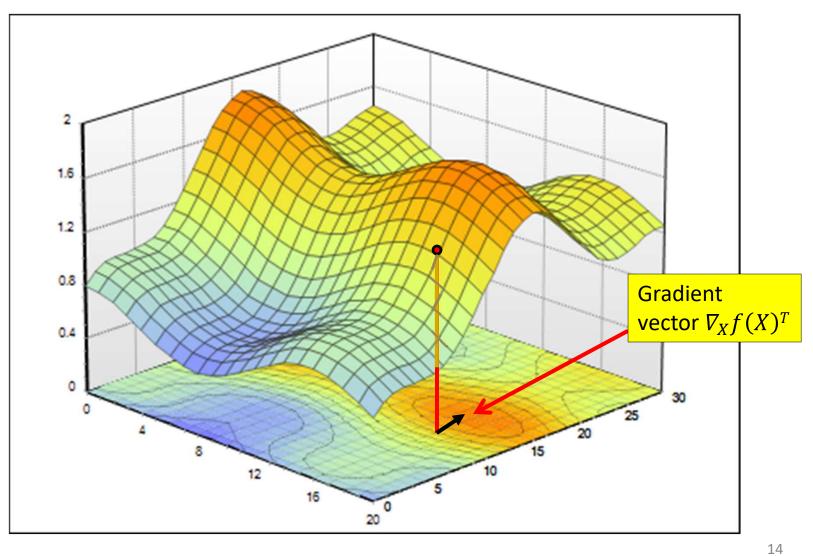


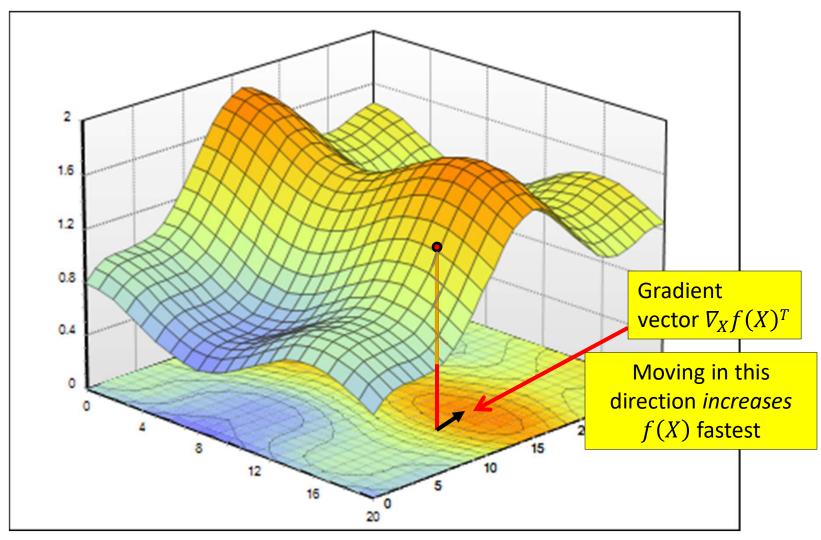
- The inner product between two vectors of fixed lengths is maximum when the two vectors are aligned
 - i.e. when $\theta = 0$

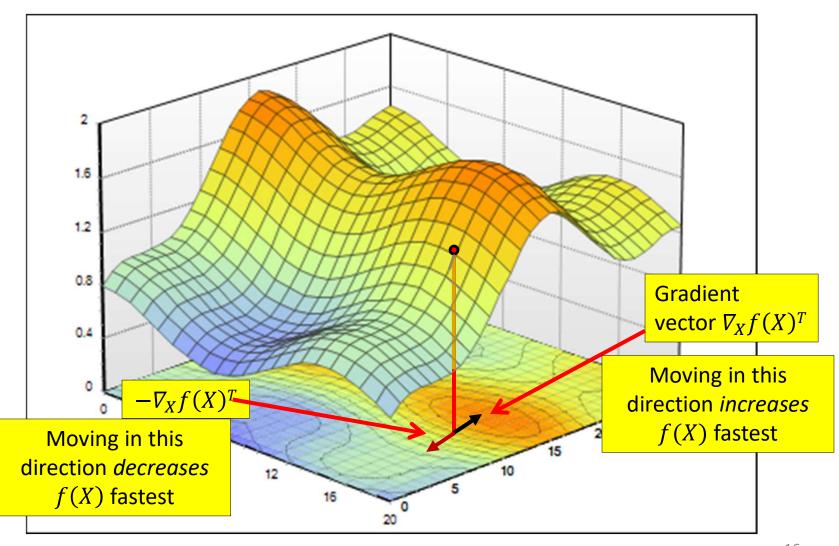
Properties of Gradient

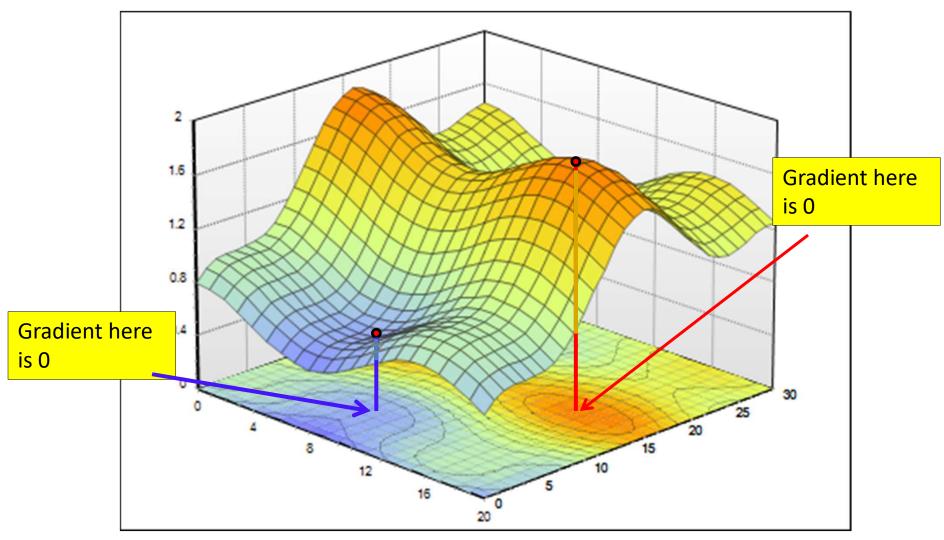


- $df(X) = \nabla_X f(X) dX$
- For an increment dX of any given length df(X) is max if dX is aligned with $\nabla_X f(X)^T$
 - The function f(X) increases most rapidly if the input increment dX is exactly in the direction of $\nabla_X f(X)^T$
- The gradient is the direction of fastest increase in f(X)

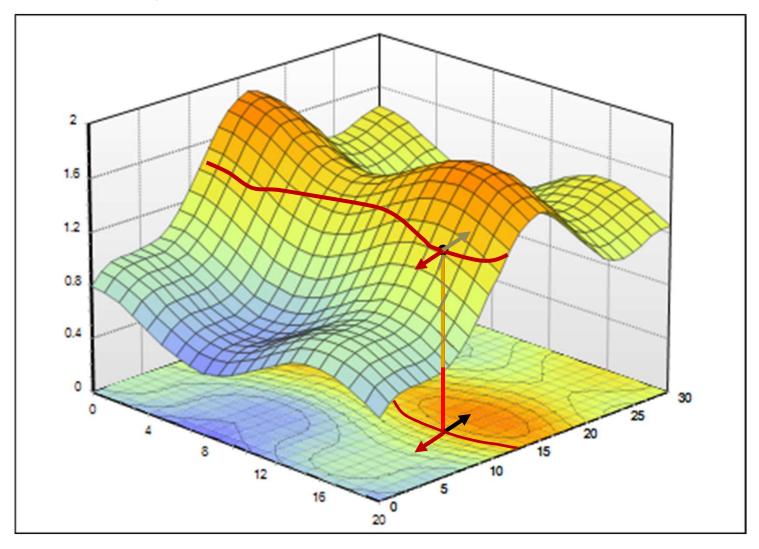








Properties of Gradient: 2



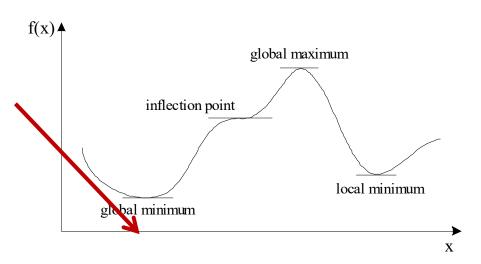
• The gradient vector $\nabla_X f(X)^T$ is perpendicular to the level curve

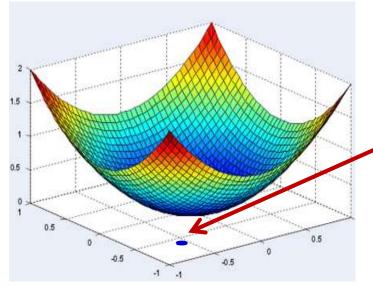
The Hessian

• The Hessian of a function $f(x_1, x_2, ..., x_n)$ is given by the second derivative

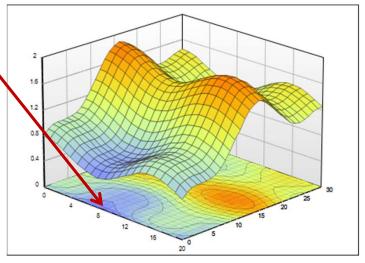
$$\nabla_{x}^{2} f(x_{1},...,x_{n}) := \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}$$

The problem of optimization

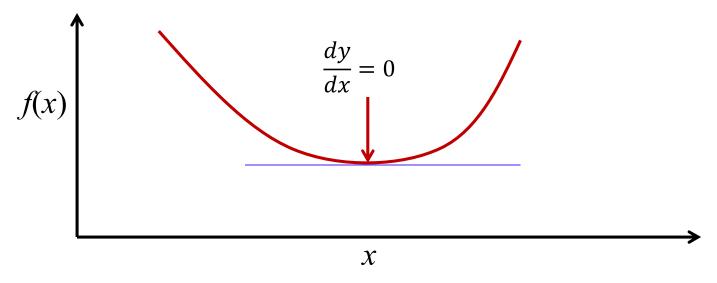




- General problem of optimization: Given a function f(x) of some variable x ...
- Find the value of x where f(x) is minimum



Finding the minimum of a function

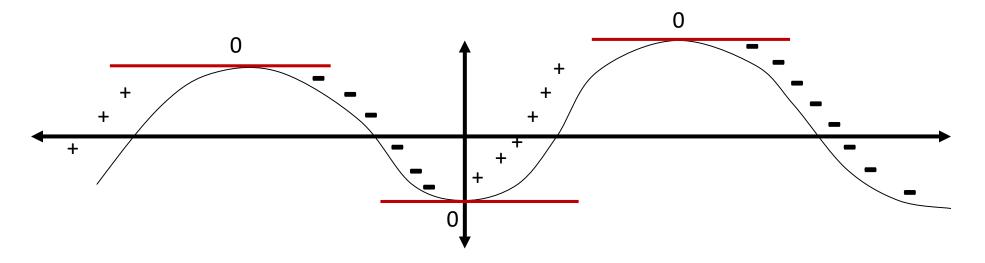


- Find the value x at which f'(x) = 0
 - Solve

$$\frac{df(x)}{dx} = 0$$

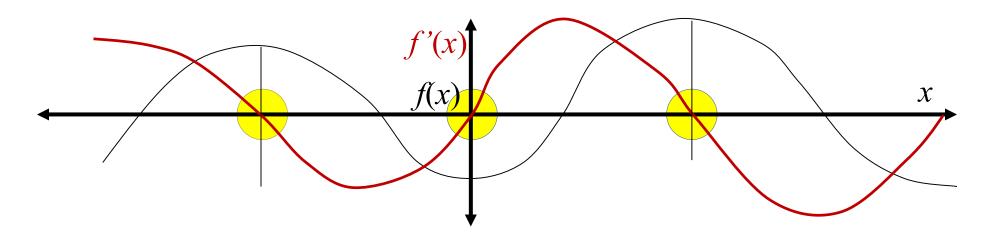
- The solution is a "turning point"
 - Derivatives go from positive to negative or vice versa at this point
- But is it a minimum?

Turning Points



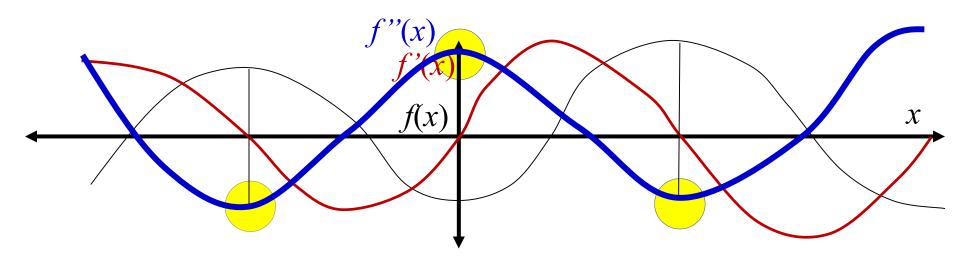
- Both maxima and minima have zero derivative
- Both are turning points

Derivatives of a curve



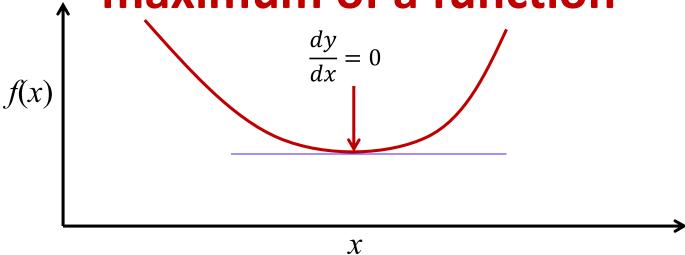
- Both maxima and minima are turning points
- Both maxima and minima have zero derivative

Derivative of the derivative of the curve



- Both maxima and minima are turning points
- Both maxima and minima have zero derivative
- The second derivative f''(x) is –ve at maxima and +ve at minima!

Solution: Finding the minimum or maximum of a function



• Find the value x at which f'(x) = 0: Solve

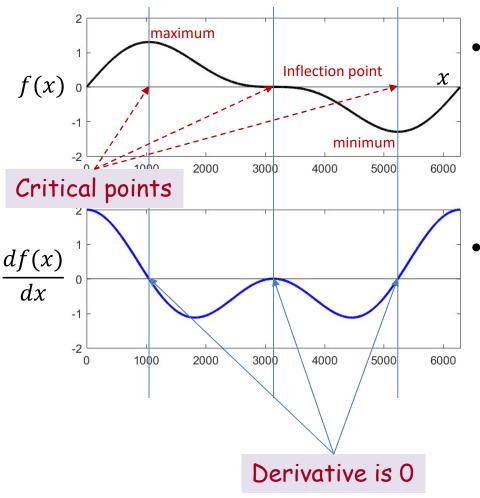
$$\frac{df(x)}{dx} = 0$$

- The solution x_{soln} is a **turning point**
- Check the double derivative at x_{soln} : compute

$$f''(x_{soln}) = \frac{df'(x_{soln})}{dx}$$

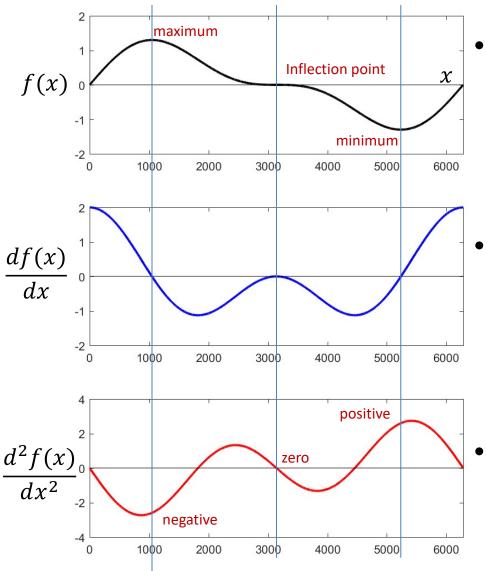
• If $f''(x_{soln})$ is positive x_{soln} is a minimum, otherwise it is a maximum

A note on derivatives of functions of single variable



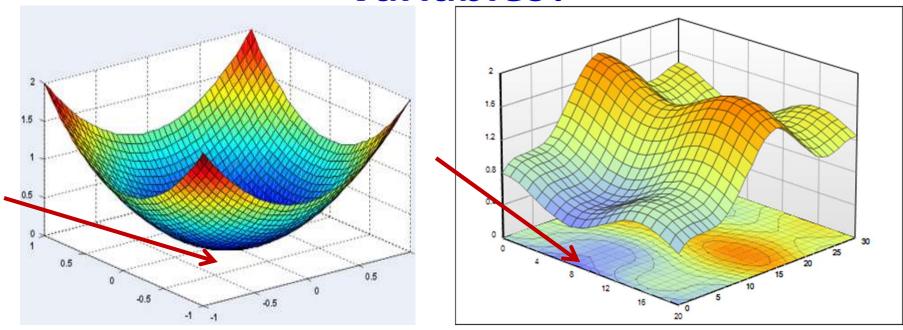
- All locations with zero derivative are *critical* points
 - These can be local maxima, local minima, or inflection points
- The *second* derivative is
 - Positive (or 0) at minima
 - Negative (or 0) at maxima
 - Zero at inflection points

A note on derivatives of functions of single variable



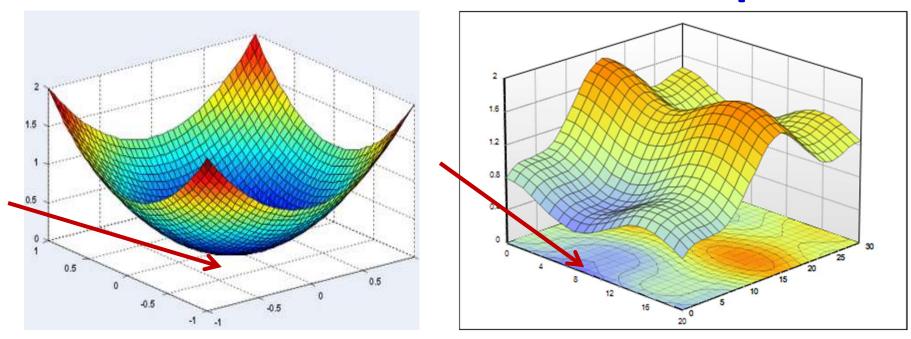
- All locations with zero derivative are *critical* points
 - These can be local maxima, local minima, or inflection points
- The second derivative is
 - ≥ 0 at minima
 - ≤ 0 at maxima
 - Zero at inflection points
 - It's a little more complicated for functions of multiple variables..

What about functions of multiple variables?



- The optimum point is still "turning" point
 - Shifting in any direction will increase the value
 - For smooth functions, miniscule shifts will not result in any change at all
- We must find a point where shifting in any direction by a microscopic amount will not change the value of the function

Finding the minimum of a scalar function of a multivariate input



 The optimum point is a turning point – the gradient will be 0

Unconstrained Minimization of function (Multivariate)

1. Solve for the *X* where the derivative (or gradient) equals to zero

$$\nabla_X f(X) = 0$$

- 2. Compute the Hessian Matrix $\nabla_X^2 f(X)$ at the candidate solution and verify that
 - Hessian is positive definite (eigenvalues positive) -> to identify local minima
 - Hessian is negative definite (eigenvalues negative) -> to identify local maxima

Unconstrained Minimization of function (Example)

Minimize

$$f(x_1, x_2, x_3) = (x_1)^2 + x_1(1-x_2) + (x_2)^2 - x_2x_3 + (x_3)^2 + x_3$$

$$\nabla_X f^T = \begin{bmatrix} 2x_1 + 1 - x_2 \\ -x_1 + 2x_2 - x_3 \\ -x_2 + 2x_3 + 1 \end{bmatrix}$$

Unconstrained Minimization of function (Example)

Set the gradient to null

$$\nabla_X f = 0 \Rightarrow \begin{bmatrix} 2x_1 + 1 - x_2 \\ -x_1 + 2x_2 - x_3 \\ -x_2 + 2x_3 + 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Solving the 3 equations system with 3 unknowns

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$$

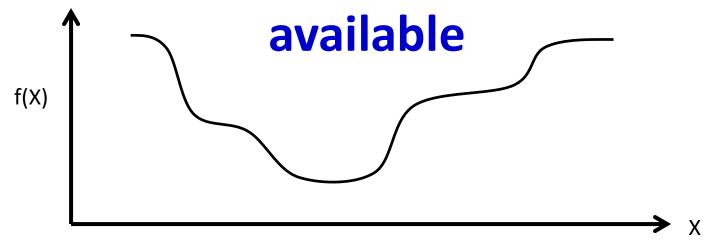
Unconstrained Minimization of

- Compute the Hessian matrix $\nabla_X^2 f = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$
- Evaluate the eigenvalues of the Hessian matrix

$$\lambda_1 = 3.414, \quad \lambda_2 = 0.586, \quad \lambda_3 = 2$$

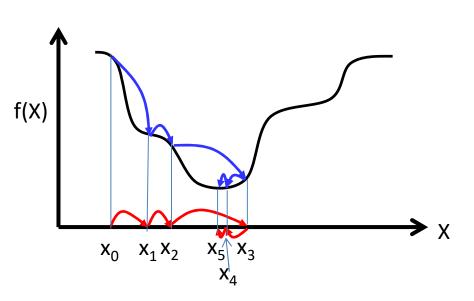
- All the eigenvalues are positives => the Hessian matrix is positive definite
- The point $x = \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = \begin{vmatrix} -1 \\ -1 \\ -1 \end{vmatrix}$ is a minimum

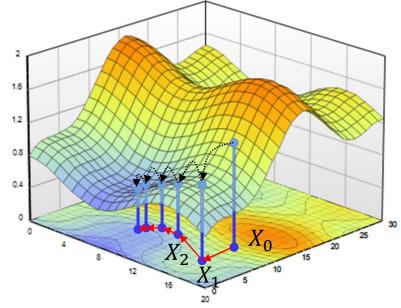
Closed Form Solutions are not always



- Often it is not possible to simply solve $\nabla_X f(X) = 0$
 - The function to minimize/maximize may have an intractable form
- In these situations, iterative solutions are used
 - Begin with a "guess" for the optimal X and refine it iteratively until the correct value is obtained

Iterative solutions



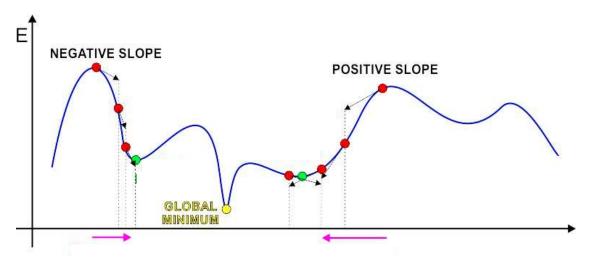


- Iterative solutions
 - Start from an initial guess X_0 for the optimal X
 - Update the guess towards a (hopefully) "better" value of f(X)
 - Stop when f(X) no longer decreases
- Problems:
 - Which direction to step in
 - How big must the steps be

The Approach of Gradient Descent

- Iterative solution:
 - Start at some point
 - Find direction in which to shift this point to decrease error
 - This can be found from the derivative of the function
 - A negative derivative → moving right decreases error
 - A positive derivative → moving left decreases error
 - Shift point in this direction

The Approach of Gradient Descent



- Iterative solution: Trivial algorithm
 - Initialize x^0
 - While $f'(x^k) \neq 0$
 - If $sign(f'(x^k))$ is positive:

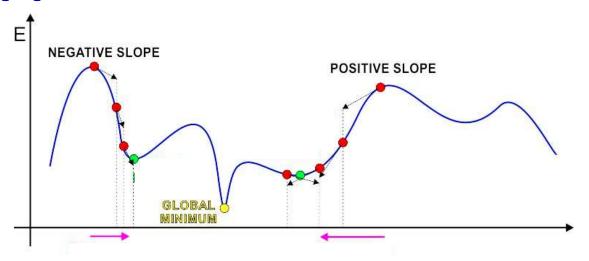
$$x^{k+1} = x^k - step$$

• Else

$$x^{k+1} = x^k + step$$

— What must step be to ensure we actually get to the optimum?

The Approach of Gradient Descent

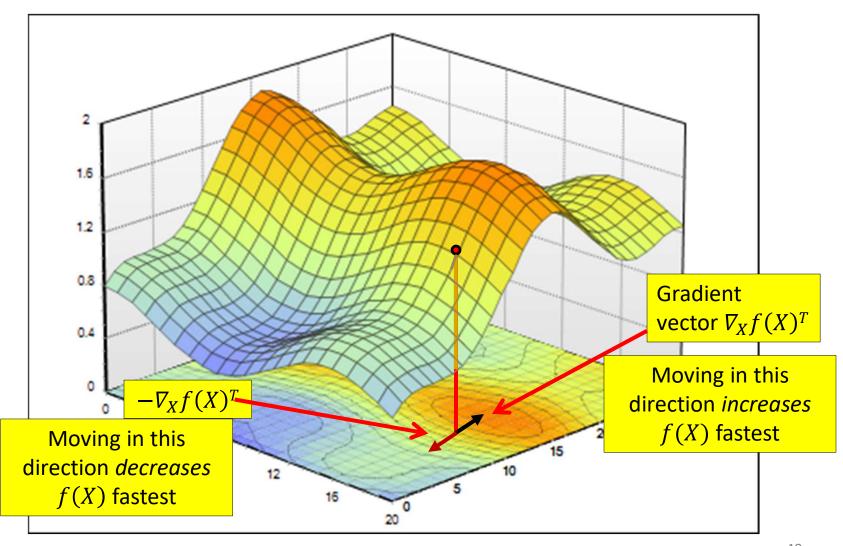


- Iterative solution: Trivial algorithm
 - Initialize x^0
 - While $f'(x^k) \neq 0$ $x^{k+1} = x^k - sign(f'(x^k)) \cdot step$
- Identical to previous algorithm

The Approach of Gradient Descent

- Iterative solution: Trivial algorithm
 - Initialize x^0
 - While $f'(x^k) \neq 0$ $x^{k+1} = x^k - \eta^k f'(x^k)$
- η^k is the "step size"

Gradients of multivariate functions



Gradient descent/ascent (multivariate)

- The gradient descent/ascent method to find the minimum or maximum of a function f iteratively
 - To find a maximum move in the direction of the gradient

$$x^{k+1} = x^k + \eta^k \nabla_x f(x^k)^T$$

To find a minimum move exactly opposite the direction of the gradient

$$x^{k+1} = x^k - \eta^k \nabla_x f(x^k)^T$$

• Many solutions to choosing step size η^k

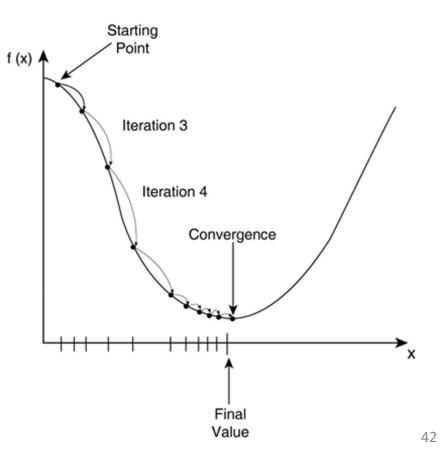
Gradient descent convergence criteria

 The gradient descent algorithm converges when one of the following criteria is satisfied

$$\left| f(x^{k+1}) - f(x^k) \right| < \varepsilon_1$$

Or

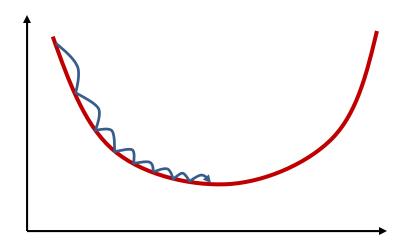
$$\left\| \nabla_{x} f(x^{k}) \right\| < \varepsilon_{2}$$



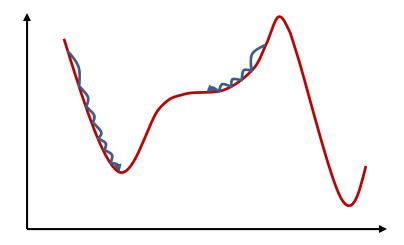
Overall Gradient Descent Algorithm

- Initialize:
 - \mathbf{x}^0
 - k = 0

Convergence of Gradient Descent



 For appropriate step size, for convex (bowlshaped) functions gradient descent will always find the minimum.



 For non-convex functions it will find a local minimum or an inflection point • Returning to our problem from our detour...

Problem Statement

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- Minimize the following function

$$Loss(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

w.r.t W

- This is problem of function minimization
 - An instance of optimization

Gradient Descent to train a network

• Initialize:

- $-W^0$
- -k=0

do

$$-W^{k+1} = W^k - \eta^k \nabla Loss(W^k)^T$$

$$-k = k + 1$$

while
$$|Loss(W^k) - Loss(W^{k-1})| > \varepsilon$$

Preliminaries

Before we proceed: the problem setup

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Minimize the following function

$$Loss(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

w.r.t W

Given a training set of input-output pairs

$$(X_1, \underline{d_1}), (X_2, \underline{d_2}), \dots, (X_T, \underline{d_T})$$

What are these input-output pairs?

$$Loss(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

Given a training set of input-output pairs

$$(X_1, \underline{d_1}), (X_2, \underline{d_2}), \dots, (X_T, \underline{d_T})$$

What are these input-output pairs?

$$Loss(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

What is f() and what are its parameters W?

Given a training set of input-output pairs

$$(X_1, \underline{d}_1), (X_2, \underline{d}_2), \dots, (X_T, \underline{d}_T)$$

What are these input-output pairs?

$$Loss(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

What is the divergence div()?

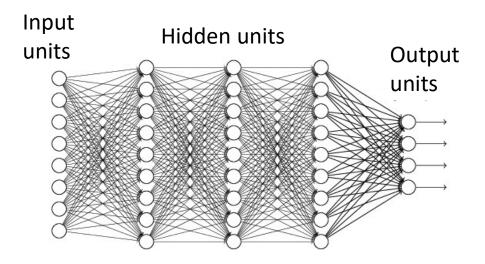
What is f() and what are its parameters W?

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- Minimize the following function

$$Loss(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$
What is f()

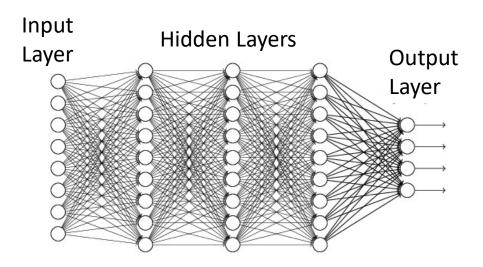
What is f() and what are its parameters W?

What is f()? Typical network



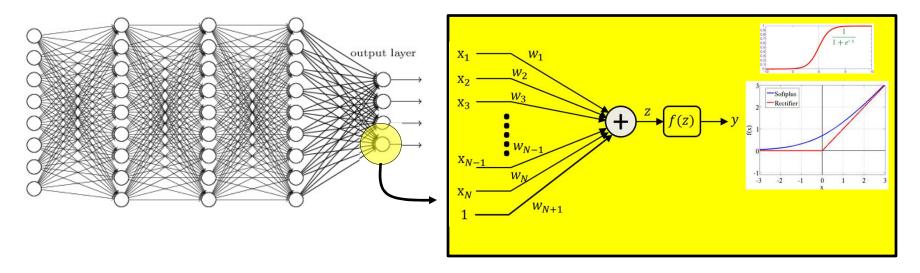
- Multi-layer perceptron
- A directed network with a set of inputs and outputs
 - No loops

Typical network



- We assume a "layered" network for simplicity
 - Each "layer" of neurons only gets inputs from the earlier layer(s) and outputs signals only to later layer(s)
 - We will refer to the inputs as the input layer
 - No neurons here the "layer" simply refers to inputs
 - We refer to the outputs as the output layer
 - Intermediate layers are "hidden" layers

The individual neurons



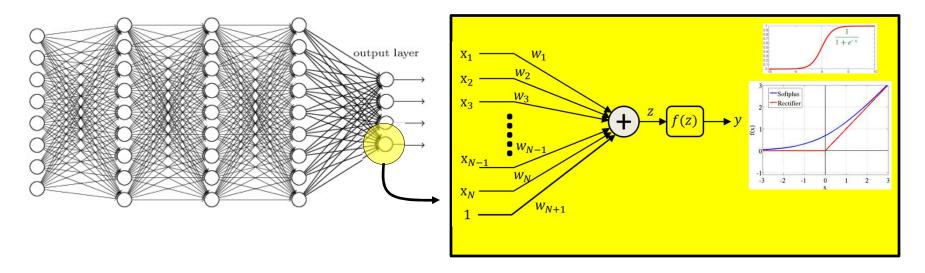
- Individual neurons operate on a set of inputs and produce a single output
 - Standard setup: A continuous activation function applied to an affine function of the inputs

$$y = f\left(\sum_{i} w_{i} x_{i} + b\right)$$

More generally: any differentiable function

$$y = f(x_1, x_2, \dots, x_N; W)$$

The individual neurons



- Individual neurons operate on a set of inputs and produce a single output
 - Standard setup: A continuous activation function applied to an affine

function of the inputs

$$y = f\left(\sum_{i} w_{i} x_{i} + b\right) \blacktriangleleft$$

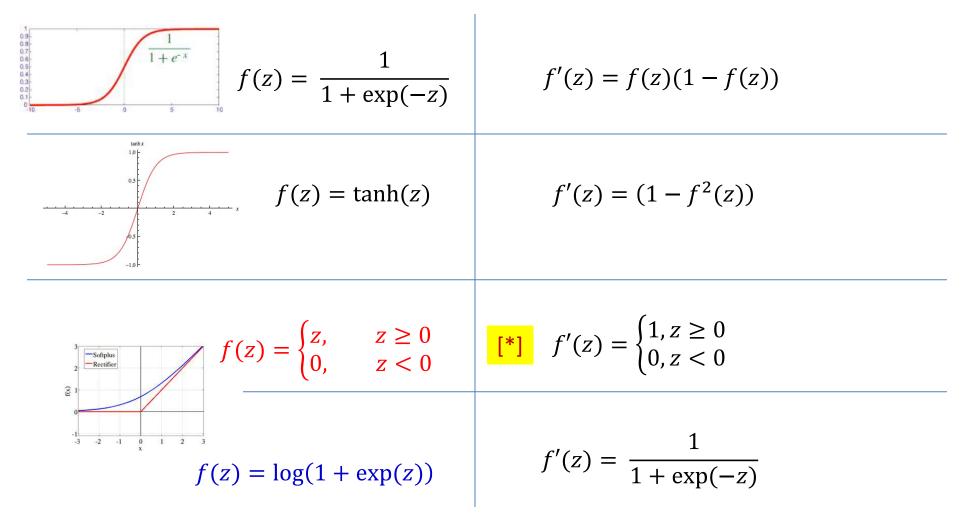
More generally: any differentiable function

$$y = f(x_1, x_2, \dots, x_N; W)$$

We will assume this unless otherwise specified

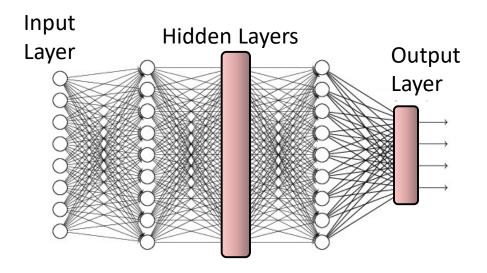
Parameters are weights w_i and bias b

Activations and their derivatives



Some popular activation functions and their derivatives

Vector Activations

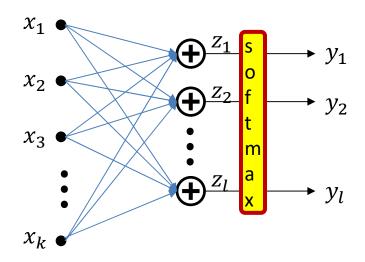


 We can also have neurons that have multiple coupled outputs

$$[y_1, y_2, ..., y_l] = f(x_1, x_2, ..., x_k; W)$$

- Function f() operates on set of inputs to produce set of outputs
- Modifying a single parameter in W will affect all outputs 59

Vector activation example: Softmax



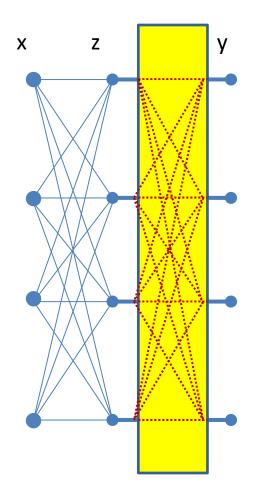
Example: Softmax vector activation

$$z_i = \sum_j w_{ji} x_j + b_i$$

$$y = \frac{exp(z_i)}{\sum_{j} exp(z_j)}$$

Parameters are weights w_{ji} and bias b_i

Multiplicative combination: Can be viewed as a case of vector activations



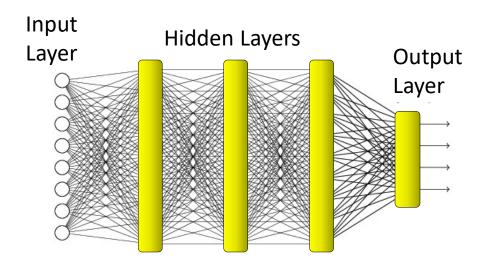
$$z_i = \sum_j w_{ji} x_j + b_i$$

$$y_i = \prod_l (z_l)^{\alpha_{li}}$$

Parameters are weights w_{ji} and bias b_i

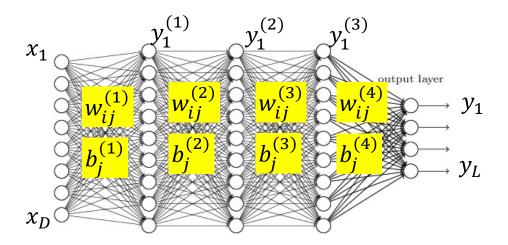
A layer of multiplicative combination is a special case of vector activation

Typical network



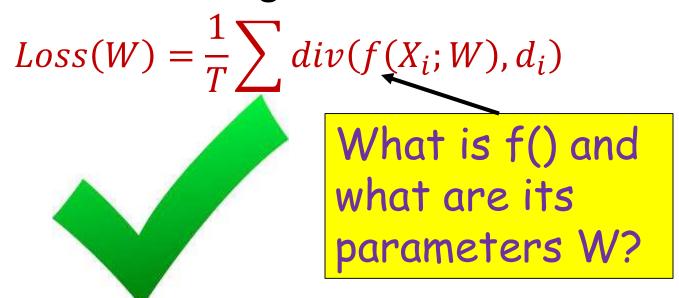
 In a layered network, each layer of perceptrons can be viewed as a single vector activation

Notation



- The input layer is the 0th layer
- We will represent the output of the i-th perceptron of the k^{th} layer as $y_i^{(k)}$
 - Input to network: $y_i^{(0)} = x_i$
 - Output of network: $y_i = y_i^{(N)}$
- We will represent the weight of the connection between the i-th unit of the k-1th layer and the jth unit of the k-th layer as $w_{i\,i}^{(k)}$
 - The bias to the jth unit of the k-th layer is $b_i^{(k)}$

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- Minimize the following function



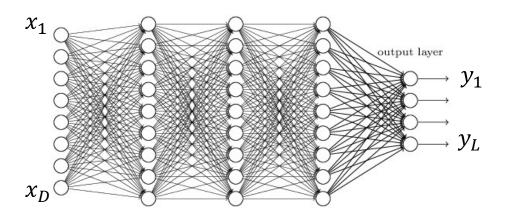
Given a training set of input-output pairs

$$(X_1, \underline{d_1}), (X_2, \underline{d_2}), \dots, (X_T, \underline{d_T})$$

What are these input-output pairs?

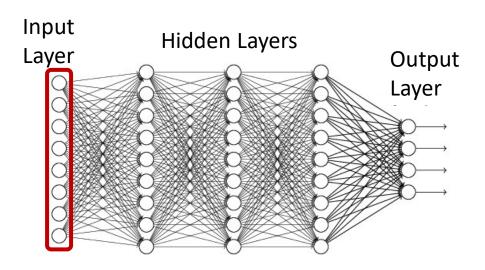
$$Loss(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

Input, target output, and actual output: Vector notation



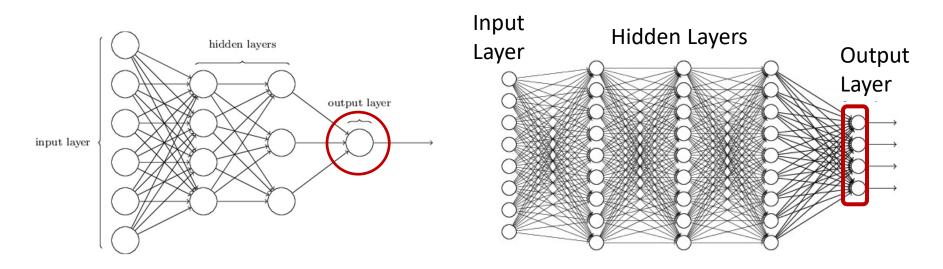
- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- $X_n = [x_{n1}, x_{n2}, ..., x_{nD}]^T$ is the nth input vector
- $d_n = [d_{n1}, d_{n2}, \dots, d_{nL}]^{\mathsf{T}}$ is the nth desired output
- $Y_n = [y_{n1}, y_{n2}, ..., y_{nL}]^T$ is the nth vector of *actual* outputs of the network
 - Function of input X_n and network parameters
- We will sometimes drop the first subscript when referring to a specific instance

Representing the input

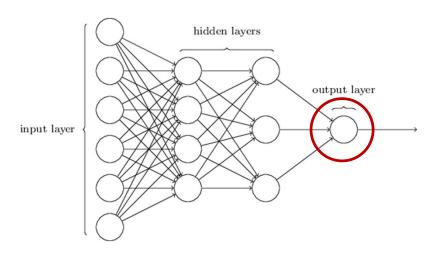


Vectors of numbers

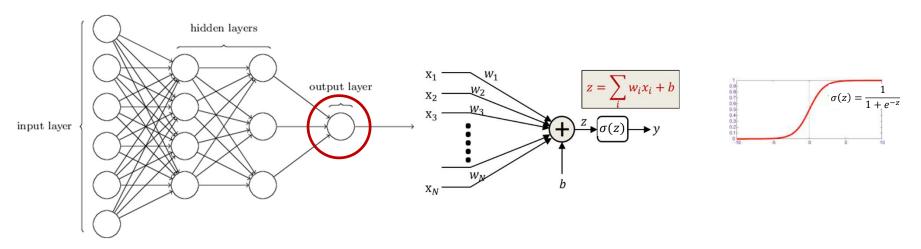
- (or may even be just a scalar, if input layer is of size 1)
- E.g. vector of pixel values
- E.g. vector of speech features
- E.g. real-valued vector representing text
 - We will see how this happens later in the course
- Other real valued vectors



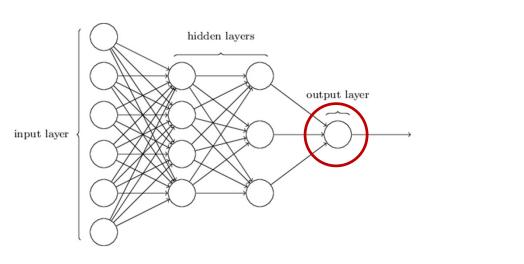
- If the desired *output* is real-valued, no special tricks are necessary
 - Scalar Output : single output neuron
 - d = scalar (real value)
 - Vector Output : as many output neurons as the dimension of the desired output
 - $d = [d_1 d_2 ... d_L]$ (vector of real values)

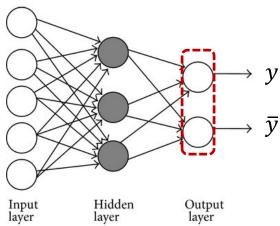


- If the desired output is binary (is this a cat or not), use a simple 1/0 representation of the desired output
 - -1 = Yes it's a cat
 - -0 = No it's not a cat.



- If the desired output is binary (is this a cat or not), use a simple 1/0 representation of the desired output
- Output activation: Typically a sigmoid
 - Viewed as the probability P(Y = 1|X) of class value 1
 - Indicating the fact that for actual data, in general a feature value X may occur for both classes, but with different probabilities
 - Is differentiable





- If the desired output is binary (is this a cat or not), use a simple 1/0 representation of the desired output
 - 1 = Yes it's a cat
 - 0 = No it's not a cat.
- Sometimes represented by two outputs, one representing the desired output, the other representing the negation of the desired output
 - Yes: \rightarrow [10]
 - No: → [0 1]
- The output explicitly becomes a 2-output softmax

Multi-class output: One-hot representations

- Consider a network that must distinguish if an input is a cat, a dog, a camel, a hat, or a flower
- We can represent this set as the following vector, with the classes arranged in a chosen order:

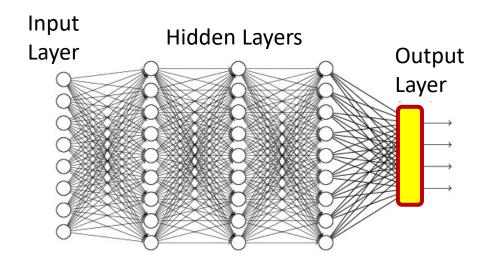
[cat dog camel hat flower]^T

For inputs of each of the five classes the desired output is:

cat: $[10000]^{T}$ dog: $[01000]^{T}$ camel: $[00100]^{T}$ hat: $[00010]^{T}$ flower: $[00001]^{T}$

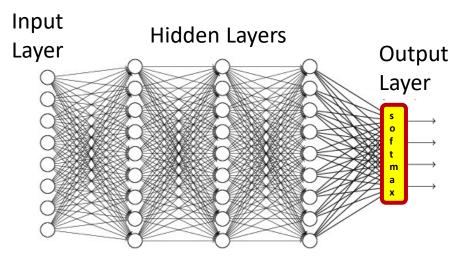
- For an input of any class, we will have a five-dimensional vector output with four zeros and a single 1 at the position of that class
- This is a one hot vector

Multi-class networks



- For a multi-class classifier with N classes, the one-hot representation will have N binary target outputs
 - The desired output d is an N-dimensional binary vector
- The neural network's output too must ideally be binary (N-1 zeros and a single 1 in the right place)
- More realistically, it will be a probability vector
 - N probability values that sum to 1.

Multi-class classification: Output



 Softmax vector activation is often used at the output of multi-class classifier nets

$$z_{i} = \sum_{j} w_{ji}^{(n)} y_{j}^{(n-1)}$$

$$y_i = \frac{exp(z_i)}{\sum_j exp(z_j)}$$

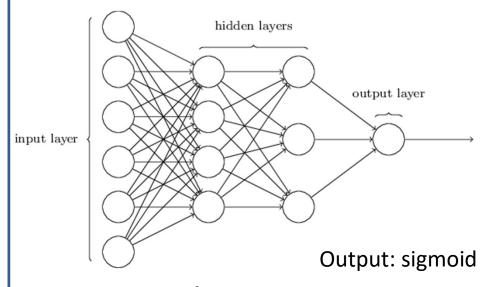
• This can be viewed as the probability $y_i = P(class = i|X)$

Inputs and outputs: Typical Problem Statement

- We are given a number of "training" data instances
- E.g. images of digits, along with information about which digit the image represents
- Tasks:
 - Binary recognition: Is this a "2" or not
 - Multi-class recognition: Which digit is this?

Typical Problem statement: binary classification

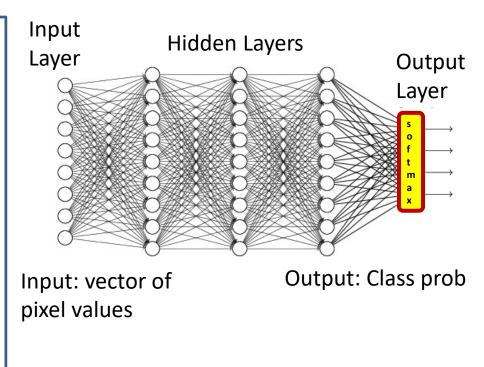
Training data



- Input: vector of pixel values
- Given, many positive and negative examples (training data),
 - learn all weights such that the network does the desired job

Typical Problem statement: multiclass classification

Training data



- Given, many positive and negative examples (training data),
 - learn all weights such that the network does the desired job

Problem Setup: Things to define

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- Minimize the following function

$$Loss(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

What is the divergence div()?

Problem Setup: Things to define

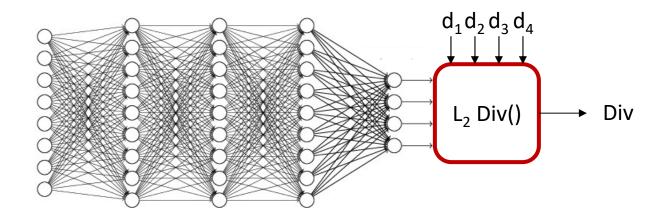
- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- Minimize the following function

$$Loss(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

What is the divergence div()?

Note: For Loss(W) to be differentiable w.r.t W, div() must be differentiable

Examples of divergence functions



• For real-valued output vectors, the (scaled) L_2 divergence is popular

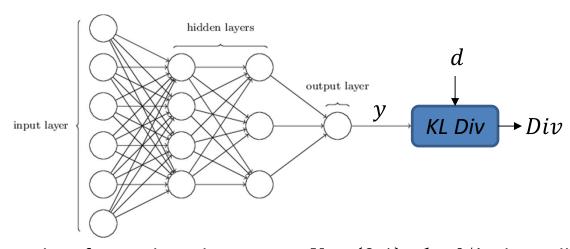
$$Div(Y,d) = \frac{1}{2}||Y - d||^2 = \frac{1}{2}\sum_{i}(y_i - d_i)^2$$

- Squared Euclidean distance between true and desired output
- Note: this is differentiable

$$\frac{dDiv(Y,d)}{dy_i} = (y_i - d_i)$$

$$\nabla_Y Div(Y,d) = [y_1 - d_1, y_2 - d_2, \dots]$$

For binary classifier



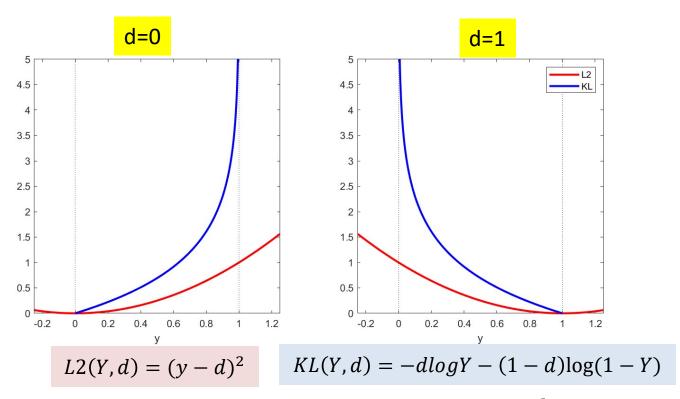
• For binary classifier with scalar output, $Y \in (0,1)$, d is 0/1, the Kullback Leibler (KL) divergence between the probability distribution [Y, 1-Y] and the ideal output probability [d, 1-d] is popular

$$Div(Y, d) = -dlogY - (1 - d)\log(1 - Y)$$

- Minimum when d = Y
- Derivative

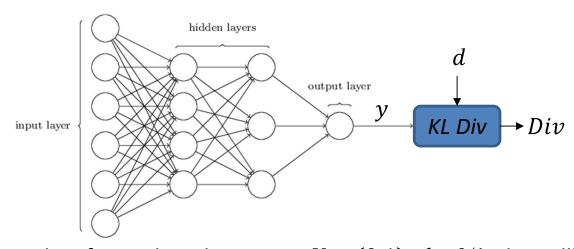
$$\frac{dDiv(Y,d)}{dY} = \begin{cases} -\frac{1}{Y} & \text{if } d = 1\\ \frac{1}{1 - Y} & \text{if } d = 0 \end{cases}$$

KL vs L2



- Both KL and L2 have a minimum when y is the target value of d
- KL rises much more steeply away from d
 - Encouraging faster convergence of gradient descent
- The derivative of KL is not equal to 0 at the minimum
 - It is 0 for L2, though

For binary classifier



For binary classifier with scalar output, $Y \in (0,1)$, $d \in (0,1)$, the Kullback Leibler (KL) divergence between the probability distribution [Y, 1 - Y] and the ideal output probability [d, 1-d] is popular

$$Div(Y, d) = -dlogY - (1 - d)\log(1 - Y)$$

- Minimum when d = Y
- Derivative

$$\frac{dDiv(Y,d)}{dY} = \begin{cases} -\frac{1}{Y} & \text{if } d = 1\\ \frac{1}{1-Y} & \text{if } d = 0 \end{cases}$$

$$\frac{dDiv(Y,d)}{dY} = \begin{cases} -\frac{1}{Y} & \text{if } d = 1\\ \frac{1}{1-Y} & \text{if } d = 0 \end{cases}$$

$$\frac{dDiv(Y,d)}{dY} = \begin{cases} -\frac{1}{Y} & \text{if } d = 1\\ \frac{1}{1-Y} & \text{if } d = 0 \end{cases}$$

$$\frac{dDiv(Y,d)}{dY} = \begin{cases} -\frac{1}{Y} & \text{if } d = 1\\ \frac{1}{1-Y} & \text{if } d = 0 \end{cases}$$

$$\frac{dDiv(Y,d)}{dY} = \begin{cases} -\frac{1}{Y} & \text{if } d = 1\\ \frac{1}{1-Y} & \text{if } d = 0 \end{cases}$$

$$\frac{dDiv(Y,d)}{dY} = \begin{cases} -\frac{1}{Y} & \text{if } d = 1\\ \frac{1}{1-Y} & \text{if } d = 0 \end{cases}$$

$$\frac{dDiv(Y,d)}{dY} = \begin{cases} -\frac{1}{Y} & \text{if } d = 0\\ \frac{1}{Y} & \text{if } d = 0 \end{cases}$$

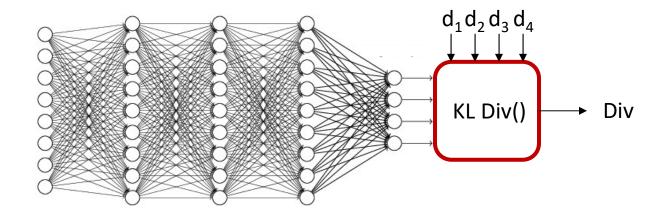
$$\frac{dDiv(Y,d)}{dY} = \begin{cases} -\frac{1}{Y} & \text{if } d = 0\\ \frac{1}{Y} & \text{if } d = 0 \end{cases}$$

$$\frac{dDiv(Y,d)}{dY} = \begin{cases} -\frac{1}{Y} & \text{if } d = 0\\ \frac{1}{Y} & \text{if } d = 0 \end{cases}$$

$$\frac{dDiv(Y,d)}{dY} = \begin{cases} -\frac{1}{Y} & \text{if } d = 0\\ \frac{1}{Y} & \text{if } d = 0 \end{cases}$$

Note: when y = d the derivative is not 0

For multi-class classification



- Desired output d is a one hot vector $[0\ 0\ ...\ 1\ ...\ 0\ 0\ 0]$ with the 1 in the c-th position (for class c)
- Actual output will be probability distribution $[y_1, y_2, ...]$
- The KL divergence between the desired one-hot output and actual output:

$$Div(Y, d) = \sum_{i} d_i \log \frac{d_i}{y_i} = \sum_{i} d_i \log d_i - \sum_{i} d_i \log y_i = -\log y_c$$

Derivative

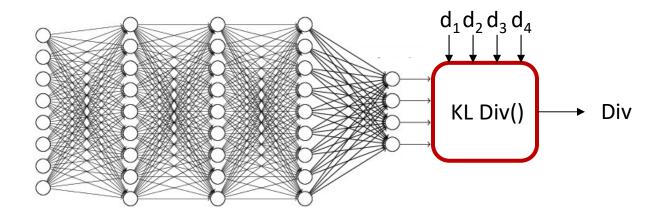
$$\frac{dDiv(Y,d)}{dY_i} = \begin{cases} -\frac{1}{y_c} & \text{for the } c - \text{th component} \\ 0 & \text{for remaining component} \end{cases}$$

$$\nabla_Y Div(Y, d) = \left[0 \ 0 \ \dots \frac{-1}{y_c} \dots 0 \ 0\right]$$

The slope is negative w.r.t. y_c

Indicates *increasing* y_c will *reduce* divergence

For multi-class classification



- Desired output d is a one hot vector $[0\ 0\ ...\ 1\ ...\ 0\ 0\ 0]$ with the 1 in the c-th position (for class c)
- Actual output will be probability distribution $[y_1, y_2, ...]$
- The KL divergence between the desired one-hot output and actual output:

$$Div(Y, d) = -\sum_{i} d_{i} \log y_{i} = -\log y_{c}$$

Note: when y = d the derivative is *not* 0

Even though div() = 0 (minimum) when y = d

$$\frac{dDiv(Y,d)}{dY_i} = \begin{cases} -\frac{1}{y_c} & \text{for the } c - \text{th component} \\ 0 & \text{for remaining component} \end{cases}$$

$$\nabla_Y Div(Y, d) = \left[0\ 0\ \dots \frac{-1}{\gamma_c} \dots 0\ 0\right]$$

The slope is negative w.r.t. y_c

Indicates *increasing* y_c will *reduce* divergence

KL divergence vs cross entropy

• KL divergence between d and y:

$$KL(Y, d) = \sum_{i} d_{i} \log d_{i} - \sum_{i} d_{i} \log y_{i}$$

Cross-entropy between d and y:

$$Xent(Y, d) = -\sum_{i} d_{i} \log y_{i}$$

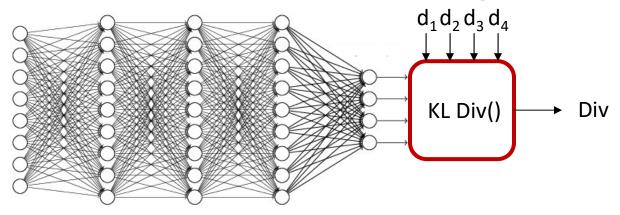
• The cross entropy is merely the KL - entropy of d

$$Xent(Y,d) = KL(Y,d) - \sum_{i} d_{i} \log d_{i} = KL(Y,d) - H(d)$$

- The W that minimizes cross-entropy will minimize the KL divergence

 - In fact, for one-hot d, H(d) = 0 (and KL = Xent)
- We will generally minimize to the cross-entropy loss rather than the KL divergence
 - The Xent is *not* a divergence, and although it attains its minimum when y=d, its minimum value is not 0

"Label smoothing"



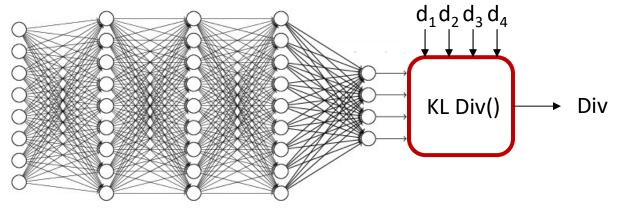
- It is sometimes useful to set the target output to $[\epsilon \ \epsilon \ ... \ (1-(K-1)\epsilon) \ ... \ \epsilon \ \epsilon \ \epsilon]$ with the value $1-(K-1)\epsilon$ in the c-th position (for class c) and ϵ elsewhere for some small ϵ
 - "Label smoothing" -- aids gradient descent
- The KL divergence remains:

$$Div(Y, d) = \sum_{i} d_{i} \log d_{i} - \sum_{i} d_{i} \log y_{i}$$

Derivative

$$\frac{dDiv(Y,d)}{dY_i} = \begin{cases} -\frac{1 - (K-1)\epsilon}{y_c} & \text{for the } c - \text{th component} \\ -\frac{\epsilon}{y_i} & \text{for remaining components} \end{cases}$$

"Label smoothing"



- It is sometimes useful to set the target output to $[\epsilon \ \epsilon ... (1 (K 1)\epsilon) ... \epsilon \ \epsilon \ \epsilon]$ with the value $1 (K 1)\epsilon$ in the c-th position (for class c) and ϵ elsewhere for some small ϵ
 - "Label smoothing" -- aids gradient descent
- The KL divergence remains:

$$Div(Y,d) = \sum_{i} d_{i} \log d_{i} - \sum_{i} d_{i} \log y_{i}$$
 the probabilities of all classes, including incorrect classes.

Derivative

Negative derivatives encourage increasing the probabilities of all classes, including incorrect classes! (Seems wrong, no?)

$$\frac{dDiv(Y,d)}{dY_i} = \begin{cases} -\frac{1 - (K-1)\epsilon}{y_c} & \text{for the } c - \text{th component} \\ -\frac{\epsilon}{y_i} & \text{for remaining components} \end{cases}$$

Problem Setup: Things to define

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- Minimize the following function

$$Loss(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

ALL TERMS HAVE BEEN DEFINED

Story so far

- Neural nets are universal approximators
- Neural networks are trained to approximate functions by adjusting their parameters to minimize the average divergence between their actual output and the desired output at a set of "training instances"
 - Input-output samples from the function to be learned
 - The average divergence is the "Loss" to be minimized
- To train them, several terms must be defined
 - The network itself
 - The manner in which inputs are represented as numbers
 - The manner in which outputs are represented as numbers
 - As numeric vectors for real predictions
 - As one-hot vectors for classification functions
 - The divergence function that computes the error between actual and desired outputs
 - L2 divergence for real-valued predictions
 - KL divergence for classifiers

Next Class

Backpropagation