HW2P2 Bootcamp

Logistics

- Early Submission is due tomorrow February 25th, 11:59 PM EST
 - Make sure to do the early Kaggle submission & the Canvas MCQ.
 - You need at least a 5.5% in classification, and 0.75 AUC in verification
- The on-time submission deadline is March 17th, 11:59 PM EST.
- HW2P2 is **significantly harder** than HW1P2. Models will be harder to develop, train, and converge. Please start early!
- For this homework, you are limited to **35 million parameters**.
 - Exceeding this limit will incur a penalty.
- Models must be written yourself and trained from scratch.

Problem Statement

• Face Classification

• Given an image, figure out which person it is.

Face Verification

• Given two images, figure out if they are the same person or not.

Face Classification

Face Verification

Face Verification

Returns cosine similarity between x_1 and x_2 , computed along *dim*.

$$ext{similarity} = rac{x_1 \cdot x_2}{\max(\|x_1\|_2 \cdot \|x_2\|_2, \epsilon)}$$

Workflow

- First train a strong classification model for the classification task.
- Then, for the verification task, use the model trained on classification.
 - take the penultimate features as feature embeddings of each image.
- You should additionally train verification-specific losses such as ArcFace, Triplet Loss to improve performance.

Architectures

- At this point, you should have basic familiarity with convolutions as taught in lecture.
- Now, how do we take convolutions and assemble them into a strong architecture?
 - Layers? Channel size? Stride? Kernel Size? Etc.
- We'll cover three architectures:
 - MobileNetV2 A fast, parameter-efficient model.
 - ResNet The "go-to" for CNNs.
 - ConvNeXt The state-of-the-art model.

General Architecture Flow

- CNN architectures are divided into stages, which are divided into blocks.
 - Each "stage" consists of (almost) equivalent "blocks"
 - Each "block" consists of a few CNN layers, BN, and ReLUs.
- To understand an architecture, we mostly need to understand its **blocks**.
- All that changes for blocks in different stages is the base # of channels

General Architecture Flow

- However, you do need to piece these blocks together into a final model.
- The general flow is like this:
 - Stem
 - Stage 1
 - Stage 2
 - ...
 - Stage n
 - Classification Layer

General Architecture Flow

- The stem usually downsamples the input by 4x.
- Some stages do downsample. If they do, generally, the first convolution in the stage downsamples by 2x.
- When you downsample by 2x, you usually increase channel dimension by 2x.
 - So, later stages have smaller spatial resolution, higher # of channels

- The goal of MobileNetV2 is to be parameter efficient.
- They do so by making extensive use of depth-wise convolutions and point-wise convolutions

A Normal Convolution

Image 4: A normal convolution with 8×8×1 output

• Considering just a single output channel

A Normal Convolution

Image 5: A normal convolution with 8×8×256 output

• Considering all output channels

A Normal Convolution (Another Diagram)

Fig. 2: Functional interpretation of 2D convolution (source)

• Considering a single output channel

Depth-wise Convolutions

- Shorthand for "Depth-wise separable convolutions"
- "Depth"-wise separable, because considering channels as "depth", perform convolutions on them **independently**

Depth-wise Convolutions (Another Diagram)

Fig. 3: Input volume (a) and filter (b) are convolved on a per-channel basis, resulting in (c) (source)

Depth-wise Convolutions (Video)

Point-wise Convolutions

- "Point"-wise convolutions because each pixel is considered independently
- Considering just a single output channel:

Image 7: Pointwise convolution, transforms an image of 3 channels to an image of 1 channel

Point-wise Convolutions

- "Point"-wise convolutions because each pixel is considered independently
- Considering all output channels:

Image 8: Pointwise convolution with 256 kernels, outputting an image with 256 channels

Summary

- A normal convolution mixes information from both different channels and different spatial locations (pixels)
- A depth-wise convolution only mixes information **over spatial locations**
 - Different channels do not interact.
- A point-wise convolution only mixes information over different channels
 - Different spatial locations do not interact

Summary

- A normal convolution mixes information from both different channels and different spatial locations (pixels)
- A depth-wise convolution only mixes information **over spatial locations**
 - Different channels do not interact.
- A point-wise convolution only mixes information over different channels
 - Different spatial locations do not interact
- Intuition:
 - A normal convolution can be divided into depth-wise and point convolutions

- Again, to understand an architecture, we mostly need to understand its **blocks**.
- All that changes for blocks in different stages is the base # of channels

MobileNetV2

- The core block of MobileNetV2 has three steps:
 - Feature Mixing
 - Spatial Mixing
 - Bottlenecking Channels

Fig. 6: Visualization of the intermediate feature maps in the inverted residual layer (source)

MobileNetV2: Feature Mixing

• A point-wise convolution that *increases the channel dimension* by an "expansion ratio"

MobileNetV2: Spatial Mixing

• A depth-wise convolution that communicates information over different spatial locations.

MobileNetV2: Bottlenecking Channels

• Point-wise convolution to reduce channel dimension by the same expansion ratio.

MobileNetV2: Code

- Go to code.
- This file will be made available, but will not have the code, just the comments.

ResNet

- Again, remember that to understand a paper, we just really need to understand its **blocks**.
- ResNet proposes 2 blocks: BasicBlock & BottleneckBlock
- The key point is residual connection
 - Actually, ResNet is older than MobileNetV2, so MobileNetV2 has this already

Figure 2. Residual learning: a building block.

ResNet: BasicBlock

- It's just a regular 3x3 convolution (then BN, ReLU), another 3x3 convolution (then BN).
- Then, a skip connection adding input and output, then ReLU.

ResNet: BottleneckBlock

- A bit more involved.
- A 256-channel input goes through a point-wise convolution, reducing channels to 64.
- Then, a 3x3 regular convolution maintains channels at 64.
- Then, a point-wise convolution expands channels back to 256.
- Finally, the residual connection.

ResNet: Overall Architecture

	layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer	
Stom	conv1 112×112		7×7, 64, stride 2					
Jiem			3×3 max pool, stride 2					
Stage 1	conv2_x	56×56	$\left[\begin{array}{c} 3{\times}3,64\\ 3{\times}3,64\end{array}\right]{\times}2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	
Stage 2	conv3_x	28×28	$\left[\begin{array}{c} 3\times3,128\\ 3\times3,128\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,128\\ 3\times3,128\end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$	
Stage 3	conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256\end{array}\right]\times6$	$\left[\begin{array}{c}1\times1,256\\3\times3,256\\1\times1,1024\end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$	
Stage 4	conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times3$	$\left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	
Classification Laver		1×1	average pool, 1000-d fc, softmax					
	FLOPs		1.8×10^{9}	3.6×10^{9}	3.8×10^{9}	7.6×10 ⁹	11.3×10^{9}	

Figure 2. Sizes of outputs and convolutional kernels for ResNet 34

ConvNeXt

- This is a very new paper, a state-of-the-art architecture.
- However, its intuitions are very similar to MobileNetV2.
- Again, remember that to understand a paper, we just really need to understand its blocks.
- Just a single block type for ConvNeXt
- Read the paper for details on stages/channel sizes, etc.
 - We recommend **ConvNeXt-T size** which is under the 35M parameter limit.

ConvNeXt: Block

ResNet Block

ConvNeXt Block

- A 7x7 depth-wise convolution.
- A point-wise convolution increasing # of channels
- A point-wise convolution decreasing # of channels
- Residual Connection

ConvNeXt

- A 7x7 depth-wise convolution.
- A point-wise convolution increasing # of channels
- A point-wise convolution decreasing # of channels
- Residual Connection

- A point-wise convolution increasing # of channels
- A 3x3 depth-wise convolution.
- A point-wise convolution decreasing # of channels
- Residual Connection

Spatial Mixing

ConvNeXt

- A 7x7 depth-wise convolution.
- A point-wise convolution increasing # of channels
- A point-wise convolution decreasing # of channels
- Residual Connection

- A point-wise convolution increasing # of channels
- A 3x3 depth-wise convolution.
- A point-wise convolution decreasing # of channels
- Residual Connection

ConvNeXt

- A 7x7 depth-wise
- A point-wise convolution reature Mixing increasing # of all
- A point-wise convolution decreasing # of channels
- Residual Connection

- A point-wise convolution increasing # of channels
- A 3x3 depth-wise convolution.
- A point-wise convolution decreasing # of channels
- Residual Connection

ConvNeXt

- A 7x7 depth-wise convolution.
- A point-wise convolution increasing # of channels
- A point-wise convolution decreasing # of channels
- Residual Connection

- A point-wise convolution increasing # of channels
- A 3x3 depth-wise convolution.
 - A point-wise convolution decreasing # of channels
 - Residual Connection

- So what changed? Some things did change.
- The depth-wise convolution in ConvNeXt is larger kernel size (7x7).

- So what changed? Some things did change.
- The depth-wise convolution in ConvNeXt is larger kernel size (7x7).
- The order of spatial mixing & feature mixing are flipped.
 - In ConvNeXt, depth-wise convolution operates on lower # of channels.
 - In MobileNetV2, operates on higher # of channels.
- Channel Expansion Ratio in ConvNeXt is 4, MobileNetV2 is 6.

- So what changed? Some things did change.
- The depth-wise convolution in ConvNeXt is larger kernel size (7x7).
- The order of spatial mixing & feature mixing are flipped.
 - In ConvNeXt, depth-wise convolution operates on lower # of channels.
 - In MobileNetV2, operates on higher # of channels.
- Channel Expansion Ratio in ConvNeXt is 4, MobileNetV2 is 6.
- ConvNeXt uses LayerNorm, MobileNetV2 uses BatchNorm.
 - Note: We recommend using BatchNorm for this homework regardless.
- ConvNeXt recommends training via AdamW, MobileNetV2 recommends SGD
 - Note: We recommend using SGD for this homework.

ResNet Block Co

ConvNeXt Block

- Note that ConvNeXt has fewer BN/ReLU
 - GELU is just more advanced ReLU

Others: Data Augmentation

- Data Augmentation is *extremely* important.
- You will find that even when using a larger/more advanced model, that model might have same/worse performance.
- That's because the larger model is severely overfitting. You should look into https://pytorch.org/vision/stable/transforms.html
 - Colorjitter, flipping, resized crops, affine, RandAugment, etc
- Try different things out.

Others: Monitoring Training vs Validation Acc

- The standard intuition of "overfitting" is if the training & validation gap is too large, you should stop training as it's overfitting.
- However, in modern DL, this intuition is not as relevant.
- XELoss != Accuracy
 - Model can keep improving after training accuracy hits 100%.
 - There is recent research that finds that on some problems, training accuracy hits 100% at epoch 10 while validation accuracy is <50%. Then, on epoch 1000, validation hits 100%.
- Of course, we can't train for that long, but train until validation stops improving.
 - Or just set a standard LR schedule/setup like "CosineAnnealingLR for 50 epochs" and just let it run. ← what I prefer to do.

Others: Extras

- There are *a lot* of different tricks to improving your CNN model.
- From the recent ConvNeXt paper:

	ConvNeXt-T/S/B/L
(and)training config	ImageNet-1K
(pre-)training config	224 ²
optimizer	AdamW
base learning rate	4e-3
weight decay	0.05
optimizer momentum	$\beta_1, \beta_2 = 0.9, 0.999$
batch size	4096
training epochs	300
learning rate schedule	cosine decay
warmup epochs	20
warmup schedule	linear
layer-wise lr decay [6, 10]	None
randaugment [12]	(9, 0.5)
label smoothing [65]	0.1
mixup [85]	0.8
cutmix [84]	1.0
stochastic depth [34]	0.1/0.4/0.5/0.5
layer scale [69]	1e-6
gradient clip	None
exp. mov. avg. (EMA) [48]	0.9999

Others: Extras

- There are *a lot* of different trick to improving your CNN model.
- From the recent ConvNeXt paper
- What we recommend trying first:
 - Label Smoothing (huge boost)
 - Stochastic Depth
 - EMA
 - DropBlock (paper)
 - Dropout before final classification layer
- Then you can try the others
- Check out "Bag of Tricks for Image Classification with Convolutional Neural Networks"
 - https://arxiv.org/abs/1812.01187

	ConvNeXt-T/S/B/L
	ImageNet-1K
(pre-)training config	224 ²
optimizer	AdamW
base learning rate	4e-3
weight decay	0.05
optimizer momentum	$\beta_1, \beta_2 = 0.9, 0.999$
batch size	4096
training epochs	300
learning rate schedule	cosine decay
warmup epochs	20
warmup schedule	linear
layer-wise lr decay [6, 10]	None
randaugment [12]	(9, 0.5)
label smoothing [65]	0.1
mixup [85]	0.8
cutmix [84]	1.0
stochastic depth [34]	0.1/0.4/0.5/0.5
layer scale [69]	1e-6
gradient clip	None
exp. mov. avg. (EMA) [48]	0.9999

Other Interesting Papers

- ResNeXt (2016)
 - <u>https://arxiv.org/pdf/1611.05431.pdf</u>
 - Generally a strict improvement to ResNet, but slower. It's like 3 lines of code changed.
- SENet (2017)
 - <u>https://arxiv.org/pdf/1709.01507.pdf</u>
 - Channel-wise attention in CNNs. It's like 20 lines of code.
- EfficientNet (2019)
 - <u>https://arxiv.org/pdf/1905.11946.pdf</u>
 - Optimized model scaling. Probably can hard code this with some effort.
- RegNet (2020)
 - <u>https://arxiv.org/pdf/2003.13678.pdf</u>
 - ResNet with optimized layer sizes. It's probably... 10 lines changed?
- ResNeSt (2020)
 - <u>https://arxiv.org/pdf/2004.08955.pdf</u>
 - ResNeXt on steroids + attention. I (we?) will be really impressed ☺
- NFNet (2021, SOTA) Former SOTA
 - <u>https://arxiv.org/pdf/2102.06171v1.pdf</u>
 - Quite doable actually

