HW2P2 Bootcamp

Logistics

* Early Submission is due tomorrow February 25th, 11:59 PM EST
* Make sure to do the early Kaggle submission & the Canvas MCQ.
* You need at least a 5.5% in classification, and 0.75 AUC in verification

* The on-time submission deadline is March 17t, 11:59 PM EST.

* HW2P2 is significantly harder than HW1P2. Models will be harder to
develop, train, and converge. Please start early!

* For this homework, you are limited to 35 million parameters.
* Exceeding this limit will incur a penalty.

* Models must be written yourself and trained from scratch.

Problem Statement

* Face Classification
e Given an image, figure out which person it is.

* Face Verification
* Given two images, figure out if they are the same person or not.

Face Classification

Classification
Linear Layer

Feature Extraction
Model

Logits

Softmax >

oo
=
© (7))
S 2@
Ko
= 29
S
2 a
©
()]
[

N-Class Probability

Face Verification

Feature Extraction
Model

oo
=
o
o
@
o
£
L
o
S
S
L d
®
o
L

: A similarity score

Cosine Similarity from-1to 1

Feature Extraction
Model

Feature Embedding

Face Verification

Feature Extraction
Model

oo
=
©
T

(]
2

£
L

()

S

=]
]

(1]

()}
[T

A similarity score
E> from-1to1l

Cosine Similarity

Feature Extraction
Model

Feature Embedding

CLASS torch.nn.CosineSimilarity(din=1, eps=1e-88) [SOURCE]

Returns cosine similarity between Ty and &g, computed along dim.

&Iy o

similarity = .
max (|12 - | 22(2,€)

Workflow

* First train a strong classification model for the classification task.

* Then, for the verification task, use the model trained on classification.
* take the penultimate features as feature embeddings of each image.

* You should additionally train verification-specific losses such as
ArcFace, Triplet Loss to improve performance.

Architectures

* At this point, you should have basic familiarity with convolutions as
taught in lecture.

* Now, how do we take convolutions and assemble them into a strong
architecture?

e Layers? Channel size? Stride? Kernel Size? Etc.

 We'll cover three architectures:
 MobileNetV2 — A fast, parameter-efficient model.
* ResNet — The “go-to” for CNNs.
e ConvNeXt — The state-of-the-art model.

General Architecture Flow

* CNN architectures are divided into stages, which are divided into
blocks.

e Each “stage” consists of (almost) equivalent “blocks”
* Each “block” consists of a few CNN layers, BN, and RelUs.

* To understand an architecture, we mostly need to understand its
blocks.

* All that changes for blocks in different stages is the base # of channels

General Architecture Flow

* However, you do need to piece these blocks together into a final
model.

* The general flow is like this:
* Stem
* Stage 1
* Stage 2
* Stage n
 Classification Layer

General Architecture Flow

* The stem usually downsamples the input by 4x.

* Some stages do downsample. If they do, generally, the first
convolution in the stage downsamples by 2x.

* When you downsample by 2x, you usually increase channel
dimension by 2x.
* So, later stages have smaller spatial resolution, higher # of channels

MobileNetV?2

* The goal of MobileNetV2 is to be parameter efficient.

* They do so by making extensive use of depth-wise convolutions and
point-wise convolutions

A Normal Convolution

3

Image 4: A normal convolution with 8x8x1 output

* Considering just a single output channel

A Normal Convolution

8

Image & A normal convolution with 8x8x256 output

* Considering all output channels

A Normal Convolution (Another Diagram)

* Considering a single output channel

Depth-wise Convolutions

e Shorthand for “Depth-wise separable convolutions”

* “Depth”-wise separable, because considering channels as “depth”,
perform convolutions on them independently

Depth-wise Convolutions (Another Diagram)

(€)

(b)

TRV RSB T e

(a)
Fig. 3: Input volume (a) and filter (b) are convolved on a per-channel basis, resulting in (c) (source)

i
|-

Depth-wise Convolutions (Video)

Point-wise Convolutions

* “Point”-wise convolutions because each pixel is considered
independently

e Considering just a single output channel:

Image 7 Pointwise convolution, transforms an image of 3 channels to an image of 1 channel

Point-wise Convolutions

* “Point”-wise convolutions because each pixel is considered
independently

* Considering all output channels:

Image &: Pointwise convolution with 256 kernels, outputting an image with 256 channels

summary

A normal convolution mixes information from both different channels
and different spatial locations (pixels)

* A depth-wise convolution only mixes information over spatial
locations
 Different channels do not interact.

* A point-wise convolution only mixes information over different
channels
* Different spatial locations do not interact

summary

A normal convolution mixes information from both different channels
and different spatial locations (pixels)

* A depth-wise convolution only mixes information over spatial
locations
 Different channels do not interact.

* A point-wise convolution only mixes information over different
channels
* Different spatial locations do not interact

* Intuition:
* A normal convolution can be divided into depth-wise and point convolutions

MobileNetV?2

* Again, to understand an architecture, we mostly need to understand
its blocks.

 All that changes for blocks in different stages is the base # of channels

MobileNetV?2

* The core block of MobileNetV2 has three steps:
* Feature Mixing
 Spatial Mixing
* Bottlenecking Channels

lué, Dwise

Fig. 6: Visualization of the intermediate feature maps in the inverted residual layer (source)

MobileNetV2: Feature Mixing

, Dwise

Fig. 6: Visualization of the intermediate feature maps in the inverted residual layer (source)

* A point-wise convolution that increases the channel dimension by an
“expansion ratio”

MobileNetV2: Spatial Mixing

lué, Dwise

Fig. 6: Visualization of the intermediate feature maps in the inverted residual layer (source)

* A depth-wise convolution that communicates information over
different spatial locations.

MobileNetV2: Bottlenecking Channels

se

Fig. 6: Visualization of the intermediate feature maps in the inverted residual layer (source)

* Point-wise convolution to reduce channel dimension by the same
expansion ratio.

MobileNetV2: Code

 Go to code.

* This file will be made available, but will not have the code, just the
comments.

ResNet

e Again, remember that to understand a paper, we just really need to
understand its blocks.

* ResNet proposes 2 blocks: BasicBlock & BottleneckBlock

* The key point is residual connection
e Actually, ResNet is older than MobileNetV2, so MobileNetV2 has this already

X

weight layer
F{xj ! relu

weight layer

X
identity

Flx)+x

Figure 2. Residual learning: a building block.

ResNet: BasicBlock

64-d

* It’s just a regular 3x3 convolution (then BN, RelLU), another 3x3
convolution (then BN).

* Then, a skip connection adding input and output, then RelLU.

ResNet: BottleneckBlock

256-d

1x1, 64
lrﬂu

3x3, 64
1rrﬂu

1x1, 256

e A bit more involved.

* A 256-channel input goes through a point-wise convolution, reducing
channels to 64.

* Then, a 3x3 regular convolution maintains channels at 64.
* Then, a point-wise convolution expands channels back to 256.
* Finally, the residual connection.

34-layer residual

Image

ResNet: Overall Architecture

Figure 2. Sizes of outputs and convolutional kernels for ResiMet 34

layer name | output size 18-layer l 3d-layer S0-layer | 1 -layer 152-layer
cony | 112112 Tx7, 64, siride 2
Stem | 33 max pool, stride 2
11, 64 1=1,64 =1, 64
., e 5
Stage 1 com2x | 56x36 [:’:2‘:] 2 [:x:'::]ﬂ 313,64 |3 3x3,64 |3 343,64 | %3
et ala 11,256 11,256 | 1%1,256
- . i . 1=1,128 11,128] I=1,128]
Ix3, 128 F=3 128
COnv3 X 28=28 »x2 =g I3, 128 | x4 Ix3, 128 | =4 Ix3, 128 | =B
Stage 2 33, 128 Sx3, 128 151,512 1%1,512 | 11,512 |
¢ 3 . 3 1=1, 256 1x1,256] [x1,256]
1%3,25 I3 25)
Stage 3 comvd x | 14x14 '1):'1'“: x2 1;": “: x6 || 3x3,256 |x6 || 3x3.256 |x23 || 3x3.256 |x36
Lo LT 1=1, 1024].-‘],IIEJ-_ lKl,HEJ_
5 = . 1=1,512 1=1,512 11,512
3. 512 5172
convi x = - %2 =3 Ax3, 512 | =3 Ix3. 512 | =3 Ix3, 512 | =3
Stage 4 sx | 7| s |22 || sease
o T 1=1,2048 1=1, 2048 =1, 2048
CIaSSIflcatlon Layer 1=1 ‘ . average pocl, 1000-d fe, soltmax . .
FLOPs 18x10" | 3.ex10” 3.8 10" | 76107 11.3% 107

ConvNeXt

* This is a very new paper, a state-of-the-art architecture.
* However, its intuitions are very similar to MobileNetV2.

e Again, remember that to understand a paper, we just really need to
understand its blocks.

e Just a single block type for ConvNeXt

* Read the paper for details on stages/channel sizes, etc.
* We recommend ConvNeXt-T size which is under the 35M parameter limit.

ConvNeXt: Block

ResNet Block ConvNeXt Block

256-d 96-d
Y k.

[1x1, 64] d7x7, 96

i

BM, RelLU LM
Y ¥

3x3, 64 1x1, 384

BN, RelU GELU

h 4

b
[1x1, 256 J 1x1

BN

¥
-
[éleLU

o -:ﬂ *+
=}

* A 7x7 depth-wise convolution.

* A point-wise convolution increasing # of channels
* A point-wise convolution decreasing # of channels
* Residual Connection

ConvNeXt vs MobileNetV2

ConvNeXt

* A 7x7 depth-wise
convolution.

* A point-wise convolution
increasing # of channels

* A point-wise convolution
decreasing # of channels

e Residual Connection

MobileNetV2

* A point-wise convolution
increasing # of channels

* A 3x3 depth-wise convolution.

* A point-wise convolution
decreasing # of channels

e Residual Connection

ConvNeXt vs MobileNetV2

ConvNeXt MobileNetV2
* A 7x7 depth-wise s * A point-wise convolution

: Patiasp,. : :
convolution. W increasing # of channels

* A point-wise convolution * A 3x3 depth-wise convolution.
increasing # of channels « A point-wise convolution

* A point-wise convolution decreasing # of channels
decreasing # of channels « Residual Connection

e Residual Connection

ConvNeXt vs MobileNetV2

ConvNeXt MobileNetV2

* A 7x7 depth-wise . A point-wise convolution
convolution. e@*“\ increasing # of channels

R\

* A point-wise convolution @ * A 3x3 depth-wise convolution.
increasing # of channels « A point-wise convolution

° A point-.wise convolution decreasing # of channels
decreasing # of channels « Residual Connection

e Residual Connection

ConvNeXt vs MobileNetV2

ConvNeXt MobileNetV2

* A 7x7 depth-wise * A point-wise convolution
convolution. increasing # of channels

* A point-wise convolb< * A 3x3 depth-wise convolution.
increasing # of channels « A point-wise convolution

* A point-wise convolution / decreasing # of channels
decreasing # of channels « Residual Connection

e Residual Connection

Extremely Similar!

ConvNeXt vs MobileNetV2: Differences

* So what changed? Some things did change.
* The depth-wise convolution in ConvNeXt is larger kernel size (7x7).

ConvNeXt vs MobileNetV2: Differences

* So what changed? Some things did change.
* The depth-wise convolution in ConvNeXt is larger kernel size (7x7).

* The order of spatial mixing & feature mixing are flipped.
* In ConvNeXt, depth-wise convolution operates on lower # of channels.
* In MobileNetV2, operates on higher # of channels.

e Channel Expansion Ratio in ConvNeXt is 4, MobileNetV?2 is 6.

ConvNeXt vs MobileNetV2: Differences

* So what changed? Some things did change.
* The depth-wise convolution in ConvNeXt is larger kernel size (7x7).

* The order of spatial mixing & feature mixing are flipped.
* In ConvNeXt, depth-wise convolution operates on lower # of channels.
* In MobileNetV2, operates on higher # of channels.

e Channel Expansion Ratio in ConvNeXt is 4, MobileNetV?2 is 6.

* ConvNeXt uses LayerNorm, MobileNetV2 uses BatchNorm.
* Note: We recommend using BatchNorm for this homework regardless.

* ConvNeXt recommends training via AdamW, MobileNetV2
recommends SGD
* Note: We recommend using SGD for this homework.

ConvNeXt vs MobileNetV2: Differences

ResNet Block ConvNeXt Block

d7x7,

1,

* Note that ConvNeXt has fewer BN/RelLU

* GELU is just more advanced RelLU

¥ by X
- - m))

96
se
1=1, 384
ELU
96
E

Others: Data Augmentation

* Data Augmentation is extremely important.

* You will find that even when using a larger/more advanced model,
that model might have same/worse performance.

* That’s because the larger model is severely overfitting. You should
look into https://pytorch.org/vision/stable/transforms.htm|
e Colorjitter, flipping, resized crops, affine, RandAugment, etc

* Try different things out.

https://pytorch.org/vision/stable/transforms.html

Others: Monitoring Training vs Validation Acc

* The standard intuition of “overfitting” is — if the training & validation gap is
too large, you should stop training as it’s overfitting.

e However, in modern DL, this intuition is not as relevant.

* XELoss != Accuracy
* Model can keep improving after training accuracy hits 100%.

* There is recent research that finds that on some problems, training accuracy hits
100% at epoch 10 while validation accuracy is <50%. Then, on epoch 1000, validation

hits 100%.
* Of course, we can’t train for that long, but train until validation stops
Improving.
e Or just set a standard LR schedule/setup like “CosineAnnealingLR for 50 epochs” and
just let it run. € what | prefer to do.

Others: Extras

* There are a lot of different tricks to improving your CNN model.

* From the recent ConvNeXt paper:

(pre-)training config

ConvNeXt-T/S/B/L
ImageNet-1K

2242
optimizer AdamW
base learning rate 4e-3
weilght decay 0.05
optimizer momentum 51, 82=0.9,0.999
batch size 4096
training epochs 300
learning rate schedule cosine decay
warmup epochs 20
warmup schedule linear
layer-wise Ir decay [6, 10] None
randaugment [12] (9, 0.5)
label smoothing [65] 0.1
mixup [85] 0.8
cutmix [84] 1.0
stochastic depth [34] 0.1/0.4/0.5/0.5
layer scale [69] le-6
gradient clip None
exp. mov. avg. (EMA) [48] (0.99949

Others: Extras

* There are a lot of different trick to improving
your CNN model.

* From the recent ConvNeXt paper

 What we recommend trying first:
e Label Smoothing (huge boost)
Stochastic Depth
EMA
DropBlock (paper)
Dropout before final classification layer

* Then you can try the others

* Check out “Bag of Tricks for Image Classification
with Convolutional Neural Networks”

 https://arxiv.org/abs/1812.01187

(pre-)training config

ConvNeXt-T/S5/B/L
ImageNet-1K
2242

optimizer

base learning rate

weight decay

optimizer momentum
batch size

training epochs

learning rate schedule
warmup epochs

warmup schedule
layer-wise Ir decay [6, 10]
randaugment [12]

label smoothing [65]
mixup [85]

cutmix [54]

stochastic depth [34]
layer scale [69]

gradient clip

exp. mov. avg. (EMA) [48]

AdamW
de-3
0.05

51, 32=0.9,0.999
4096
300
cosine decay
20
linear
None
(9, 0.5)
0.1
0.8
1.0
0.1/0.4/0.5/0.5
le-6
None
(.9999

Other Interesting Papers

« ResNeXt (2016)

» https://arxiv.org/pdf/1611.05431.pdf

+ Generally a strict improvement to ResNet, but slower. It's like 3 lines of code changed.
« SENet (2017)

» htips://arxiv.org/pdf/1709.01507.pdf

* Channel-wise attention in CNNs. It’s like 20 lines of code.
« EfficientNet (2019)

» https://arxiv.org/pdf/1905.11946.pdf

+ Optimized model scaling. Probably can hard code this with some effort.
+ RegNet (2020)

» htips://arxiv.org/pdf/2003.13678.pdf

* ResNet with optimized layer sizes. It's probably... 10 lines changed?
*+ ResNeSt (2020)

» htips://arxiv.org/pdf/2004.08955.pdf

* ResNeXt on steroids + attention. | (we?) will be really impressed ©
* NFNet (2021, SOTA) FormersoTA

» https://arxiv.org/pdf/2102.0617 1v1.pdf

* Quite doable actually

Layer Norm

Batch Norm

