
HW2P2 Bootcamp



Logistics

• Early Submission is due tomorrow February 25th, 11:59 PM EST
• Make sure to do the early Kaggle submission & the Canvas MCQ.

• You need at least a 5.5% in classification, and 0.75 AUC in verification

• The on-time submission deadline is March 17th, 11:59 PM EST.

• HW2P2 is significantly harder than HW1P2. Models will be harder to 
develop, train, and converge. Please start early!

• For this homework, you are limited to 35 million parameters.
• Exceeding this limit will incur a penalty.

• Models must be written yourself and trained from scratch.



Problem Statement

• Face Classification
• Given an image, figure out which person it is.

• Face Verification
• Given two images, figure out if they are the same person or not.



Face Classification

Feature Extraction 
Model

Fe
at

u
re

Em
b

e
d

d
in

g

Classification 
Linear Layer

N
-C

la
ss

 P
ro

b
ab

ili
ty

 
Lo

gi
ts

N
-C

la
ss

 
P

ro
b

ab
ili

ti
es

Softmax



Face Verification

Feature Extraction 
Model

Fe
at

u
re

Em
b

e
d

d
in

g

Feature Extraction 
Model

Fe
at

u
re

Em
b

e
d

d
in

g

Cosine Similarity
A similarity score 

from -1 to 1



Face Verification

Feature Extraction 
Model

Fe
at

u
re

Em
b

e
d

d
in

g

Feature Extraction 
Model

Fe
at

u
re

Em
b

e
d

d
in

g

Cosine Similarity
A similarity score 

from -1 to 1



Workflow

• First train a strong classification model for the classification task.

• Then, for the verification task, use the model trained on classification.
• take the penultimate features as feature embeddings of each image.

• You should additionally train verification-specific losses such as 
ArcFace, Triplet Loss to improve performance.



Architectures

• At this point, you should have basic familiarity with convolutions as 
taught in lecture.

• Now, how do we take convolutions and assemble them into a strong
architecture?
• Layers? Channel size? Stride? Kernel Size? Etc.

• We’ll cover three architectures:
• MobileNetV2 – A fast, parameter-efficient model.

• ResNet – The “go-to” for CNNs. 

• ConvNeXt – The state-of-the-art model.



General Architecture Flow

• CNN architectures are divided into stages, which are divided into 
blocks.
• Each “stage” consists of (almost) equivalent “blocks”

• Each “block” consists of a few CNN layers, BN, and ReLUs.

• To understand an architecture, we mostly need to understand its 
blocks.

• All that changes for blocks in different stages is the base # of channels



General Architecture Flow

• However, you do need to piece these blocks together into a final 
model.

• The general flow is like this:
• Stem

• Stage 1

• Stage 2

• …

• Stage n

• Classification Layer



General Architecture Flow

• The stem usually downsamples the input by 4x.

• Some stages do downsample. If they do, generally, the first 
convolution in the stage downsamples by 2x.

• When you downsample by 2x, you usually increase channel
dimension by 2x.
• So, later stages have smaller spatial resolution, higher # of channels



MobileNetV2

• The goal of MobileNetV2 is to be parameter efficient.

• They do so by making extensive use of depth-wise convolutions and 
point-wise convolutions



A Normal Convolution

• Considering just a single output channel



A Normal Convolution

• Considering all output channels



A Normal Convolution (Another Diagram)

• Considering a single output channel



Depth-wise Convolutions

• Shorthand for “Depth-wise separable convolutions”

• “Depth”-wise separable, because considering channels as “depth”,
perform convolutions on them independently



Depth-wise Convolutions (Another Diagram)



Depth-wise Convolutions (Video)



Point-wise Convolutions

• “Point”-wise convolutions because each pixel is considered 
independently

• Considering just a single output channel:



Point-wise Convolutions

• “Point”-wise convolutions because each pixel is considered 
independently

• Considering all output channels:



Summary

• A normal convolution mixes information from both different channels 
and different spatial locations (pixels)

• A depth-wise convolution only mixes information over spatial 
locations
• Different channels do not interact.

• A point-wise convolution only mixes information over different 
channels
• Different spatial locations do not interact



Summary

• A normal convolution mixes information from both different channels 
and different spatial locations (pixels)

• A depth-wise convolution only mixes information over spatial 
locations
• Different channels do not interact.

• A point-wise convolution only mixes information over different 
channels
• Different spatial locations do not interact

• Intuition:
• A normal convolution can be divided into depth-wise and point convolutions



MobileNetV2

• Again, to understand an architecture, we mostly need to understand
its blocks.

• All that changes for blocks in different stages is the base # of channels



MobileNetV2

• The core block of MobileNetV2 has three steps:
• Feature Mixing

• Spatial Mixing

• Bottlenecking Channels



MobileNetV2: Feature Mixing

• A point-wise convolution that increases the channel dimension by an 
“expansion ratio”



MobileNetV2: Spatial Mixing

• A depth-wise convolution that communicates information over 
different spatial locations.



MobileNetV2: Bottlenecking Channels

• Point-wise convolution to reduce channel dimension by the same
expansion ratio.



MobileNetV2: Code

• Go to code.

• This file will be made available, but will not have the code, just the 
comments.



ResNet

• Again, remember that to understand a paper, we just really need to 
understand its blocks.

• ResNet proposes 2 blocks: BasicBlock & BottleneckBlock

• The key point is residual connection
• Actually, ResNet is older than MobileNetV2, so MobileNetV2 has this already



ResNet: BasicBlock

• It’s just a regular 3x3 convolution (then BN, ReLU), another 3x3 
convolution (then BN).

• Then, a skip connection adding input and output, then ReLU.



ResNet: BottleneckBlock

• A bit more involved.

• A 256-channel input goes through a point-wise convolution, reducing 
channels to 64.

• Then, a 3x3 regular convolution maintains channels at 64.

• Then, a point-wise convolution expands channels back to 256.

• Finally, the residual connection.



ResNet: Overall Architecture

Stem

Stage 1

Stage 2

Stage 3

Stage 4

Classification Layer



ConvNeXt

• This is a very new paper, a state-of-the-art architecture.

• However, its intuitions are very similar to MobileNetV2.

• Again, remember that to understand a paper, we just really need to 
understand its blocks.

• Just a single block type for ConvNeXt

• Read the paper for details on stages/channel sizes, etc.
• We recommend ConvNeXt-T size which is under the 35M parameter limit.



ConvNeXt: Block

• A 7x7 depth-wise convolution.

• A point-wise convolution increasing # of channels

• A point-wise convolution decreasing # of channels

• Residual Connection



ConvNeXt vs MobileNetV2

ConvNeXt

• A 7x7 depth-wise 
convolution.

• A point-wise convolution 
increasing # of channels

• A point-wise convolution 
decreasing # of channels

• Residual Connection

MobileNetV2

• A point-wise convolution 
increasing # of channels

• A 3x3 depth-wise convolution.

• A point-wise convolution 
decreasing # of channels

• Residual Connection



ConvNeXt vs MobileNetV2

ConvNeXt

• A 7x7 depth-wise 
convolution.

• A point-wise convolution 
increasing # of channels

• A point-wise convolution 
decreasing # of channels

• Residual Connection

MobileNetV2

• A point-wise convolution 
increasing # of channels

• A 3x3 depth-wise convolution.

• A point-wise convolution 
decreasing # of channels

• Residual Connection



ConvNeXt vs MobileNetV2

ConvNeXt

• A 7x7 depth-wise 
convolution.

• A point-wise convolution 
increasing # of channels

• A point-wise convolution 
decreasing # of channels

• Residual Connection

MobileNetV2

• A point-wise convolution 
increasing # of channels

• A 3x3 depth-wise convolution.

• A point-wise convolution 
decreasing # of channels

• Residual Connection



ConvNeXt vs MobileNetV2

ConvNeXt

• A 7x7 depth-wise 
convolution.

• A point-wise convolution 
increasing # of channels

• A point-wise convolution 
decreasing # of channels

• Residual Connection

MobileNetV2

• A point-wise convolution 
increasing # of channels

• A 3x3 depth-wise convolution.

• A point-wise convolution 
decreasing # of channels

• Residual Connection

Extremely Similar!



ConvNeXt vs MobileNetV2: Differences

• So what changed? Some things did change.

• The depth-wise convolution in ConvNeXt is larger kernel size (7x7).



ConvNeXt vs MobileNetV2: Differences

• So what changed? Some things did change.

• The depth-wise convolution in ConvNeXt is larger kernel size (7x7).

• The order of spatial mixing & feature mixing are flipped.
• In ConvNeXt, depth-wise convolution operates on lower # of channels.

• In MobileNetV2, operates on higher # of channels.

• Channel Expansion Ratio in ConvNeXt is 4, MobileNetV2 is 6.



ConvNeXt vs MobileNetV2: Differences

• So what changed? Some things did change.

• The depth-wise convolution in ConvNeXt is larger kernel size (7x7).

• The order of spatial mixing & feature mixing are flipped.
• In ConvNeXt, depth-wise convolution operates on lower # of channels.

• In MobileNetV2, operates on higher # of channels.

• Channel Expansion Ratio in ConvNeXt is 4, MobileNetV2 is 6.

• ConvNeXt uses LayerNorm, MobileNetV2 uses BatchNorm.
• Note: We recommend using BatchNorm for this homework regardless.

• ConvNeXt recommends training via AdamW, MobileNetV2 
recommends SGD
• Note: We recommend using SGD for this homework.



ConvNeXt vs MobileNetV2: Differences

• Note that ConvNeXt has fewer BN/ReLU
• GELU is just more advanced ReLU

Use BatchNorm



Others: Data Augmentation 

• Data Augmentation is extremely important.

• You will find that even when using a larger/more advanced model, 
that model might have same/worse performance.

• That’s because the larger model is severely overfitting. You should
look into https://pytorch.org/vision/stable/transforms.html
• Colorjitter, flipping, resized crops, affine, RandAugment, etc

• Try different things out.

https://pytorch.org/vision/stable/transforms.html


Others: Monitoring Training vs Validation Acc

• The standard intuition of “overfitting” is – if the training & validation gap is 
too large, you should stop training as it’s overfitting.

• However, in modern DL, this intuition is not as relevant.

• XELoss != Accuracy
• Model can keep improving after training accuracy hits 100%.
• There is recent research that finds that on some problems, training accuracy hits 

100% at epoch 10 while validation accuracy is <50%. Then, on epoch 1000, validation 
hits 100%.

• Of course, we can’t train for that long, but train until validation stops 
improving.
• Or just set a standard LR schedule/setup like “CosineAnnealingLR for 50 epochs” and 

just let it run.  what I prefer to do.



Others: Extras

• There are a lot of different tricks to improving your CNN model.

• From the recent ConvNeXt paper:



Others: Extras

• There are a lot of different trick to improving 
your CNN model.

• From the recent ConvNeXt paper
• What we recommend trying first:

• Label Smoothing (huge boost)
• Stochastic Depth
• EMA
• DropBlock (paper)
• Dropout before final classification layer

• Then you can try the others
• Check out “Bag of Tricks for Image Classification 

with Convolutional Neural Networks”
• https://arxiv.org/abs/1812.01187



Other Interesting Papers

Former SOTA




