HW3P2 Bootcamp

Utterance to Phoneme Mapping using Sequence Models
Spring 2022

Aparajith Srinivasan

Thanks to Urvil Kenia for helping with the slides and ablation.

Logistics

* Early submission is due Saturday March 26, 11:59PM ET
* Kaggle submission a with Lev. Dist <= 30
* Canvas MCQ

* On time submission deadline: April 7t", 11:59PM ET

* This part may not take time as much as HW2P2 for training but the
high cut-off will be significantly harder

e Constrains:
* No attention

13

Problem at hand

Input Utterance MFCC

MODEL

|:> [IBI’ lIHI’ IKI’ ISHI’ IAI]

Sequence of Phonemes

Data and Task

* Features: Same as HW1P2 (13D)
 Labels: Order synchronous but not time synchronous

* Should output sequence of phonemes oy - ~
« [‘B’, ‘IH’, ’K’, ‘SH’, ‘A’] (precisely the indexes) : ¥ A

e Loss: CTCLoss W WO K OB OE N E
. o t 1 P Y F o
 Metric: mean Levenshtein distance 0 B Bl 0B B i B R

e Can import (given in starter notebook)

* Sequence of Phonemes -> String and then calculate distance (Use PHONEMES
and PHONEMES_ MAP)

Batch of Variable Length Inputs: Padding

* HW1, HW?2: Equal length inputs

* HW3: Variable Length

segquences

* Steps:

* Padding
e Packing

Ref: 11785 Fall 21 Bootcamp

Batch of Variable Length Inputs: Padding

* Padding

Padded to equal lengths

Need to store unpadded lengths as well.
Have the variables lengths_x, lengths_y in
the starter notebook

Ref: 11785 Fall 21 Bootcamp

Batch of Variable Length Inputs: Padding

* Padding

Padded to equal lengths

Need to store unpadded lengths as well.

Have the variables lengths_x, lengths_y in (B * 13) 9 (B T 13)
the starter notebook) 2 r b

Ref: 11785 Fall 21 Bootcamp

Batch of Variable Length Inputs: Padding

* Padding

Padded to equal lengths

Need to store unpadded lengths as well.

Have the variables lengths_x, lengths_y in (B % 13) N (B T 13)
the starter notebook ’ r

* Not for the whole dataset (instead we pack after

.

Ref: 11785 Fall 21 Bootcamp

Batch of Variable Length Inputs: Packing

Element 0 Element 1 Element 2 Element 3

Timesteps
(Dimension 0)
3

List of Tensors to be packed, Each has same number of features but different time steps,

Figure 2: List of tensors we want to pack

Element 2 Element 0 Element 1 Element 3

0 J
Timesteps

(Dimension 0)

Tensors sorted in descending order based on the number of time steps in each sample.

Figure 3: First we sort the list in a descending order based on number of timesteps in each

Ref: 11785 Fall 21 Bootcamp

Batch of Variable Length Inputs: Packing

Element 0 Element 1 Element 2 Element 3

— o .. ‘v A “ Features

(Dimension 1)

Timesteps
(Dimension 0)

‘ 0" time-step from
’ each sample in the list

List of Tensors to be packed, Each has same number of features but different time steps.

0
0
0
L S
1
1 l 1% time-step from
1 " each sample in the list
Figure 2: List of tensors we want to pack — .
Timesteps 2 o
(Dimension 0)) L
Element 2 Element 0 Element 1 Element 3 2 ’
0 0 : 3 =
1 3 3 __J”
2 Timesteps 4 ;
(Dimension 0) a I
s —
b 6 =
Tensors sorted in descending order based on the number of time steps in each sample.
Final 2d Packed Tensor

Figure 3: First we sort the list in a descending order based on number of timesteps in each

Figure 4: Final Packed 2d Tensor

Ref: 11785 Fall 21 Bootcamp

Parts of a Sequence Model

Embedding > Sequence . Classification
Layer Model Layer

Embedding Layer

e Optional but recommended
* Used to increase/decrease the dimensionality of the input

Embedding Layer

e Optional but recommended
* Used to increase/decrease the dimensionality of the input

* Eg. In NLP, 10k vocabulary represented as 1 hot vectors with 10k dim

Shape
10,000 x 1

‘deep’

0
1
0

0
0

‘neural’

0

0

0.2

1

1

0.7

‘net’

0.3
0.5

0.4

Real valued
vectors

0.2

1.2

0.6

Shape
emb_dimx1

Embedding Layer

e Optional but recommended
* Used to increase/decrease the dimensionality of the input

e Our task:
* Input dim =13
* Expand to emb_dim > 13 for feature extraction

L

13

Ref: HW1P2 Write-up

Embedding Layer: Convld Layers

* Consider the below as an input having 3 features at each time instant

Time steps 2

<-- Features

Embedding Layer: Convld Layers

* We can use Convolution to which increases the channels of the input
as we go deeper.

Embedding Layer: Convld Layers

* We can use Convolution to which increases the channels of the input
as we go deeper.

* No. Filters=5

* Kernel=3; Padding=1; Stride=1
* Kernel=5; Padding= 2; Stride=1
(Or anything similar)

Embedding Layer: Convld Layers

* We can use Convolution to which increases the channels of the input
as we go deeper.

* No. Filters=5

* Kernel=3; Padding= 1; Stride= 1 3D -> 5D
* Kernel=5; Padding= 2; Stride=1

(Or anything similar)

Embedding Layer: Convld Layers

e Qur input is of shape (B, T, 13) (after padding). How can we change it
to (B, T, 64) ?

Assuming batch_first = True (You
may also have it as (T, B, 13)

Embedding Layer: Convld Layers

e Our input is of shape (B, T, 13) (after padding). How can we change it
to (B, T, 64) ?

* Transpose/Permute: (B, T, 13) = (B, 13, T) which makes #channels =
13 (Conv1ld)

* Apply convolution (B, 13, T) = (B, 64, T)

* Transpose/Permute: (B, 64, T) =2 (B, T, 64) (pack and pass to
LSTM/GRU)

e Note: This is done in the forward function

Assuming batch_first = True (You
may also have it as (T, B, 13)

Embedding Layer: Convld Layers

If stride > 1, we effectively reduce the time steps

=\

0~

Strige

Embedding Layer: Convld Layers

e Stride > 1 reduces computation for LSTM and training is faster.
* However, too much reduction in time steps will lead to loss of
information (we don’t recommend downsampling more than 4x)

Embedding Layer: Convld Layers

e Stride > 1 reduces computation for LSTM and training is faster.
* However, too much reduction in time steps will lead to loss of
information (we don’t recommend downsampling more than 4x)

* Note: Stride > 1 alters number of time steps. You need to change

lengths_x accordingly
e Use convolution formula (X - K + 2*P)//S (or)
e Clamp lengths to length of embedding (torch function)

Embedding Layer: Convld Layers

* You can try convolution layers based on
residual blocks

* Our observation: Deeper embedding }
layers without skip connections are not so weight layer
fruitful Fix) — h'tlrjlzr

* Hint: Remember HW2P2! o

F(x)+ x

https://www.cv-foundation.org/openaccess/content cvpr 2016/papers/He Deep Residual Learning CVPR 2016 paper.pdf

X
identity

Sequence Model

e Can use RNN, GRU, LSTM (recommended) from torch.nn

http://colah.github.io/posts/2015-08-Understanding-L STMs/

Sequence Model

* Important parameters/hyper parameters in nn.LSTM()
" jnput_size (13 or emb_size)
= hidden dim
" num_layers
= dropout
= bidirectional

= Note: when bidirection = True, LSTM outputs a shape of hidden dim in the
forward direction and hidden _dim in the backward direction
(in total, 2*hidden_dim)

Classification Layer

* Same as HW1P2
e Output from the sequence model goes to the classification layer

* Variations

* Deeper

* Wider
Different activations
Dropout

Hyperparameters and Regularization

* In this HW,
ARCHITECTURES >> HYPERPARAMETERS

* Don't stick with one architecture and vary the hyperparameters

*** The following suggestions might or might not work.
You may want to run a proper ablation study as
suggested in the previous homeworks***

Hyperparameters and Regularization

e Cepstral Normalization:
X =2 (X —mean)/std

* Different weight initialization (for Conv and Linear layers)
* Weight decay with optimizer

Hyperparameters and Regularization

* Scheduler is very important

* ReducelLRonPlateau (Most of our ablation)
* Lev distance might start to oscillate at lower values
* Can have a somewhat higher patience

* Cosine Annealing
* Try with higher number of epochs

Hyperparameters and Regularization

* Dropout is key

* Can use dropout in all the 3 layers: Embedding, Sequence model and
classification

* You can also start with a small dropout rate and increase after the model gets
trained

* Locked Dropout for LSTM layer

Hyperparameters and Regularization

» Addition of Noise (only during
training)
* Gaussian Noise
 Gumbel Noise

* Need not add to all samples.
Implement your module
AddNoise(nn.module) in such a
way that it adds noise to
random inputs

T T
=0, 0%=0.2, == -
H=0, 02210, ==
HI=0, 02%=5.0,
H==2, 0?=0.5, ==

~ 0.6

|

K
So.
0.0 —
P T 1 P RS AT SO N SRS NS S T ST S NS)
5 -4 -3 -2 -1 0 1 2 3 4 5

X
https://en.wikipedia.org/wiki/Normal distribution

0.18 |- /7
,‘/ .’1‘7\‘\“\
[\

15 20

https://en.wikipedia.org/wiki/Gumbel distribution

Hyperparameters and Regularization

e Torch Audio Transforms [docs]

]
o

freq_bin

200

200

175

150

125

100

* Time Masking

* Frequency Masking

Original

150
frame

Masked along time axis

frame

200

250

Original

frame

200 Masked along frequency axis

175

150

Hyperparameters and Regularization

e Beam width

* Higher beam width may give better results (advisable to keep test beam
width below 50 for computation purposes)

* Sometimes bw =1 (greedy search) also gives good results

* Tip: Don’t use a high beam width while validating in each epoch (time per
epoch will be higher)

Final Tips

* More work by varying architectures

* Make proper ablation by varying just one parameter/hyperparameter
to observe its influence

* Have multiple notebooks running:

* Colab Pro users: 1 with high ram and 3 with standard ram
 AWS: Can run multiple notebooks when some GPU memory is left

* Private leader board is worse (gives at least 0.1 higher distance than
public)

Final Tips

* Make sure to split work within your study groups

Group 52 ablation ¢ =) ~ 8 m
File Edit View Insert Format Data Tools Extensions Help Last edit was made 9 days ago by John McCormick <
-~ 00% v $ % o .00 123v Avial - 12 - BISA ¢H cilvldvYy oc@EM@E Y-S ~ B
A1 -
A 3 c) 3 F [H

1 Name Dataset Context Layers BatchNorm Dropoutrate Activation Ir
2 Example .Aparajilh Fulli25% 16 [429, 512, 512, 256, 40] All layers 0.25 RelLU 0.001
s 1 John M Full 28 [741, 2048, 1024, 512, 256, 40] All layers 0.1 ReLU 0.001 @
42 Bobby Full 24 (637, 1024, 512, 256, 40] Every other layer 0.1 ReLU 0.005
5 3 Bobby Full 24 (637, 1024, 512, 256, 40] Every other layer 0.2 ReLU 0.005 2]
6 4 Bobby Full 24 [637, 2048, 1024, 512, 256, 40] Every other layer 0.1 RelLU 0.005
75 Jon D Full 16 [429, 1024, 512, 256, 40] All layers 0.1 RelLU 0.001)
& 6 Bobby Full 48 [1261, 8192, 4096, 2048, 1024, 512, 256, 40] All layers 0.2 RelLU 0.005
° 7 John M Full 32 [845, 8192, 4096, 2048, 1024, 512, 256, 40] All layers 0.1 ReLU 0.005
0 8 Jon D Full 24 (637, 1024, 512, 256, 40] All layers 0.1 ReLU 0.001
= N
12 9A1 Bobby 8192 24 (637, 4096, 2048, 1024, 512, 40] All layers 0.3 ReLU 0.001
13 9A2 Bobby 8192 24 (637, 4096, 2048, 1024, 512, 40] All layers 0.3 ReLU 0.001
14 9A3 Bobby 8192 24 [637, 4096, 2048, 1024, 512, 40] All layers 0.3 RelLU 0.001
15 9A4 Bobby Full 24 [637, 4096, 2048, 1024, 512, 40] All layers 0.3 RelLU 0.001
1
17 9B.1 John M 8192 32 [xxx, 4096, 2048, 1024, 512, 40] All Layers 0.3 RelLU 0.001
18 9B.2 John M 8192 24 [xxx, 4096, 2048, 1024, 512, 40] All Layers 0.4 ReLU 0.001
19 9B.3 John M 8192 24 [xxx, 4096, 2048, 1024, 512, 40] All Layers 0.4 ReLU 0.001
20 9B.4 John M 8192 24 [xxx, 4096, 2048, 1024, 512, 40] All Layers 0.2 ReLU 0.001
21
22 9C.1 Jon D 8192 16 [429, 4096, 2048, 1024, 512, 40] All Layers 0.3 RelLU 0.001
23 9C.2 Jon D 8192 16 [429, 4096, 2048, 1024, 512, 40] All Layers 0.3 Leaky ReLU 0.001
2 9C3 Jon D 8192 16 [429, 4096, 2048, 1024, 512, 40] All Layers 0.3 Leaky ReLU 0.001
2
26 9D.1 John M 8192 24 [xxx, 4096, 2048, 1024, 256, 40] All Layers 0.3 RelLU 0.001

e Start Early - High cut-off is tougher than last homework

Medium Cut-off Architecture

Medium Cut-off Architecture

* Embedding: 2 Convld Layers (Final emb size 256)

* Sequence model: 4 layer Bi-directional LSTM with dropout (256)
e Classification: 2 Linear layers (2048, 41)

e Optimizer: Adam (Ir = 2e-3) with a scheduler

* Epochs: 50-100

 Beam width: 30 - 50 (Only for testing)

All the best!

