HW3P1

RNN, GRU, CTC, and Greedy / Beam Search

By Diksha Agarwal(Spring 2022)

RNN Cell Forward / Backward

61\% m ht _— tanh(Wiha?t + bz'h + Whhht—l + bhh)
~ \‘/

RNN Phoneme Classifier

RNN Cell Linear RNN Cell Linear
Forward Forward Backward Backward

GRU Cell Forward / Backward

gt
e 2 D) T> hit] r,=o(W,x, +b, + W, h,_, +b;)
” erw[t] L ,I\ . Z, = U(Wizxt + biz + thht—l + bhz)
201 | 22 A
-] o] -] n, = tanh(W, x, +b;, +1, ® (W,,,h, ; +by,))
\))
" y h,=(1-2z)®n +z ®h,_,

https://colah.qithub.io/posts/2015-08-Backprop

https://colah.github.io/posts/2015-08-Backprop

GRU Inference

|

/ Linear Layer

CTC - mytorch/ctc.py

def targetWithBlank(self, target):
"""Extend target sequence with blank.

def forwardProb(self, logits, extSymbols, skipConnect):
"""Compute forward probabilities.

def backwardProb(self, logits, extSymbols, skipConnect):
"""Compute backward probabilities.

def postProb(self, alpha, beta):
"""Compute posterior probabilities.

FORWARD ALGORITHM (with blanks)

[Sext, skipconnect] = extendedsequencewithblanks (S)
N = length(Sext) # Length of extended sequence

#The forward recursion
First, at t 1

alpha(l,1) = y(1,Sext(l)) #This is the blank
alpha(l,2) = y({l,8ext(2))
alpha(1,3:N) =0

fior © = 2T

alpha(t,1l) = alpha(t-1,1)*y(t,Sext(1l))
for i = 2:N
alpha(t,i) = alpha(t-1,i-1) + alpha(t-1,1))

if (skipconnect(i))
alpha(t,i) += alpha(t-1,i-2)
alpha(t,i) *= y(t,Sext(i))

Without explicitly composing the output table

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

BACKWARD ALGORITHM WITH BLANKS

[Sext, skipconnect] = extendedsequencewithblanks(S)
N = length(Sext) # Length of extended sequence

#The backward recursion
First, at t = T
beta (T,N) =1
beta (T,N-1) = 1
beta(T,1:N-2) = 0
for t = T-1 downto 1
beta (t,N) = beta(t+1,N)*y(t+1,Sext (N))
for i = N-1 downto 1
beta(t,i) = beta(t+1,1i)*y(t+1,Sext(i))
if (i<N-2 && skipconnect (i+2))
beta(t,i) += beta(t+1,i+2)*y(t+1,Sext (i+2))

+ beta(t+1,i+1)) *y(t+1, Sext (i+1))

Without explicitly composing the output table

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

COMPUTING POSTERIORS

[Sext, skipconnect] = extendedsequencewithblanks (S)
N = length(Sext) # Length of extended sequence

#Assuming the forward are completed first
alpha = forward(y, Sext) # forward probabilities computed
beta = backward(y, Sext) # backward probabilities computed

#Now compute the posteriors
for & = 1T

sumgamma (t) = 0

for i = 1:N
gamma (t,i) = alpha(t,i) * beta(t,i)
sumgamma (t) += gamma (t, 1)

end

for i=1:N
gamma (t,i) = gamma(t,i) / sumgamma (t)

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

COMPUTING DERIVATIVES

[Sext, skipconnect] = extendedsequencewithblanks (S)
N = length(Sext) # Length of extended sequence

#Assuming the forward are completed first
alpha forward(y, Sext) # forward probabilities computed
beta backward(y, Sext) # backward probabilities computed

Compute posteriors from alpha and beta
gamma = computeposteriors (alpha, beta)

#Compute derivatives
for t = L&T
dy(t,1:L) = 0 #Initialize all derivatives at time t to O
for i = 1:N
dy(t,Sext (i)) -= gamma(t,i) / y(t,Sext(i))

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

CTC loss - mytorch/ctc_loss.py

def forward(self, logits, target, input_lengths, target_lengths):
WHUCTC loss forward.
Computes the CTC Loss.

def backward(self):
RERCIC loss backard.

This must calculate the gradients wrt the parameters and return the
derivative wrt the inputs, xt and ht, to the cell.

for b in range(B):

B o e e e e >
Computing CTC Loss for single batch

Process:

Truncate the target to target length

Truncate the logits to input length

i Extend target sequence with blank

Compute forward probabilities

Compute backward probabilities

Compute posteriors using total probability function

Compute expected divergence and store it in totallLoss
<{———————————————————————————— ——

B o e e >

Your Code goes here
raise NotImplementedError

for b in range(B):

2 S ———— >
Computing CTC Derivative for single batch

Process:

Truncate the target to target length

Truncate the logits to input length

Extend target sequence with blank

Compute derivative of divergence and store them in dY
e ————————————

———————————————————————— >

Your Code goes here
raise NotImplementedError

Beam Search - mytorch/search.py

def BeamSearch(SymbolSets, y_probs, Beamwidth):
def GreedySearch(SymbolSets, y_probs): """Beam Search.
""iGreedy Search.

SymbolSets: list
all the symbols (the vocabulary without blank)

SymbolSets: list

all the symbols (the vocabulary without blank) vinEobes (# of symbolse sy Seqelengthy batchusize)

Your batch size for part 1 will remain 1, but if you plan to use your

y_probs: (# of symbols + 1, Seq_length, batch_size) implementation for part 2 you need to incorporate batch_size.
Your batch size for part 1 will remain 1, but if you plan to use your
implementation for part 2 you need to incorporate batch_size. BeamwWidth: int

width of the beam.

Returns
______ Return
bestPath: str
the symbol sequence with the best path score (forward probability)

forward_path: str
the corresponding compressed symbol sequence i.e. without blanks
or repeated symbols.

mergedPathScores: dictionary

forward_prob: scalar (float) all the final merged paths with their scores.

the forward probability of the greedy path

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1

NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
InitializePaths (SymbolSet, y[:,0])

Subsequent time steps
for t, = 12T
Prune the collection down to the BeamWidth

PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore =
Prune (NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,

NewBlankPathScore, NewPathScore, BeamWidth)
First extend paths by a blank

NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank (PathsWithTerminalBlank,
PathsWithTerminalSymbol, yl[:,t])

Next extend paths by a symbol

NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol (PathsWithTerminalBlank,
PathsWithTerminalSymbol, SymbolSet, yl[:,t])

end

Merge identical paths differing only by the final blank

MergedPaths, FinalPathScore = MergeIdenticalPaths (NewPathsWithTerminalBlank, NewBlankPathScore
NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score

BEAM SEARCH InitializePaths: FIRST TIME INSTANT

function InitializePaths (SymbolSet, vy)

InitialBlankPathScore = [], InitialPathScore = []

First push the blank into a path-ending-with-blank stack. No symbol has been invoked yet
path = null

InitialBlankPathScore[path] = y[blank] # Score of blank at t=1

InitialPathsWithFinalBlank = {path}

Push rest of the symbols into a path-ending-with-symbol stack

InitialPathsWithFinalSymbol = {}

for ¢ in SymbolSet # This is the entire symbol set, without the blank
path = ¢
InitialPathScore[path] = y[c] # Score of symbol c at t=1
InitialPathsWithFinalSymbol += path # Set addition

end

return InitialPathsWithFinalBlank, InitialPathsWithFinalSymbol,
InitialBlankPathScore, InitialPathScore

]
A= j‘
-ér_l}’ 4
B '~{}fr —[5]
i
5
A=t e
<

0
\
i

BEAM SEARCH: Extending with blanks

Global PathScore, BlankPathScore

function ExtendWithBlank (PathsWithTerminalBlank, PathsWithTerminalSymbol, V)

UpdatedPathsWithTerminalBlank = {}

UpdatedBlankPathScore = []

First work on paths with terminal blanks

#(This represents transitions along horizontal trellis edges for blanks)

for path in PathsWithTerminalBlank:
Repeating a blank doesn’t change the symbol sequence
UpdatedPathsWithTerminalBlank += path # Set addition
UpdatedBlankPathScore[path] = BlankPathScore[path]*y[blank]

end

Then extend paths with terminal symbols by blanks
for path in PathsWithTerminalSymbol:

If there is already an equivalent string in UpdatesPathsWithTerminalBlank

simply add the score. If not create a new entry
if path in UpdatedPathsWithTerminalBlank
UpdatedBlankPathScore[path] += Pathscore[path]* y[blank]

else
UpdatedPathsWithTerminalBlank += path # Set addition
UpdatedBlankPathScore[path] = PathScore[path] * y[blank]
end & iq Iy
end ‘ &//‘ -5 i\‘ ;/72;72;7
N) i
return UpdatedPathsWithTerminalBlank, = 5 a2

g

UpdatedBlankPathScore G = £

ﬁ\H 51

=

¥

BEAM SEARCH: Extending with symbols

Global PathScore, BlankPathScore

function ExtendWithSymbol (PathsWithTerminalBlank, PathsWithTerminalSymbol, SymbolSet, y)
UpdatedPathsWithTerminalSymbol = {}
UpdatedPathScore = []

First extend the paths terminating in blanks. This will always create a new sequence
for path in PathsWithTerminalBlank:
for ¢ in SymbolSet: # SymbolSet does not include blanks
newpath = path + ¢ # Concatenation
UpdatedPathsWithTerminalSymbol += newpath # Set addition
UpdatedPathScore [newpath] = BlankPathScore[path] * y(c)
end
end

Next work on paths with terminal symbols
for path in PathsWithTerminalSymbol:
Extend the path with every symbol other than blank
for ¢ in SymbolSet: # SymbolSet does not include blanks
newpath = (c == path[end]) ? path : path + ¢ # Horizontal transitions don’t extend the sequence
if newpath in UpdatedPathsWithTerminalSymbol: # Already in list, merge paths
UpdatedPathScore [newpath] += PathScore[path] * yl[c]
else # Create new path
UpdatedPathsWithTerminalSymbol += newpath # Set addition
UpdatedPathScore [newpath] = PathScore[path] * yl[c]
end
end
end

return UpdatedPathsWithTerminalSymbol,
UpdatedPathScore

BEAM SEARCH: Pruning low-scoring entries

Global PathScore, BlankPathScore

function Prune (PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)
PrunedBlankPathScore = []

PrunedPathScore = []

First gather all the relevant scores

i=1

for p in PathsWithTerminalBlank
scorelist[i] = BlankPathScore|[p]
At

end

for p in PathsWithTerminalSymbol
scorelist[i] = PathScore[p]
i++

end

Sort and find cutoff score that retains exactly BeamWidth paths
sort (scorelist) # In decreasing order
cutoff = BeamWidth < length (scorelist) ? scorelist[BeamWidth] : scorelist[end]

PrunedPathsWithTerminalBlank = {}
for p in PathsWithTerminalBlank
if BlankPathScore[p] >= cutoff
PrunedPathsWithTerminalBlank += p # Set addition
PrunedBlankPathScore[p] = BlankPathScore[p]
end
end

PrunedPathsWithTerminalSymbol = {}
for p in PathsWithTerminalSymbol
if PathScore[p] >= cutoff
PrunedPathsWithTerminalSymbol += p # Set addition
PrunedPathScore[p] = PathScore([p]
end
end

return PrunedPathsWithTerminalBlank, PrunedPathsWithTerminalSymbol, PrunedBlankPathScore, PrunedPathScore

BEAM SEARCH: Merging final paths

Note : not using global variable here

function MergelIdenticalPaths (PathsWithTerminalBlank, BlankPathScore,
PathsWithTerminalSymbol, PathScore)

All paths with terminal symbols will remain
MergedPaths = PathsWithTerminalSymbol
FinalPathScore = PathScore

Paths with terminal blanks will contribute scores to existing identical paths from
PathsWithTerminalSymbol if present, or be included in the final set, otherwise
for p in PathsWithTerminalBlank
if p in MergedPaths
FinalPathScore[p] += BlankPathScore[p]
else
MergedPaths += p # Set addition
FinalPathScore[p] = BlankPathScore([p]
end
end

return MergedPaths, FinalPathScore

Thank youl!
Q&A

