
Homework 1
An Introduction to Neural Networks

11-785: Introduction to Deep Learning (Spring 2022)

OUT: January 23, 2022
Early Deadline/HW1P2 MCQ Deadline: January 31, 2022, 11:59 PM

DUE: February 17, 2022, 11:59 PM
Writeup Version: 2.0.1

Start Here

• Collaboration policy:

– You are expected to comply with the University Policy on Academic Integrity and Plagiarism.

– You are allowed to talk with and work with other students on homework assignments.

– You can share ideas but not code, you must submit your own code. All submitted code will be
compared against all code submitted this semester and in previous semesters using MOSS.

– You are allowed to help your friends debug

– You are allowed to look at your friends code

– You are allowed to copy math equations from any source that are not in code form

– You are not allowed to type code for your friend

– You are not allowed to look at your friends code while typing your solution

– You are not allowed to copy and paste solutions off the internet

– You are not allowed to import pre-built or pre-trained models

– Meeting regularly with your study group to work together is highly encouraged. You may discuss
ideas and help debug each other’s code. You can even see from each other’s solution what is
effective, and what is ineffective. You can even ”divide and conquer” to explore different strategies
together before piecing together the most effective strategies. However, the actual code used to
obtain the final submission must be entirely your own.

• Overview:

– Part 2: This section of the homework is an open ended competition hosted on Kaggle.com, a
popular service for hosting predictive modeling and data analytics competitions. The competition
page can be found here.

– Part 2 Multiple Choice Questions: You need to take a quiz before you start with HW1-Part 2.
This quiz can be found on Canvas under HW1P2: MCQ (Early deadline). It is mandatory
to complete this quiz before the early deadline for HW1-Part 2.

• Submission:

– Part 2: See the the competition page for details.

1

https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html
https://theory.stanford.edu/~aiken/moss/
https://www.kaggle.com/c/11-785-s22-hw1p2
https://www.kaggle.com/c/11-785-s22-hw1p2


Homework objective

After this homework, you would ideally have learned:

• To solve a medium-scaled classification problem using an MLP

– How to set up the MLP

– How to handle the data

– How to train the model

– How to optimize the model

• To explore architectures and hyperparameters for the optimal solution

– To identify and tabulate all the various design/architecture choices, parameters and hyperparam-
eters that affect your solution

– To devise strategies to search through this space of options to find the best solution.

• The process of staging the exploration

– To initially set up a simple solution that is easily implemented and optimized

– To stage your data (e.g. by initially working on a subsample of the training data) to efficiently
search through the space of solutions.

– To track losses and performance on validation data to ensure the code is working properly and
the model is being trained properly

– To subset promising configurations/settings and then evaluate those on the larger (complete)
dataset

• To engineer the solution using your tools

– To use objects from the PyTorch framework to build an MLP.

– To deal with issues of data loading, memory usage, arithmetic precision etc. to maximize the time
efficiency of your training and inference.

2



Part 2: Frame Level Classification of Speech

This part of the homework is a live competition on kaggle.

In this challenge you will take your knowledge of feedforward neural networks and apply it to a more useful
task than recognizing handwritten digits: speech recognition. You are provided a dataset of audio recordings
(utterances) and their phoneme state (subphoneme) labels. The data comes from articles published in
the Wall Street Journal (WSJ) that are read aloud and labelled using the original text. If you have not
encountered speech data before or have not heard of phonemes or spectrograms, we will clarify the problem
further.

Data

• train.npy: (28539, )

• train labels.npy: (28539, )

• dev mfcc.npy: (2703, )

• dev labels.npy: (2703, )

• test.npy: (2620, )

1 Task

Your task is to generate predictions for the phonemes of the test set. You will be evaluated on the accuracy
of the prediction of the phoneme state labels for each frame in the test set. Grade cut-offs are released after
the early deadline. For detailed information, please look at the kaggle page. If you have not encountered
speech data before or have not heard of phonemes or spectrograms, we will clarify the problem further. The
training data comprises of:

• Speech recordings (raw mel spectrogram frames)

• Frame-level phoneme state labels

The test data comprises of:

• Speech recordings (raw mel spectrogram frames)

• Phoneme state labels are not given

Your job is to identify the phoneme state label for each frame in the test data set. It is important to note
that utterances are of variable length.

2 Phonemes and Phoneme States

As letters are the atomic elements of written language, phonemes are the atomic elements of speech. It is
crucial for us to have a means to distinguish different sounds in speech that may or may not represent the
same letter or combinations of letters in the written alphabet.

For this challenge, we will consider a total of 40 phonemes in this language.

A powerful technique in speech recognition is to model speech as a markov process with unobserved states.
This model considers observed speech to be dependent on unobserved state transitions. We refer to these
unobserved states as phoneme states or subphonemes. For each phoneme, there are 3 respective phoneme
states. The transition graph of the phoneme states for a given phoneme is as follows:

3

https://www.kaggle.com/c/11-785-s22-hw1p2
https://www.kaggle.com/c/11-785-s22-hw1p2


Example: [”+BREATH+”, ”+COUGH+”, ”+NOISE+”, ”+SMACK+”, ”+UH+”, ”+UM+”, ”AA”, ”AE”,
”AH”, ”AO”, ”AW”, ”AY”, ”B”, ”CH”, ”D”, ”DH”, ”EH”, ”ER”, ”EY”, ”F”, ”G”, ”HH”, ”IH”, ”IY”,
”JH”, ”K”, ”L”, ”M”, ”N”, ”NG”, ”OW”, ”OY”, ”P”, ”R”, ”S”, ”SH”, ”SIL”, ”T”, ”TH”, ”UH”, ”UW”,
”V”, ”W”, ”Y”, ”Z”, ”ZH”]

Hidden Markov Models (HMMs) estimate the parameters of this unobserved markov process (transition and
emission probabilities) that maximize the likelihood of the observed speech data. Your task is to instead take
a model-free approach and classify mel spectrogram frames using a neural network that takes a frame (plus
optional context) and outputs class probabilities for all 40 phoneme states. Performance on the task will
be measured by classification accuracy on a held out set of labeled mel spectrogram frames. Training/dev
labels are provided as integers [0-39].

3 Speech Representation

Raw speech signal (also known as the speech waveform) is stored simply as a sequence of numbers that
represent the amplitude of the sound wave at each time step. This signal is typically composed of sound
waves of several different frequencies overlaid on top of one another. For human speech, these frequencies
represent the frequencies at which the vocal tract vibrates when we speak and produce sound. Since this
signal is not very useful for speech recognition if used directly as a waveform, we convert it into a more useful
representation called a “melspectrogram” in the feature extraction stage.

4 Feature Extraction

The variation with time of the frequencies present in a particular speech sample are very useful in determining
the phoneme being spoken. In order to separate out all the individual frequencies present in the signal, we
perform a variant of the Fourier Transform, called the Short-Time Fourier Transform (STFT) on small,
overlapping segments (called frames, each of 25ms) of the waveform. A single vector is produced as the result
of this transform. Since we use a stride of 10ms between each frame, we end up with 100 vectors per second of
speech. Finally, we convert each vector into a 13-dimensional vector (refer the links in the optional readings
section for exact details of how this is done). For an utterance T seconds long, this leaves us with a matrix
of shape (100*T, 13) known as the melspectrogram. Note that in the dataset provided to you, we have
already done all of this pre-processing and provided the final (*, 13) shaped melspectrograms to you.
An illustration of this process is represented in the figure below.

The data provided in this assignment consists of these melspectrograms, and phoneme labels
for each 13-dimensional vector in the melspectrogram. The task in this assignment is to predict
the label of a particular 13-dimensional vector in an utterance.

4



Figure 1: Feature extraction

4.1 Data Files

You can find the training and test data under the ’Data’ tab on Kaggle.

A diagrammatic representation of the data is as follows:

Note: Since each vector represents only 25ms of speech it may not be sufficient to feed only a single vector
into the network at a time. Instead, it may be useful to provide the network with some “context” of size
K around each vector in terms of additional vectors from the speech input. Concretely, a context of size 5
would mean that we provide an input of size (11, 13) to the network - the size 11 may be explained as : the
vector to predict the label for, 5 vectors preceding this vector, and 5 vectors following it. It is worth thinking
about how you would handle providing context before one of the first K frames of an utterance or after one
of the last K frames.

Hint: There are several ways to implement this, but you could try :

1. Concatenating all utterances and padding with K 0-valued vectors before and after the resulting matrix

OR

2. Pad each utterance with K 0-valued vectors, at the extra cost of bookkeeping the beginning index of
each utterance’s first vector.

5

https://www.kaggle.com/c/11-785-s22-hw1p2/data


Note: When loading the data, you might want to add some context to every frame for better results. The
way we add context is to add some form of zero padding to add some of the previous and next frames to
the current frame. For example, if we consider a single frame of dimension (1000, 13) and we consider the
context to be 5, then we want to implement zero padding before and after this frame such that the dimension

Figure 2: Data representation

becomes (1010, 13). Subsequently, the input layer will have (1 + 2* context size)*13 nodes. Try to think
about why this calculation would make sense with respect to the Dataloader and the speech data given.
Context is a hyperparameter and the recommended value of context to be set for this homework is between
0-50.

5 Evaluation

The evaluation metric for this competition is frame-level accuracy. There are a total of 1943253 frames in
the test set. You will be ranked by unweighted accuracy on those phoneme state labels.

This homework is worth 100 points. The distribution of the points is as follows:

3 points: Early MCQs (due January 31 2022)

7 points: Preliminary Submission (due January 31 2022)

90 points: High Cutoff

70 points: Medium Cutoff

50 points: Low Cutoff

30 points: Very Low Cutoff

6



6 Submission Format

Submission files should contain two columns: Id and Label.

Id: The 0-based index of the frame in the test set [0-1943252] (data type: int).

Label: The predicted label of the phoneme [0-39] (data type: int).

Id=0 is the first frame in the first utterance.

Id=1943252 is the last frame in the last utterance.

A sample submission file is available on the Data page on Kaggle. Please submit your prediction/submission
files here. You will be allowed a maximum of 10 submissions every day.

You need to make atleast one submission (of a basic model) to Kaggle before the early deadline.

7 Toy Problem

Along with the main homework dataset, we also provide a toy dataset to help you prototype the framework,
debug the algorithm and get familiar with how to download data and submit the results to kaggle. This is
not a mandatory submission but we highly recommend you to start the homework on the toy dataset since
it is much smaller than the main dataset and each data operation would be faster to save your life.

7.1 Data and Description

We have provided four comma-separated values (.csv) files which have a column of the names of the sampled
numpy files(xxxx.npy).Using the CSV files, you should be able to sample the training set which would be
approximately 10-25% the size of the original dataset, depending on the csv file.

The code to do the sampling is already provided in the starter notebook.

You should be able to achieve approximately the following results on running the starter notebook on the
’train filenames subset 8192 v2.csv’.

Epoch 1:

Training Accuracy: Approx. 45.8%

Validation Accuracy: Approx. 44.51%

Training Loss: Approx. 1.89

Epoch 2:

Training Accuracy: Approx. 46.54%

Validation Accuracy: Approx. 45.23%

Training Loss: Approx. 1.82

Epoch 3:

Training Accuracy: Approx. 46.85%

Validation Accuracy: Approx. 45.51%

Training Loss: Approx. 1.80

Your loss curve on the training dataset after the first epoch should look like the figure below. Submitting
the results of this model on the test set will be enough for you to satisfy the early submission cutoff, which
is worth 7 points.Your model should not take more than 3 minutes to run 1 epoch on this dataset.

7

https://www.kaggle.com/c/11-785-s22-hw1p2/submit


Though not mandatory, we recommend starting with ’train filenames subset 0008 v2.csv’ to debug your code,
and then move on to higher sized datasets. This will ultimately prevent you from wasting your valuable time
on unseen mistakes.

Training: train filenames subset 8192 v2.csv: (8192,)

Training: train filenames subset 2048 v2.csv: (2048,)

Training: train filenames subset 0512 v2.csv: (512,)

Training: train filenames subset 0008 v2.csv: (8,)

Figure 3: Loss curve per iteration

8



7.2 Mandatory Preliminary Submission

There is a mandatory preliminary submission and an associated MCQ that, together, are worth 10% of the
points for the homework. The deadline for this preliminary submission is posted on the course website and
piazza. This submission is intended to get you started quickly on the homework. We provide starter code in
the form of a notebook that should, hopefully, make it relatively straightforward to make this submission.

For the preliminary submission, you must download the data, train a very simple preliminary model with it
using the sampled (10%) dataset, using the (code in the) notebook provided. You must then process both
the validation and evaluation data with the obtainded model, and submit the evaluation results to Kaggle.
You must also answer the preliminary-submission MCQ on canvas, which queries you about the homework,
the values of specific data instances, and the loss obtained while training the preliminary model. The MCQ
is worth 3 points. The actual preliminary submission is worth 7 points. You must get an accuracy of at least
42% on the preliminary submission to get the 7 points. If you do not make the cutoff you get 0 points for
the submission.

You will find attached with this writeup, a Python notebook to get you started with the homework. It is
not mandatory to use this notebook, and you are free to write your own code. With the starter code and
the sampled dataset, you will be able to reach the early submission cutoff. Note: You need to submit your
results that crosses the preliminary cutoff before the early deadline. Not doing so will cost you 7 points.
The preliminary cutoff is set much lower than the final cutoff, and running the starter notebook should be
enough to reach this cutoff.

7.3 Usage

• Download data from Kaggle: the data in the toy problem is the same as the one for the main dataset,
although a very small portion of the main dataset. Try to implement the interface with Kaggle, data
downloading and decompressing.

• Implement the data loader and network model. You can implement a simple one layer network for
toy problem to assist testing other parts of codes and enlarge your network once training on the main
dataset.

• Set up your training workflow and make sure it is running on toy dataset.

• Since the toy dataset is small and not representative, the trained model on toy dataset cannot accurately
indicate the performance of your network.

Notice that the toy problem is used for making sure your codes runnable, checking the type and shape of the
data, learning to interface with the Kaggle. The accuracy of the model on the toy problem cannot indicate
the performance of your network on the main dataset.

9



8 Hyperparameter Tuning

Below are a few variations in hyperparameters that might help you reach the low cutoff.

Hyperparameters Values

Number of Layers 2-8
Activations ReLU, LeakyReLU, softplus, tanh, sig-

moid
Batch Size 64, 128, 256, 512, 1024, 2048
Architecture Cylinder, Pyramid, Inverse-Pyramid,

Diamond
Dropout 0-0.5, Dropout in alternate layers
LR Scheduler Fixed, StepLR, ReduceLROnPlateau,

Exponential, CosineAnnealing
Weight Initialization Gaussian, Xavier, Kaiming(Normal and

Uniform), Random, Uniform
Context 0-50
Batch-Norm Before or After Activation, Every layer

or Alternate Layer or No Layer
Optimizer Vanilla SGD, Nesterov’s momentum,

RMSProp, Adam
Regularization Weight Decay
LR 0.001, you can experiment with this
Context 0-50
Normalization You can try Cepstral Normalization

Table 1: Hyperparameter Tuning

Alongwith these, R-Drop: Regularized Dropout might also lead to better performance.

9 Optional Reading

Go through this link to understand how Mel-Spectrograms are generated.

10

https://arxiv.org/abs/2106.14448
https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html

	Task
	Phonemes and Phoneme States
	 Speech Representation
	Feature Extraction
	Data Files

	Evaluation
	Submission Format
	Toy Problem
	Data and Description
	Mandatory Preliminary Submission
	Usage

	Hyperparameter Tuning
	Optional Reading

