
Summary

1. Tensors

2. CPU & GPU operations

3. Components of Training a Model
a) Data
b) Model
c) Loss Function
d) Backpropagation
e) Optimizer



1) Tensors

• Pytorch’s tensors are similar to numpy’s ndarrays



2) CPU & GPU Operations

• The main difference with Pytorch tensors is that you can perform 
operations on the GPU as opposed to the CPU.
• Performing tensor (matrix) operations on the GPU is often much 

faster than working on the CPU.



2) CPU & GPU Operations

• To do GPU tensor operations, you must first move the tensor from 
the CPU to the GPU

• Operations require all components to be on the same device (CPU or 
GPU). Operations between CPU and GPU tensors will fail



2) CPU & GPU Operations Failure



2) CPU & GPU Operations

• Things to keep in mind:
• A GPU operation’s runtime comes in two parts: 1) time taken to move a 

tensor to GPU, 2) time taken for an operation.
• #2 is very fast on GPU, but sometimes (for small operations), #1 can take much longer. In 

some cases, it may be faster to perform a certain operation on CPU.

• GPU memory is quite limited. You will frequently run into the following error:
• RuntimeError: CUDA out of memory. Tried to allocate 12.50 MiB (GPU 0; 10.92 GiB total 

capacity; 8.57 MiB already allocated; 9.28 GiB free; 4.68 MiB cached) 
• When this happens, either reduce the batch size or check if there are any dangling 

unused tensors left on the GPU. You can delete tensors on the GPU and free memory 
with:



2.5) Interruption: Debugging

• I’m going to go through some slides on debugging.
• Although what you are learning from this course is DL, what you will 

actually be spending most of your Jme doing is debugging.
• So, it is important to at least talk about it.



2.5) Debugging
• This is what you should do when your code breaks:

1. Look at the error message, expand the list of commands (trace) that led to the error. Then, 
go to each of those lines in your code and see if you can find a problem.
1. Note: A lot of the trace will not be your code (they will be packages). You should read the 

documentation and see if you are using those correctly.
2. If you cannot fix the issue, you should google your problem. You should read through all of 

the forums (stackoverflow, pytorch, github issues) and try the suggestions. If you have no 
clue what the people are saying, go study the documentation – that’s how they learned 
what they know.
1. You might think this is a waste of time, but it’s not. This is how you learn to work with new packages/large 

codebases.
3. Outside of a class setting, this last step would not exist. You would repeat step 2 or submit 

your own github issue until the problem is resolved. However, since this is a class, you can 
go on Piazza/go to OH at this step. Only do this if you have actually tried a lot of #2. 
Generally, there are a lot of common issues that TAs will recognize (because we have gone 
online and looked for this exact error). In these cases, we will tell you to go look up 
solutions.



2.5) CPU & GPU Operations Debugging

• You’ll be running into Cuda errors like:
• RuntimeError: CUDA error: device-side assert triggered

• This can mean many things. For example:
• You did an operation between CPU and GPU tensors
• You did GPU operations between tensors of unexpected shape

• Likely the most common cause

• Your types were wrong in some weird way
• Long when it expects a Float or vice versa is most common.



2.5) CPU & GPU Operations Debugging

• However, the line(s) the traceback shows may NOT be the actual 
source of error
• Because GPU operations are parallelized, and debugging is hard when stuff is 

run in parallel
• You should try running the entire thing again after setting the 

following environment variable:
• CUDA_LAUNCH_BLOCKING=1

• This will force CUDA to do things sequentially, which is more likely to 
give you a better traceback.
• Remember to turn this back to CUDA_LAUNCH_BLOCKING=0 after

• Otherwise your code will be slow.



2.5) CPU & GPU Operations Debugging

• Some notes on working with Colab
• Colab is great – it’s free.
• However, you will run into some issues that give you a headache. In a prior 

slide, note that the opera@on b/n cpu and gpu tensors did not throw an 
error when you performed it, but aBerwards on another command.
• When you get a device-side assert, you probably have to restart the 

run@me instance.
• If your nvidia-smi shows clogged gpu memory, you have to restart the 

run@me instance
• …among other issues. Just take note – Colab is free, but you are trading 

your own @me for it.



3) Components of Training a Model

• Now we get to training a model in pytorch.
• Colloquially, training a model can be described like this:

1. We get data – pairs of quesZons and answers.
2. For a pair (x, y), we run x through the model to get the model’s answer y̅.
3. Then, a “teacher” gives the model a grade depending on “how wrong” y̅ is 

compared to the true answer y.
4. Then based on the grade, we figure out who’s fault the error is.
5. Then, we fix the faults so the model can do beder next Zme.

Data

Model

Loss Function

Backpropagation

Optimizer



3) Training a Model: [Data]

• When training a model, data is generally a long list of (x, y) pairs, 
where you want the model to see x and predict y.
• Pytorch has two classes you will need to use to deal with data:
• torch.utils.data.Dataset
• torch.utils.data.DataLoader

• Dataset class is used to preprocess data and load single pairs (x, y)
• DataLoader class uses your Dataset class to get single pairs and group 

them into batches

Data

Model

Loss Function

Backpropagation

Optimizer

Data DataLoader Dataset



3) Training a Model: [Dataset]

• When defining a Dataset, there are three class methods that you 
need to implement: __init__, __len__, __getitem__

Data

Model

Loss Function

Backpropagation

Op9mizer

Use __init__ to load in the data to the class (or 
preprocess) so it can be accessed later

Pytorch will use __len__ to know how many (x, y) 
pairs (training samples) are in your dataset

After using __len__ to figure out how many samples there are, pytorch will use 
__getitem__ to ask for a certain sample. So, __getitem__(i) should return the “i-th” 
sample, with order chosen by you. You should use __getitem__ to do some final 
processing on the data before it’s sent out.
Caution: __getitem__ will be called maybe millions of times, so make sure you do as 
little work in here as possible for fast code. Try to keep heavy preprocessing in 
__init__, which is only called once.



3) Training a Model: [DataLoader]
Data

Model

Loss Function

Backpropaga9on

Optimizer

The dataset you made before

These are the arguments we’re 
passing to Training DataLoader

We’ll be going through the 
entire dataset multiple times. 
We want to shuffle the Dataset 
every single time for the 
training dataloader.
For validation/test, you don’t 
want to shuffle.

How many samples per batch? 
This is a hyperparameter you 
want to adjust.

Batches are loaded in parallel –
how many workers do you want 
doing this? Depending on how 
intensive __getitem__ is, 
lowering or raising this may 
speed up dataloading.

Just something that makes 
dataloading faster at the 
expense of more RAM usage.

No[ce that we give our dataset to 
the DataLoader so it can use it.

Amelia Kuang
If you are curious about what pin_memory does, see https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/



3) Training a Model: [Model]

• Now, we have our data set up. Next, we need to worry about the 
model we’re going to use.
• This secJon will be in two parts:
• How to generate the model you’ll use
• How to run the data sample through the model.

Data

Model

Loss Function

Backpropagation

Optimizer



3) Training a Model: [Model]

• In class, you went over the Multi-Layer 
Perceptron (MLP)
• A bunch of these single perceptrons put 

together are called “Linear layers,” also 
called “fully-connected (fc)” layers
• Note: a Linear layer is the connections

between two layers as shown on the 
right. The layers themselves is an input 
vector being run through the network.
• So, the network on the right has 3 layers

Data

Model

Loss Function

Backpropagation

Optimizer

Linear Layer 1

Linear Layer 2

Linear Layer 3



3) Training a Model: [Model]

• A key thing in neural networks is 
modularity
• The network on the right can be broken 

down into 3 essentially same components 
– Linear layers that differ only in the # of 
in/out features.
• When coding a network, break down the 

structure into small parts and take it step 
by step.
• This is also a fundamental trend in ML 

nowadays – using the same structure stacked 
with varying feature #s

Data

Model

Loss Function

Backpropagation

Op9mizer

Linear Layer 1

Linear Layer 2

Linear Layer 3



3) Training a Model: [Model]

• Now, let’s get into coding a model in pytorch.
• Networks in pytorch are (generally) classes that are based off of the 

nn.Module class.
• Similar to the Dataset class, pytorch wants you to implement the 

__init__ and forward methods.
• __init__: this is where you define the actual model itself (along with other 

stuff you might need)
• Forward: given an input x, you run it through the model defined in __init__

Data

Model

Loss Func9on

Backpropagation

Op9mizer



3) Training a Model: [Model]

• Pytorch’s nn.Linear class represents a 
linear layer. 
• In fact, nn.Linear is a “model” class 

itself – it extends nn.Module and has 
a forward method. We’ll be using this 
“smaller model” inside our own 
model. (example of modularity)

Data

Model

Loss Function

Backpropaga9on

Optimizer

nn.Linear takes in in_features
and out_features as arguments

nn.Linear takes as input some tensor of shape 
(N, *, in_features) and outputs 
(N, *, out_features).
You can think of this as nn.Linear transforming 
the last dimension.



3) Training a Model: [Model]
Data

Model

Loss Function

Backpropaga9on

Optimizer

Linear Layer 1

Linear Layer 2

Linear Layer 3

The three layers defined in 
__init__ correspond to the 
three layers on the right.

We run the input x 
through the layers 
sequentially, one by one.

Recall: each of the nn.Linear has trainable 
parameters (weight and bias).
By calling .parameters() on Our_Model, you’ll 
see the weight and bias of each layer thanks 
to some magic backend.



3) Training a Model: [Model]

• You can also print the model to see all the components:

Data

Model

Loss Function

Backpropagation

Optimizer

Caution: These are printed in order defined in 
__init__, and not in order applied in 
forward()



3) Training a Model: [Model]

• However, it can get annoying to type each 
of the layers twice – once in __init__ and 
once in forward.
• Since on the right, we take the output of 

each layer and directly put it into the 
next, we can use the nn.Sequential
module.

Data

Model

Loss Function

Backpropagation

Optimizer



3) Training a Model: [Model]
Data

Model

Loss Func9on

Backpropagation

Optimizer

If you’re new to python, you might want to 
look up “args and kwargs” on google to 
understand what the * operator does.
Essentially, it opens up the list and directly 
puts them in as arguments of nn.Sequential.



3) Training a Model: [Model]
Data

Model

Loss Function

Backpropaga9on

Optimizer

Since nn.Sequential is an nn.Module class 
anyway, we can make this even simpler:



3) Training a Model: [Model]

• So far, we only covered the nn.Linear class
• There are many, many more classes in pytorch. 
• As a beginner to pytorch, you should definitely have 

https://pytorch.org/docs/stable/nn.html open. The documentation is 
very thorough.
• Also, for optimizers: https://pytorch.org/docs/stable/optim.html

Data

Model

Loss Function

Backpropaga9on

Optimizer

https://pytorch.org/docs/stable/nn.html
https://pytorch.org/docs/stable/optim.html


3) Training a Model: [Model]

• Now that we have our model generated, how do we use it?
• First, we want to put the model on GPU. 
• Note that for nn.Module classes, .to(device) is in-place

• However, for tensors, you must do x = x.to(device)

• Also, models have .train() and .eval() methods.
• Before training, you should run model.train() to tell the model to save gradients
• When validating or testing, run model.eval() to tell the model it doesn’t need to save 

gradients (save memory and time).
• A common mistake is to forget to toggle back to .train(), then your model doesn’t 

learn anything.

Data

Model

Loss Func9on

Backpropagation

Op9mizer



3) Training a Model: [Model]
Data

Model

Loss Function

Backpropagation

Op9mizer

Not Yet Covered

Not Yet Covered

Not Yet Covered

Here’s where we are so far.
All the setting up is done up here.

”Epochs” are number of times we run through the entire dataset.

Within each epoch, we run through the train loader, which gives us x, y batched.

Since the model is on GPU, remember to put the x, y on GPU too!
Afterwards, run x through the model to get output.



3) Training a Model: [Loss Func7on]
Data

Model

Loss Function

Backpropagation

Optimizer

• To recap, we have run x through our model and goYen “output,” or 
“y̅”
• Recall – we need something to tell us how wrong it is compared to 

the true answer y.
• We rely on a “loss funcJon,” also called a “criterion” to tell us this.
• The choice of a criterion will depend on the model/applicaJon/task, 

but for classificaJon, a criterion called “CrossEntropyLoss” is 
commonly used.
• You’ll go over the specifics next lecture.



3) Training a Model: [Model]

Not Yet Covered

Not Yet Covered

Not Yet Covered

Data

Model

Loss Function

Backpropaga9on

Optimizer

Here, we ini9alize the criterion.

Then, we give our output and y to the criterion, and it tells us 
how wrong the model was through a number called “loss”

We want to minimize this loss.



3) Training a Model: [Backpropagation]
Data

Model

Loss Func9on

Backpropagation

Op9mizer

• Backpropagation is the process of working backwards from the loss and 
calculating the gradients of every single (trainable) parameter w.r.t the loss.
• The gradients tell us the direction in which to move to minimize the loss.

• If this is new for you, don’t worry – the next few lectures will make this 
clear.
• For now, we’ll stick with an intuitive explanation:

• Backpropagation is a method of “assigning blame”
• Think about a random parameter “p” in the model. Backprop will give us a number 

for p: “∇p”
• ∇p tells us “hey, p is not optimal, and it caused the final output to be different from 

the true answer. This is how much p was wrong, and we should change p this (∇p) 
much to make the final output better”



3) Training a Model: [Model]

Not Yet Covered

Not Yet Covered

Not Yet Covered

By doing loss.backward(), we get gradients w.r.t the loss. 

Data

Model

Loss Function

Backpropaga9on

Optimizer

Remember model.train()? That allowed us to compute the gradients. If it had been in 
the eval state, we wouldn’t be able to even compute the gradients, much less train.



3) Training a Model: [Optimizer]
Data

Model

Loss Func9on

Backpropagation

Op9mizer

• Now, backprop only computes the ∇p values – it doesn’t do anything 
with them.
• Now, we want to update the value of p using ∇p. This is the 

optimizer’s job.
• A crucial component of any optimizer is the “learning rate.” This is a 

hyperparameter that controls how much we should believe in ∇p. 
• Again, this will be covered in more detail in a future lecture.
• Ideally, ∇p is a perfect assignment of blame w.r.t the entire dataset. However, 

it’s likely that optimizing to perfectly match the current (x, y) sample ∇p was 
generated from won’t be great for matching the entire dataset.
• …Among other concerns, the optimizer weights the ∇p with the learning rate 

and use the weighted ∇p to update p. 



3) Training a Model: [Model]

By doing optimizer.step(), we update the weights of the 
model using the computed gradients.

Data

Model

Loss Func9on

Backpropagation

Op9mizer

Here, we initialize the optimizer with learning rate 1e-4

What is zero_grad? Every call to .backward() saves gradients for each parameter in the model. However, calling 
optimizer.step() does not delete these gradients after using them. So, you want to remove them so they don’t interfere 
with the gradients of the next sample.

IMPORTANT: The general order of these steps are 
crucial.
1. We run x through the model.
2. We compute the loss.
3. We call loss.backward()
4. Then we step the optimizer.
5. Then, (in this loop or the next), we zero out the 

gradients.



3) Training a Model: Some extras

After here, you would generally perform validation (after 
every epoch or a couple), to see how your model 
performs on data it is not trained on.
Validation follows a similar format as training, but 
without loss.backward() or optimizer.step(). You should 
check the notebooks for more guidance.

Data

Model

Loss Func9on

Backpropagation

Optimizer



Link to Example Notebooks

• h_ps://drive.google.com/drive/folders/1dILzOSUDnRSjYIrYnZAOIauRrNbXFqmq?usp=sharing

https://drive.google.com/drive/folders/1dILzOSUDnRSjYIrYnZAOIauRrNbXFqmq?usp=sharing

