11-785 Recitation 10
Attention, MT, LAS

Ameya Mahabaleshwarkar,
Lavanya Gupta

Sequence to sequence

I ate an apple l Ich habe einen apfel gegessen

e Sequence goesin, sequence comes out

* No notion of “time synchrony” between input and output

— May even not even maintain order of symbols
* E.g. “I ate an apple” 0 “Ich habe einen apfel gegessen”

— Or even seem related to the input
* E.g. “My screen is blank” U “Please check if your computer is plugged in.”

Generating Language: The model

v

Input: symbols as one-hot vectors
* Dimensionality of the vector is the size of the “vocabulary”
* Projected down to lower-dimensional “embeddings”

The hidden units are (one or more layers of) LSTM units
Output at each time: A probability distribution for the next word in the sequence

All parameters are trained via backpropagation from a lot of text

A note on beginnings and ends

* A sequence of words by itself does not indicate if it is
a complete sentence or not

... four score and eight ...

— Unclear if this is the start of a sentence, the end of a
sentence, or both (i.e. a complete sentence)

* To make it explicit, we will add two additional symbols
(in addition to the words) to the base vocabulary

— <S0S> : Indicates start of a sentence

— <e0s> : Indicates end of a sentence

15

A note on beginnings and ends

Some examples:

four score and eight
— This is clearly the middle of sentence

<sos> four score and eight
— This is a fragment from the start of a sentence

four score and eight <eos>

— This is the end of a sentence

<sos> four score and eight <eos>
— This is a full sentence

In situations where the start of sequence is obvious, the <s0s> may not be needed,
but <eos> is required to terminate sequences

Sometimes we will use a single symbol to represent both start and end of
sentence, e.g just <€0s>, or even a separate symbol, e.g. <s>

16

Returning our problem

I ate an apple —»

Seqg2seq

—> Ich habe einen apfel gegessen

 Problem:

— A sequence X, ... X goesin

— A different sequence Y; ... Y;, comes out

* No expected synchrony between input and

output

Modelling the problem

many to many

* Delayed sequence to sequence

19

Modelling the problem

many to many

First process the input - - \T T

and generate a hidden

representation for it i il
/

* Delayed sequence to sequence

Modelling the problem

First process the input
and generate a hidden
representation for it

* Delayed sequence to sequence

many to many

=

~

Then use it to generate
anh output

22

The “simple” translation model

Ich habe einen apfel gegessen <eos>

1
1
1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

A A A A A ! A ! A ! A A A

1 1 1
1 1 1
1 1 1

A 4
A 4
A 4

A 4
A 4
A 4
A 4
A 4

I ate an apple <eos> <sos> Ich habe einen apfel gegessen

* The input sequence feeds into a recurrent structure

 The input sequence is terminated by an explicit <eos> symbol

— The hidden activation at the <eos> “stores” all information about the
sentence

Subsequently a second RNN uses the hidden activation as initial state to
produce a sequence of outputs

— The output at each time becomes the input at the next time

— Output production continues until an <eos> is produced .

Ich habe einen apfel gegessen <eos>

1
i
1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 » 1 1
i i i
1 1 1
A A A A 7 W W W } A A
| | |
! ! !

A 4
A 4
A 4
A 4

A 4
A 4
A 4

I ate an apple <ecos><sos> Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

-
-

A 4
A 4
A 4

A 4
A 4
A 4

A 4
A 4
A 4
A 4

\ 4

I ate an apple <eos><sos> JIch habeecinen apfel gegessen

* We will illustrate with a single hidden layer, but the
discussion generalizes to more layers

32

The “simple” translation model
ENCODER Ich habe einen apfel gegessen <cos>

A

._' N g g I g
A A A A

A 4
\ 4

I ate an apple <eos>] <sos> Ich habe einen apfelgegessen

DECODER

 The recurrent structure that extracts the hidden
representation from the input sequence is the
encoder

* The recurrent structure that utilizes this

representation to produce the output sequence is the™
decoder

Generating an output from the net

Ich habeeinen apfel gegessen <eos>

iith ith ith iith ith ith
Yo Y1 Y2 Y3 Y4 Vs

apfel apfel apfel apfel apfel apfel
DO D1 D) D3 D)

bier bier bier bier bier bier
Yo Vi Y2 Y3 V4 Y5

<eos> <eos> <eos> <eos> <eos> <eos
DO V1)3 4 5

A 4
A 4
A 4
A 4
A 4
A 4
A 4

4>.—>

A A A A T A A A A A A

I ate an apple <eos><sos> [ch habe einen apfel gegessen

* At each time the network produces a probability distribution over words, given the entire input and
entire output sequence so far
* Ateachtime a word is drawn from the output distribution

* The drawn word is provided as input to the next time

* The process continues until an <eos> is generated
38

Training : Forward pass

A 4
A 4
A 4

A 4
A 4
A 4
A\ 4
\ 4

A A A A I A A A A A A

[

I ate an apple <eos> <sos> Ich habe einen apfel gegessen

* Forward pass: Input the source and target sequences,
sequentially

— Output will be a probability distribution over target symbol
set (vocabulary)

Training : Backward pass

Ich habe einen apfel gegessen <eos>

LEEER N

I
I
A A A A , A A
———;4——-I————-'——-—-———--—————-—-————-——/
c (l l 1 1 1 []
I b > > BNV Y N N > >
\
‘ A I A l A l A l | A l A I A I A A A
v v v v v v v v
I ate an apple <eos> <sos> Ich habe einen apfel gegessen

* |In practice, if we apply SGD, we may randomly sample words from the
output to actually use for the backprop and update

— Typical usage: Randomly select one word from each input training instance
(comprising an input-output pair)
* For each iteration
— Randomly select training instance: (input, output)

— Forward pass
— Randomly select a single output y(t) and corresponding desired output d(t) for backprop 61

Machine Translation Example

A A A A} A
| ate an apple<eos>
i5¢r
ab O | was given a card by her in the garden
3t OMary admires John 10f O In the garden , she gave me a card
O She gave me a card in the garden
2 OMary is in love with John
5 -
1k
or ot

OMary respects John
| OJohn admires Mary

-Sr O She was given a card by me in the garden
-2F QJohn is in love with Mary -
O In the garden , | gave her a card
-3F -10
_4 -
-15¢

-5t OJdohn respects Mary Ol gave her a card in the garden
-6 \ : ' :) : . :) -20 :) ' ' ' .)

-8 -6 -4 -2 0 2 - 6 8 10 -15 -10 -5 0 5 10 15 20

* Hidden state clusters by meaning!

— From “Sequence-to-sequence learning with neural
networks”, 66
Sutskever, Vinyals and Le

A problem with this
fra m eWork Ich habe einen apfel gegessen <eos>

Nt Vit Bt vt %t v

/—\ A A A A A A
l
A A A A \\1/ A A A A A A

I ate an apple <eos> <sos> Ich habe einen apfel gegessen

A 4
A 4
A 4

A 4
A 4
A 4

A 4
A 4

-

e All the information about the input sequence
is embedded into a single vector

— The “hidden” node layer at the end of the input sequence

— This one node is “overloaded” with information

* Particularly if the input is long
+ Source and target words can be far apart
- Reversing the encoder
- Bidirectional encoder

78

Using all input hidden states

Ich habe einen apfel gegessen <eos>

LoN
Average = ﬁzi hi

A 4
A 4

» »
> >

.4/1§7r/17r A

<sos> Ich habe eimnen apfel gegessen

I ate an apple <eos>

* Problem: The average applies the same weight to every input
* |t supplies the same average to every output word

* |n practice, different outputs may be related to different inputs

— E.g. “Ich” is most related to “1”, and “habe” and “gegessen” are both
most related to “ate”

80

Using all input hidden states

Ich habe einen apfel gegessen <eos>

L

"

L

-
>

-

»
™

-

—

7_

s

b2

»
™

/]

[ate an apple <eos>

<S0s>

&
Ct = ﬁz w;(t)h;
7

Ich habe einen

apfel gegessen

Solution: Use a different weighted average for each output word
— The weighted average provided for the kth output word is:

81

Attention

Models

Ich habe einen apfel gegessen <eos>

L

-

S4

/|

| ate an apple <eos>

<sos> Ich habe einen

&
Ct = Nz w;(t)h;
7

* Attention weights: The weights w;(t) are dynamically computed as functions of

decoder state

Y

apfel gegessen

— Expectation: if the model is well-trained, this will automatically “highlight” the correct input

* But how are these computed?

83

Summarizing the computation

Ich habe einen

Input to hidden decoder i | L\
layer: Y, wi(t)h; | |
* Sy [S2 fi S3 [+ 54 Ss
Sum to 1.0 Vol Tl | il W
\\ > > > e
M . Ich _habe\\eine
___;;‘——"»‘f”"i‘—r# ..-/ e e ===
P‘—l ho | hy |+ ha —~ h3 — hy ei(t) - g(hi,st_l)
PNICICIO)
I ate an apple<eos> l 2. j exp(ej (t))

* “Raw” weight at any time: A function g() that works on the
two hidden states

84

e Actual weight: softmax over raw weights

Attention models

Ich habe einen

g(hi,s¢-1) = h;'rst-1
g(hi,se—q) = hg'wgst—l

g(hi, st—l) = vgtanh (Wg

B

h;

St-1

g(hy, s¢-1) = MLP([h;, S¢-1])

kf—1—*h0 > h1 > hz > h3 > h4
A A A A A

[ate an apple

<eos>

'Y

>

A 4

>S2

v
/)

w
v
%)

N

S5

D(L

_>

S

i

* Typical options for g.()

Ich

habe \ einen

e;(t) = g(h;,s¢-1)

— Variables in red are to be learned

Converting an input (forward pass)

I ate an apple <eos>

* Pass the input through the encoder to
produce hidden representations h;

Converting an input (forward pass)

What is this?
Multiple options

Simplest: s_1 =

Alternative: learn s_4

Alternative 2: s_; = hy

If s and h are different sizes:
S_1 = WShN

W is learnable parameter

\ 4
~
o
\ 4
~
[N
\ 4
~
N
\ 4
-~
w
\ 4
~
N

I ate an apple <eos>

* |nitialize decoder hidden state

87

Ich--habe-- einen, apfel gegessen <eos>
Yo ¥ ¥4 ive ve (v

| ' ' | 1
7'} : A X A N 3 | Y - A

._’50551532‘5’33554535
7r/ A A A

Co

A : : | 5
< .713 >y Ich /.hab%.einen //. apfel / gegessen

Cq () C3 Cy Cs

I ate an apple<eos>

e Continue the process until an end-of-sequence
symbol is produced s8

Modification: Query key value

q1

habe

ei(t) = g(ki, q¢) Lt
w;(t) = softmax(e;(t)) o
Input to hidden decoder
layer: ¥ wi(t)v;
= 4 "‘f’ so
ko v-of_.kl v1 kz vlz k3 ‘V3 k4 vl‘
\/ \/ SOS~
h i+ hot—hy > |h, h;| — h,
4 A T
I ate an apple <eos>

Encoder outputs an explicit “key” and “value” at each input time
— Key is used to evaluate the importance of the input at that time, for a given output

Decoder outputs an explicit “query” at each output time
— Query is used to evaluate which inputs to pay attention to

The weight is a function of key and query

The actual context is a weighted sum of value

89

Modification: Query key value

[__ ei(t) = g(ki, qe) ‘ Ich habe
w;(t) = softmax(e;(t)) ‘ c;l i
Input to hidden decoder ‘ /
layer: ¥; wi(t)v; | /
SO Sl e
ko vo kl vl kZ V k3 V3 k4 v 4
v \/ / /
lh_l » > > h3 — h4
I ate an apple <eos>

SPZCidl case: k; = v; = h;

dt = St-1
We will continue using this assumption in the following slides
but in practice the query-key-value format is used

What does the attention learn?

]Ch"l
Yof (¥
7=) wi(Dh L
l

.
—Beip
zo’/;r i /

/

\./’ Ich g(hi, s0) = hiTWgSO

ei(l) = g(hi' SO)

G A ICTE)
l Zj exp(e;(1))
P —

I ate an apple<eos>

* The key component of this model is the attention weight

— It captures the relative importance of each position in the input
to the current output 97

Extensions: Multihead attention

el(t) = g(k!,q}

wi (t) = softmax(e/} (t))

ct =X, wi(t)v}

h_y ho

h,

'Y

|

* Have multiple query/key/value sets.

B

ate

/

MW%‘ kw

L — e —= imaia ey s e S sl misa
t &

% 90

— Each attention “head” uses one of these sets

— The combined contexts from all heads are passed to the decoder

* Each “attender” focuses on a different aspect of the input that’s
important for the decode

Ich

a1 qi

106

Some tricks of the trade

TEACHER FORCING

Occasionally pass drawn output
instead of ground truth, as input

<508\ Ich \ habe\ #x*x apfel _gegessen

L.
v
-

o

H .,
P~

N
v
P~

w
-

»

[ate an apple <eos>
 Backward pass: Compute a divergence between target
output and output distributions

— Backpropagate derivatives through the network 103

“Alignments” example: Bahdanau et al.

agreement
on

the
European
Economic
Area

Q
i o
—

Ll
accord

zone
économique
européenne
a

été

signé

t en

ao(t
1992

<end>

v

was

signed

in

August
1992

<end>

Plot of w; (t)
Color shows value (white
is larger)

Note how most important
input words for any output
word get automatically
highlighted

The general trend is
somewhat linear because
word order is roughly
similar in both languages

Task Examples

Sentiment Analysis (Positive) ... characters are portrayed with such saddening realism that you can’t help but love them
, as pathetic as they really are . although levy stands out , guest , willard , o’hara , and

posey are all wonderful and definitely should be commended for their performances ! if
there was an oscar for an ensemble performance , this is the group that should sweep it . ..

Sentiment Analysis (Negative) ... then, as it’s been threatening all along , the film explodes into violence . and just when
you think it’s finally over , schumacher tags on a ridiculous self-righteous finale that drags
the whole unpleasant experience down even further . trust me . there are better ways to
waste two hours of your life . ..

NLI (Entailment) P: a white dog drinks water on a mountainside.
H: there is a dog drinking water right now.

NLI (Contradiction) P: a dog leaping off a boat
H: dogs drinking water from pond

Table 6: Examples of documents (and true label) with feature feedback (highlighted in yellow).

Attention models in image captioning

A stop sign is on a road with a
mountain in the background,

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddv bear, in the water, trees in the background.

* “Show attend and tell: Neural image caption generation with visual
attention”, Xu et al., 2016
* Encoder network is a convolutional neural network

— Filter outputs at each location are the equivalent of h; in the regular
sequence-to-sequence model

108

LAS: Listener - Pyramidal LSTM

h = (hi,...,hy) WithU < T

h=(h,.... ,hy) Concerns:
2N 1. Reducing Length
,// L 2. O0dd/Even Length Input
Listener / X
\\ Design:
s h - 1 bottom BLSTM

- 3 pBLSTMs on top
- Reducing input length
by factor of 8

h = Listen(x)
P(y|x) = AttendAndSpell(h,y)

rr— J!J »
i ' b = pBLSTM(h!_,, [k, b |)

I IJ T‘ £y Iy

LAS: Attend and Spell - Decoder

. P + Softmax ¢; = AttentionContext(s;, h) (6)
8i = RNN(si-1,¥i-1,¢i-1) (7)
P(yi|x, y<i) = CharacterDistribution(s;, c;) (8)
' Design:
h - Dot-product attention

- 2 RNN layers
- MLP + Softmax for

RNN layers CharacterDistribution
: ; - Beam Search for
decoding

