Transformers

Zhe, Germann, Ameya

Code Walkthrough

Code & Images from:

Highly recommended!

https://nlp.seas.harvard.edu/2018/04/03/attention.html
https://princeton-nlp.github.io/cos484/readings/the-annotated-transformer.pdf

Output
Probabilities

-
Add & Norm
Feed
Forward
e ~\ Add & Norm
_ .
£ocisiNor Multi-Head
Feed Attention
Forward D) Nx
| —
Nx Add & Norm
f—" Add & Norm | NEsked
Multi-Head Multi-Head
Attention Attention
At 4t
o J _ —)
Positional o @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

class EncoderDecoder(nn.Module):

A standard Encoder-Decoder architecture. Base for this and many

other models.

def _ init_ (self, encoder, decoder, src_embed, tgt_embed, generator):
super(EncoderDecoder, self)._ init_ ()
self.encoder = encoder
self.decoder = decoder
self.src_embed = src_embed
self.tgt_embed = tgt_embed
self.generator = generator

def forward(self, src, tgt, src_mask, tgt_mask):
"Take in and process masked src and target sequences.”
return self.decode(self.encode(src, src_mask), src_mask,
tgt, tgt_mask)

def encode(self, src, src_mask):
return self.encoder(self.src_embed(src), src_mask)

def decode(self, memory, src_mask, tgt, tgt_mask):
return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)

class Generator(nn.Module):
"Define standard linear + softmax generation step."
def __init__ (self, d_model, vocab):
super(Generator, self). init_ ()
self.proj = nn.Linear(d_model, vocab)

def forward(self, x):
return F.log_softmax(self.proj(x), dim=-1)

class Encoder(nn.Module):
"Core encoder is a stack of N layers"
def __init__ (self, layer, N):
super(Encoder, self)._ init_ ()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)

def forward(self, x, mask):
"Pass the input (and mask) through each layer in turn."
for layer in self.layers:
x = layer(x, mask)
return self.norm(x)

class EncoderLayer(nn.Module):

"Encoder is made up of self-attn and feed forward (defined below)

def __init__ (self, size, self_attn, feed forward, dropout):
super(EncoderLayer, self)._ init_ ()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.sublayer = clones(SublayerConnection(size, dropout), 2)
self.size = size

def forward(self, x, mask):
"Follow Figure 1 (left) for connections."”
x = self.sublayer[@](x, lambda x: self.self_ attn(x, x, x, mask))
return self.sublayer[1](x, self.feed_forward)

~ I ~\
~>| Add & Norm |

Feed
Forward

A

 SE——

Nx ~>{ Add & Norm)

Multi-Head
Attention

—tr

 S—

\

J

Positional

Encoding D

Input
Embedding

T

Inputs

class DecoderlLayer(nn.Module):

"Decoder is made of self-attn, src-attn, and feed forward (defined below)"
__init__ (self, size, self_attn, src_attn, feed_forward, dropout):

def

def

super(DecoderLayer, self)._init_ ()

self.size = size

self.self_attn = self_attn

self.src_attn = src_attn

self.feed_forward = feed_forward

self.sublayer = clones(SublayerConnection(size, dropout), 3)

forward(self, x, memory, src_mask, tgt_mask):
"Follow Figure 1 (right) for connections.”

m = memory
x = self.sublayer[8](x, lambda x: self.self attn(x, x, x, tgt_mask))
x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask))

return self.sublayer[2](x, self.feed_forward)

class Decoder(nn.Module):
"Generic N layer decoder with masking."

def

def

__init__ (self, layer, N):
super(Decoder, self). init_ ()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)

forward(self, x, memory, src_mask, tgt_mask):
for layer in self.layers:

x = layer(x, memory, src_mask, tgt_mask)
return self.norm(x)

Linear

Output

Probabilities

Ve
Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

7) Nx
Add & Norm

Masked
Multi-Head
Attention

.

L

{L

J

E_

Output
Embedding

I

Outputs

(shifted right)

Positional
Encoding

Common Questions

Transformer Self-Attention

Scale dot-
product
attention r@*
weights
s
L] @13 F'g—l @14 |_X':| A5 E':l --------- »Value
] 1] i
(X X » Key
as| |k » Query
i | A A WA A L A 2

| do not like it

11-777 Fall 2021 Lecture 5.2

Attention Maps

Multi-head Attention

The
agreement
on

the
European
Economic
Area

was
August
1992
<end>

e A ssingle key, query, value matrix combination defines one économique

européenne

attention head
o Multiple KQVs define multiple attention heads
o Results from all attention heads are concatenated as the final output
e Multiple attention heads allows the model to simultaneously attend to
the same input sequence in different ways
e Heads are only differentiated by different random initialization of their
underlying matrices
o Attention heads can collapse into attending similar things

https://arxiv.org/pdf/1409.0473.pdf

https://arxiv.org/pdf/2010.11929.pdf

Positional Encodings

e Without positional encoding, the model won’t be able to distinguish the same token on
different positions. Remember, a Transformer processes the entire input context
parallelly.

e Naive ways of positional encodings do not work

o Raw index of words: the magnitude of embedding increases over timestep and can dominate
the resulting embedding

o Fraction of length of input sentences: word at the same index in different-lengthed sentences
will have different embeddings

e Frequency-based Positional Encoding

o Ateachtimet, you get a positional vector that is the same dimension as the word embedding
itself. This vector is added to the word embedding.

o P(t+ T) = M(T) P(t). The relationship between P(t+T) and P(t) does NOT change with t.

o The series is chaotic: it has a cyclic orbit, but it never exactly repeats

Positional Embeddings

e Positional encodings are fixed functions. Positional embeddings are learned.

Cosine Similarity of different positional embeddings/encodings

BERT - RoBERTa ; GPT2 B} sinusoid

300 200 100
400 200
300 200 100

800 600

500 400 300 200 100

o o
e g
1

o ° i °

8
B0 100 200 300 400 500 0 100 200 300 400 500 S0 200 400 600 800 1000 2

[I

-0.50-0.25 000 025 050 075 100 00 02 04 06 08 10 -0.5 00 05 10 04 06 08 10

https://theaisummer.com/positional-embeddings/

Benefits of Eliminating Recurrence

e Massively improved parallelism

Less restrictions on informations available for enrichment at each timestep

Vanishing/exploding gradient
e Bottleneck

RNN vs Transformer: Memory

e LSTM has pretty good memory. According to a study
(https://arxiv.org/pdf/1805.04623), it can remember 200 tokens of context on average
and sharply distinguish 50 nearby tokens.

e Transformers use a very large context (384 tokens for BERT) in a sliding-window

manner. As such, past information is available explicitly.
o The attention matrices themselves can also be thought of as memory

RNN vs Transformer: Time Series Prediction

From
https://neuravest.net/how-transformers-with-attention-networks-boost-time-series-forecasting/

e We found RNN to be very difficult to train even after we've added LSTM (long/short
memory). | believe that the main reason for our challenge was the model’s inability to
decide which information to save or discard when the input stream grew larger.

e RNN was not parallelizable and so training took significantly longer compared to CNN,
which is based on aggregating the scores of independent learning paths and thus can
be easily parallelized.

e The use of transformer architecture with attention mechanism enables the network to
detect similar sequences, even though the specific image representations may be
somewhat different. This in turn helps the models learn faster and generalize features
better.

https://neuravest.net/how-transformers-with-attention-networks-boost-time-series-forecasting/

Masked Self-Attention Decoder

e Decoder is sequential. Each word is produced using previously decoded words as input

e When decoding at timestep t, the decoder should only attend to the t words that was
already decoded

e In practice, we mask the attention score of timestep t + 1 and later to be 0, or mask the
attention energy (attention score before applying SoftMax) to be -inf

e Full encoder context is always available

Transformer-based
Models

Transformer variants

Generally, the Transformer architecture can be used in three different ways

e Encoder-Decoder: The full Original Transformer architecture is used. This is typically
used in sequence-to-sequence modeling tasks like machine translation

e Encoder only: Only the encoder is used and the outputs are utilized as a representation
for the input sequence. This is usually used for classification or sequence labeling
problems.

e Decoder only: Only the decoder is used, and the encoder-decoder cross-attention
module is also removed. It can be used for sequence generation, such as language
modeling.

From https://arxiv.org/pdf/2106.04554.pdf

Encoder only models

Bert
RoBERTa
BigBird
etc...

BERT

Output
Frobabiites
AT B Nosm
Fooo System MNLI-(m/mm) QP ONLI SST-2 Col A ST1S-B MRPC RTE Average
Eroen o 392k 363k 108k 67k 8.5k 5.7k 3.5k 2 5% -
S B Normn Pre-OpenAl SOTA S0.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
A 5 Mo e BILSTM+ELMo+Amm 76.4/76.1 64.8 79.8 90.4 36.0 733 84.9 56.8 71.0
Feed Attansion OpenAl GPT 82 1/81.4 M3 K74 913 454 S0.0 823 560 75.1
e o BERTsqse 84.6/83.4 712 0.5 93.5 521 85.8 889 66.4 79.6
B PACTD BERT: arer 86.7/85.9 72.1 927 94.9 6.5 86.5 893 70.1 82,1
=
c:;;zf Table 1: GLUE Test results, scored by the evaluation server (hstps: //gluebanchmark . com/ leaderboard).
5 The number below each 1ask denotes the number of training examples. The “Average™ column is slightly different
& than the official GLUE score, since we exclude the problematic WNLI set.® BERT and OpenAl GPT are single-
PE—— model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and
Q Encoding accuracy scores arc reported for the other tasks. We exclude entries that use BERT as onc of their components.
ut
Erbedding

Ouputs
fshifted dgn)

* Bert: Only uses encoder of transformer to derive word and sentence
embeddings

* Trained to “fill in the blanks”
* This is representation learning (more next lecture)

u
I

Decoder only models

These models rely on the decoder part of the original transformer and use an attention

mask so that at each position, the model can only look at the tokens before the
attention heads.

GPT models are one of the most famous ones.

GPT

Output
Frobabiities

Ao & Norm

Alec Radford et. al., Improving Language Understanding by Generative Pre-
Training

Table 5: Analysis of vanous model ablations on different tasks. Avg. score is a unweighted average

of all the results. (mce= Mathews correlation, ace=Accuracy, pc=Pearson correlation)

RN 1
Feed Method Avg. Score ColA SST2 MRPC STSB QQP MNLI OQNLI RTE
Feconurg | N (mc) (acc) (F1) (pc) (F1) (acc) (@) (acc)
Transformer w/ aux LM (full) 747 454 913 823 82.0 T0.3 S1.8 8s.1 56.0

EEEN :

EEERNES 3 Wezkod Transformer w/o pre-traming 59.9 189 840 79.4 09 655 757 712 538
":;_’r_;m‘n SARS-tlond Transformer w/o aux LM 75.0 47.9 920 849 53.2 69.8 81.1 86.9 544
— e LSTM w/ sux LM 69.1 303 905 832 718 68.1 73.7 81.1 54.6

Postonal
Encooing

O-¢

“out
Embeo

I

Inpots

Ot
Ermbeddirg

Outpuls
hifed rdgr)

GPT uses only the decoder of the transformer as an LM
— “Transformer w/o aux LM”

Large performance improvement in many tasks

(9]
N

Output
Probabilities

Encoder-Decoder

(| Add & Norm

Vanilla Transformer Feed
Forward
Bart

" 1 | Add & Norm z
T5 f_>| Add & Norm |

Multi-Head
etc... Feed Attention
Forward

2 2 N

3
— | %:
Add & Norm

~N

N>
f—->| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At At 2
— |
Q J \ —)
Positiqnal @ D @ ® Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Encoder

I ate

an

apple

<eos>

Decoder

Ich
\

habe. einen- apfel ~\gcgcssesi<cos>

D

v
D
A 4

=
>

e

<S0s>

Ich
v

k

habe ecinen | apfel essen
\# (f uﬁp \}g

Vision Transformers

ViT

Swin Transformer
ViViT

Image Transformer
etc...

Vision Transformers

Vision Transformer (ViT)

MLP
Head

|

Transformer Encoder

Pmmu@@@@@@@ééé

xtra learnable

e 1 ss] embedding Lincar Projection of Flattened Patches

TR

Transformer Encoder

Multi-Head
Attention

Embedded
Patches

Dosovitskiy et al, An
Image is Worth 16x16
Words: Transformers
for Image Recognition
at Scale, 2020

* Divide your image in patches with pos. encodings
* Apply Self-Attention!

- Sequential and image problems are similar when using

transformers

Great variety of Transformer variants

There is a great variety of transformers model for different modalities such as: Text, images,
Audio, Multimodal. Depending on the tasks, many architectures have been proposed for
various tasks like text classification, question answering, image classification, object
detection, speech recognition, visual question answering, etc...

Many pretrained transformer based models are available here:
https://huggingface.co/models

https://huggingface.co/models

Q&A

