11-785: Recitation 8 (Spring 22)
RNN Basics

Aparajith, Soumya, Shreyas, Lavanya

Sequential Data

e Data from which various inputs are dependent

e Examples:
o Text: “Hi. How are you doing today?”
Audio/speech
Video
Any other time series data like stock price, daily temperature, etc.

o O O

SONNET 16

———t—

- - Let me not to the marriage of true minds
Dogecoin price Admit impediments. Love is not love
March1510/45114;2021 Which alters when it alteration finds,

Or bends with the removet to remove:

°$0.13 0, no! it is an ever-fixed mark,
That looks on tempests and is never shaken;
Itis the star to every wandering batk,
Whose worth’s unknown, although his height be taken.
Love ’s not Time's fool, though rosy lips and cheeks
Within his bending sickle’s compass come;
Love alters not with his btief hours and weeks,
) o o w % T 1 T But bears it out even to the edge of doom.
. I this be etror, and upon me prov’d,
March 21 March 28 April 4 Apral 11 I never writ, not no man ever lov’d.

Wil Sl S

Py
@
@
<
9]
=}
o]
@
>
f
=
IS
92}
I
o
o
S
%)
>
<4
<
ol
o)
e}

https://towardsdatascience.com/beginners-guide-to-speech-analysis-4690ca7a7c05
https://news.yahoo.com/irrational-price-dogecoin-says-crypto-155601082.html
https://www.amazon.com/William-Shakespeare-Boyfriend-Girlfriend-Parchment/dp/B07WQQCTC6?th=1
https://knoow.net/ciencinformtelec/informatica/frame/

Data Modeling

one to many
one to one "man in black shirt is playing
guitar.”
T J - S T T T
----- Ly s . > [
Input image Convolution Layer ~ ReLU Layer Pooling Layer \\\ // Output
‘\‘—/ Classes
T Fully Connected
Layer
Image Classification (ref) Image Captioning (ref)

(https://i.stack.imgur.com/b4sus.jpg)

https://media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs40537-021-00444-8/MediaObjects/40537_2021_444_Fig7_HTML.png
https://media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs40537-021-00444-8/MediaObjects/40537_2021_444_Fig7_HTML.png

Data Modeling

many to one many to many many to many

The Batman (2022) is everything a “How are you?” -> “6TLILIlq. Video
superhero movie should be. (Positive) @@é&éﬂﬁli&iéﬂ""

https://www.youtube.com/watch?v=zB_2q-UUZ4s&t=17s

Recurrent Neural Networks

- Looping network

- Parameter sharing across
timesteps

- Derivatives aggregated across all

time steps L

- “Backpropagation through time

®

!

” A
(BPTT) é

(http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

RNN Unrolled

®)
]

@—>—®

© O
ARy SHp Wy
6 Y o o ©

An unrolled recurrent neural network.

>

)
!
A

6

(http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Problems with RNN

A S
e Short term memory
e Exploding gradients [A 'E ﬂ A }
e \Vanishing gradients | |
&) © &

Factors governing the retention of memory in RNN:
e \Weights of the recurrent layers
e Bias of the recurrent layers
e Activation function used in recurrent layers

LSTM Cell (Variation 1)

LSTM computation: Forward

Ce—1 /f'\ \ Ce

X
)

10) |o'0 | | tanh I c()
ht—l / ht

Xt
e Forward rules:
Gates Variables

ft =0 (Wf'[Ct—laht—17:I;t] -+ bf) ét — tanh(WC- [/’Ltfl, a:t] -+ bc)
ii, =" (Wi'[Ct—17ht—1-,xi.] -+ bl) Ct = ft >k Ct—l -+ it >k ét
Oy — O (Wo~[C't, htfl,l‘t] -+ bo) hy = oy * tanh (Cf)

(Gers and Schmidhuber 2000: Recurrent Nets that Time and Count)

LSTM Cell (Variation 2)

Key components: Cell state, Forget gate, Input gate and output gate

Ct1

£y = O'Q(wat + Ufht_l + bf)
Ty = O'Q(Wi{l:t +U;hi_1 + bi)

or = 0qg(Woxy + Ughi—1 + b,)
¢t = o (Wezy + Uchy—1 + be)
¢t = ftoci1 +1 0Cy

ht = 0t © ah(ct)

Layer Componentwise Copy Concatenate

Legend: — a0

Torch example to understand parameters and shapes

]
[oey

input_size # The number of variables in your sequence data.

n_hidden = 160 # The number of hidden nodes in the LSTM layer.
n_layers = 2 # The total number of LSTM layers to stack.
out_size =1 # The size of the output you desire from your RNN.
lstm = nn.LSTM(input_size, n_hidden, n_layers, batch_first=True)

linear = nn.lLinear(n_hidden, 1)

Input output shapes

1. network input shape: (batch size, seq length, num features)
2. LSTM output shape: (batch_size, seq_length, hidden_size)
3. Linear input shape: (batch_size * seq length, hidden size)

4. Linear output: (batch_size * seq_length, out_size)

https://towardsdatascience.com/Istms-in-pytorch-528b0440244

Caution in PyTorch Implementation

© 1 import torch
2
3 1stm = torch.nn.LSTM(input_size = 1, hidden_size = 4, num_layers = 1)
4 for name, param in lstm.named_parameters():
5 print(name, param.shape)

> weight_ih_10 torch.Size([16, 1])
weight_hh_10 torch.Size([16, 4])
bias_ih_10 torch.Size([16])
bias_hh_10 torch.Size([16])

Questions:
1. What are weight_ih and weight_hh?
2. How to interpret the dimensions?
3. Which version of LSTM is this?
4. How should you use initialization (e.g. Xavier, Kaiming)?

Caution in PyTorch Implementation

© 1 import torch
2
3 1stm = torch.nn.LSTM(input_size = 1, hidden_size = 4, num_layers = 1)
4 for name, param in lstm.named_parameters():
5 print(name, param.shape)

> weight_ih_10 torch.Size([16, 1])
weight_hh_10 torch.Size([16, 4])
bias_ih_10 torch.Size([16])
bias_hh_10 torch.Size([16])

Questions:
1. What are weight_ih and weight_hh? Input weights and hidden weights
2. How to interpret the dimensions? Input, forget, cell, and output weights stacked (reference)
3. Which version of LSTM is this? Wikipedia version (no peephole connection)
4. How should you use initialization (e.g. Xavier, Kaiming)? We initialize each one of four

(three if GRU) matrices separately

https://discuss.pytorch.org/t/lstm-gru-gate-weights/2807

Performance per LSTM Component

classif cation error in %

35

33

31

28}

CIFG: GRU, NP: No peepholes, FGR: Full gate recurrence, NOG: No output gate, NIG:

L

CTIMIT

w

.

-5}

V CIFG FGR NP

NOG NIAF NIG NFG NOAF

number of parameters *10°

character error rate

R

8

G

10

L

" IAM Online

t

L L

HE}

- - - fah

{
¢

\% CIFG FGR

2

NIAF: No input activation function, NOAF: No output activation function)

VP NOG NIAF NIG NFG NOAF

3.0

25

10

number of parameters ¥0°

05

negative log-likelihood

No input gate, NFG: No forget gate,

88

0
~

86

85

84

(Greff et al. 2017: LSTM: A Search Space Odyssey)

AL

L L

JSB Chorales

L L !

1

1

16

14

0.6

04

0.2

0.0
V CIFG FGR NP NOG NIAF NIG NFG NOAF

number of narameters ¥10°

Performance per LSTM Component

Arch. Arith. XML PTB

Tanh 0.29493 | 0.32050 | 0.08782
LSTM 0.89228 | 0.42470 | 0.08912
LSTM-f | 0.29292 | 0.23356 | 0.08808
LSTM-1 || 0.75109 | 0.41371 | 0.08662
LSTM-o || 0.86747 | 0.42117 | 0.08933
LSTM-b || 0.90163 | 0.44434 | 0.08952
GRU 0.89565 | 0.45963 | 0.09069
MUT1 0.92135 | 0.47483 | 0.08968
MUT2 0.89735 | 0.47324 | 0.09036
MUT3 0.90728 | 0.46478 | 0.09161

(Jozefowicz et al. 2015: An Empirical Exploration of Recurrent Network Architectures)

GRU Cell

Rt = U(Wz ' [ht—laxt])
g (Wr ' [ht—laxt])
hy = tanh (W - [ry % hy_1, z4])

=
o~
1

ht:(l—zt)*ht_1+zt*ilt

GRUs can’t count! (Weiss et al. 2018: On the Practical Computational
Power of Finite Precision RNNs for Language Recognition)

Bidirectional RNN

v

W(T — 1)

h(T)

hy(T 1)

<
<

hy, (T)

ST I e R ST ORI Dep e TIRTREROTT
/*hfm) /fhf(n /fhf(r - 1) ﬂhf(r)

hp, (0)

X(0)

X(1)

X(T-1)

X(T)
> t

Actual Network with BRNNSs:

Y(0) Y(1) Y(T-1) Y(T)

