
Recitation 9

CTCDecodingandBeamSearch

Slides by - Sean Pereiraand Tony Qin

Soumya Empran & Ameya Mahabaleshwarkar

Sequence to Sequence Modeling

● Problem:

○ Input Sequence:

○ Output Sequence:

●

HW3P2 Problem: Sequence to Sequence with Order Synchrony

● In HW1P2, we utilized sequence classification for phoneme recognition. We can manage this

problem by applying a variant using recurrent nets.

● Left: Sequence of inputs produces a single output; Right: How???

New: Complex Problem - Training

● Objective: Given a sequence of inputs, asynchronously output a sequence of symbols

○ Concatenation of many copies of the simple model in the previous slide

● In the previous model, we ignored intermediate steps. However, we can exploit the untagged

inputs and assume the same output.

● How do we know when to output symbols?

○ Apply our ideas from HW1P2:

■ At each time in the network outputs a probability for each output symbol given all inputs until that

time.

■ The most likely symbol sequence given the inputs.How?

● Possible Solutions
○ Solution1:Simply select the most probable symbol at each time. Merge adjacent repeated symbols, and place

the actual emission of the symbol in the final instant.

■ Issue1:This isn’t the most probable sequenceof symbols

■ Issue2:Cannot distinguish between an extended symbol and repetitions of the symbol

○ Solution2: Impose external constraints on what sequences are allowed

■ Issue1:A suboptimal decode that actually finds the most likely time-synchronous output sequence.

Will be discussed in lecture.

LecturewilldiscusscomputingDivergence

● Overall Solution:

○ Apply both previous solutions

■ At each time the network outputs a probability for each output symbol

■ Block out all rows that do not include symbols from the target sequence

■ Compose a graph such that every path in the graph from source to sink represents a valid alignment

● Find the most probable sequence of symbols using the graph above

○ Edge scores have a probability of 1

○ Nodes scores are probabilities resulting from the neural network

Lecture will discuss how to find the most probable sequence given the graph and how to compute the

divergence once we get the most probable sequence

Repetition Issue and Solution
● We have a decode:

○ R R R O O O O O D

○ Is this the symbol sequence ROD or ROOD?

● Introduce an explicit extra symbol which serves to separate discrete versions of a symbol (Blank)

○ RRR---OO---DDD = ROD

○ –RR-R---OO---D-DD =RRODD

● The label recognized by the network must now include the extra blank symbol that will need to be

trained

Final Graph

CTC - Training Procedure

1. Setup Network

a. Many LSTM

2. Initialize network with a Blank Symbol

3. Pass training instances through network to obtain probabilities for all labels/symbols

4. Construct graph on previous page

5. Forward and Backward Algorithm - Lecture

6. Compute Divergence - Lecture

7. Update Parameters

ConnectionistTemporalClassification

The forward output

Greedy Search

● Greedy Search is an easy-to-implement option for CTC decoding at inference time
● Greedy Search simply selects the most probable time step at each time-step
● Although this method is easy to implement and fast, it has the disadvantage of missing

out on high-probability (score) overall paths due to it’s greedy search

Exhaustive Search

● An alternative to the “short-sighted” Greedy Search, we can conduct a search over all
possible paths, and then select the best possible output

● This method will guarantee decoding an optimal path / sequence
● The disadvantage is that Exhaustive Search will be exponential in output symbol

sequences, and hence is not a feasible option

Beam Search

● To have better decoding than Greedy Search, but keep the method feasible at the
same time, we can choose to “explore” top-k paths at each time-step

● By exploring more than one most-probable output sequences at each time-step, we will
reach a sub-optimal path that is likely to be better than the Greedy Search strategy

● By limiting our exploration options to a specific Beam Width - k, we also ensure that
the computation is tractable, as opposed to the Exhaustive Search strategy

Let’s use some actual values

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1

NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =

InitializePaths(SymbolSet, y[:,0])

Subsequent time steps

for t = 1:T

Prune the collection down to the BeamWidth

PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =

Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,

NewBlankPathScore, NewPathScore, BeamWidth)

First extend paths by a blank

NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,

PathsWithTerminalSymbol, y[:,t])

Next extend paths by a symbol

NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,

PathsWithTerminalSymbol, SymbolSet, y[:,t])

end

Merge identical paths differing only by the final blank

MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore

NewPathsWithTerminalSymbol, NewPathScore)

Pick best path

BestPath = argmax(FinalPathScore) # Find the path with the best score

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1

NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =

InitializePaths(SymbolSet, y[:,0])

Subsequent time steps

for t = 1:T

Prune the collection down to the BeamWidth

PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =

Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,

NewBlankPathScore, NewPathScore, BeamWidth)

First extend paths by a blank

NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,

PathsWithTerminalSymbol, y[:,t])

Next extend paths by a symbol

NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,

PathsWithTerminalSymbol, SymbolSet, y[:,t])

end

Merge identical paths differing only by the final blank

MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore

NewPathsWithTerminalSymbol, NewPathScore)

Pick best path

BestPath = argmax(FinalPathScore) # Find the path with the best score

InitialPathWithFinalSymbols

S2

S1

InitialPathWithFinalBlank

BEAM SEARCH InitializePaths: FIRST TIME INSTANT

function InitializePaths(SymbolSet, y)

InitialBlankPathScore = [], InitialPathScore = []

First push the blank into a path-ending-with-blank stack. No symbol has been invoked yet

path = null

InitialBlankPathScore[path] = y[blank] # Score of blank at t=1

InitialPathsWithFinalBlank = {path}

Push rest of the symbols into a path-ending-with-symbol stack

InitialPathsWithFinalSymbol = {}

for c in SymbolSet # This is the entire symbol set, without the blank

path = c

InitialPathScore[path] = y[c] # Score of symbol c at t=1

InitialPathsWithFinalSymbol += path # Set addition

end

return InitialPathsWithFinalBlank, InitialPathsWithFinalSymbol,
InitialBlankPathScore, InitialPathScore

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1

NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathS core, NewPathScore =
InitializePaths(SymbolSet, y[:,0])

Subsequent time steps

for t = 1:T

Prune the collection down to the BeamWidth
PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =

Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,

NewBlankPathScore, NewPathScore, BeamWidth)

First extend paths by a blank

NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,

PathsWithTerminalSymbol, y[:,t])

Next extend paths by a symbol

NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,

PathsWithTerminalSymbol, SymbolSet, y[:,t])

end

Merge identical paths differing only by the final blank

MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore

NewPathsWithTerminalSymbol, NewPathScore)

Pick best path

BestPath = argmax(FinalPathScore) # Find the path with the best score

We will visit this routine
after discussing the rest of
the loop
(to avoid confusion)

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1

NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =

InitializePaths(SymbolSet, y[:,0])

Subsequent time steps

for t = 1:T

Prune the collection down to the BeamWidth

PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =

Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,

NewBlankPathScore, NewPathScore, BeamWidth)
First extend paths by a blank
NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,

PathsWithTerminalSymbol, y[:,t])

Next extend paths by a symbol

NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,

PathsWithTerminalSymbol, SymbolSet, y[:,t])

end

Merge identical paths differing only by the final blank

MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore

NewPathsWithTerminalSymbol, NewPathScore)

Pick best path

BestPath = argmax(FinalPathScore) # Find the path with the best score

Only transitions into

nodes on the rows

corresponding to

blanks

(only at t=1)

UpdatedPathsWIthTerminalBlank

S2

S1

BEAM SEARCH: Extending with blanks

Global PathScore, BlankPathScore

function ExtendWithBlank(PathsWithTerminalBlank, PathsWithTerminalSymbol, y)

UpdatedPathsWithTerminalBlank = {}

UpdatedBlankPathScore = []

First work on paths with terminal blanks

#(This represents transitions along horizontal trellis edges for blanks)

for path in PathsWithTerminalBlank:

Repeating a blank doesn’t change the symbol sequence

UpdatedPathsWithTerminalBlank += path # Set addition

UpdatedBlankPathScore[path] = BlankPathScore[path]*y[blank]

end

Then extend paths with terminal symbols by blanks

for path in PathsWithTerminalSymbol:

If there is already an equivalent string in UpdatesPathsWithTerminalBlank

simply add the score. If not create a new entry

if path in UpdatedPathsWithTerminalBlank

UpdatedBlankPathScore[path] += Pathscore[path]* y[blank]

else

UpdatedPathsWithTerminalBlank += path # Set addition

UpdatedBlankPathScore[path] = PathScore[path] * y[blank]

end

end

return UpdatedPathsWithTerminalBlank,
UpdatedBlankPathScore

(only at t=1)

UpdatedPathsWIthTerminalBlank

S2

S1

BEAM SEARCH: Extending with blanks

Global PathScore, BlankPathScore

function ExtendWithBlank(PathsWithTerminalBlank, PathsWithTerminalSymbol, y)

UpdatedPathsWithTerminalBlank = {}

UpdatedBlankPathScore = []

First work on paths with terminal blanks

#(This represents transitions along horizontal trellis edges for blanks)

for path in PathsWithTerminalBlank:

Repeating a blank doesn’t change the symbol sequence

UpdatedPathsWithTerminalBlank += path # Set addition

UpdatedBlankPathScore[path] = BlankPathScore[path]*y[blank]

end

Then extend paths with terminal symbols by blanks

for path in PathsWithTerminalSymbol:

If there is already an equivalent string in UpdatesPathsWithTerminalBlank

simply add the score. If not create a new entry

if path in UpdatedPathsWithTerminalBlank

UpdatedBlankPathScore[path] += Pathscore[path]* y[blank]

else

UpdatedPathsWithTerminalBlank += path # Set addition

UpdatedBlankPathScore[path] = PathScore[path] * y[blank]

end

end

return UpdatedPathsWithTerminalBlank,
UpdatedBlankPathScore

Transitions from
“blank” lines

to “blank” lines
(which will all be
horizontal edges)

(only at t=1)

UpdatedPathsWIthTerminalBlank

S2

S1

BEAM SEARCH: Extending with blanks

Global PathScore, BlankPathScore

function ExtendWithBlank(PathsWithTerminalBlank, PathsWithTerminalSymbol, y)

UpdatedPathsWithTerminalBlank = {}

UpdatedBlankPathScore = []

First work on paths with terminal blanks

#(This represents transitions along horizontal trellis edges for blanks)

for path in PathsWithTerminalBlank:

Repeating a blank doesn’t change the symbol sequence

UpdatedPathsWithTerminalBlank += path # Set addition

UpdatedBlankPathScore[path] = BlankPathScore[path]*y[blank]

end

Then extend paths with terminal symbols by blanks

for path in PathsWithTerminalSymbol:

If there is already an equivalent string in UpdatesPathsWithTerminalBlank

simply add the score. If not create a new entry

if path in UpdatedPathsWithTerminalBlank

UpdatedBlankPathScore[path] += Pathscore[path]* y[blank]

else

UpdatedPathsWithTerminalBlank += path # Set addition

UpdatedBlankPathScore[path] = PathScore[path] * y[blank]

end

end

return UpdatedPathsWithTerminalBlank,
UpdatedBlankPathScore

Transitions from
“symbol” lines
to “blank” lines

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1

NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =

InitializePaths(SymbolSet, y[:,0])

Subsequent time steps

for t = 1:T

Prune the collection down to the BeamWidth

PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =

Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,

NewBlankPathScore, NewPathScore, BeamWidth)

First extend paths by a blank

NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,

PathsWithTerminalSymbol, y[:,t])

Next extend paths by a symbol

NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,

PathsWithTerminalSymbol, SymbolSet, y[:,t])

end

Merge identical paths differing only by the final blank

MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore

NewPathsWithTerminalSymbol, NewPathScore)

Pick best path

BestPath = argmax(FinalPathScore) # Find the path with the best score

(figure shows path extensions for only 2 time steps)

Only transitions into

nodes on the rows

corresponding to

non-blank symbols

BEAM SEARCH: Extending with symbols

Global PathScore, BlankPathScore

function ExtendWithSymbol(PathsWithTerminalBlank, PathsWithTerminalSymbol, SymbolSet, y)

UpdatedPathsWithTerminalSymbol = {}

UpdatedPathScore = []

First extend the paths terminating in blanks. This will always create a new sequence

for path in PathsWithTerminalBlank:

for c in SymbolSet: # SymbolSet does not include blanks

newpath = path + c # Concatenation

UpdatedPathsWithTerminalSymbol += newpath # Set addition

UpdatedPathScore[newpath] = BlankPathScore[path] * y(c)

end

end

Next work on paths with terminal symbols

for path in PathsWithTerminalSymbol:

Extend the path with every symbol other than blank

for c in SymbolSet: # SymbolSet does not include blanks

newpath = (c == path[end]) ? path : path + c # Horizontal transitions don’t extend the sequence

if newpath in UpdatedPathsWithTerminalSymbol: # Already in list, merge paths

UpdatedPathScore[newpath] += PathScore[path] * y[c]

else # Create new path

UpdatedPathsWithTerminalSymbol += newpath # Set addition

UpdatedPathScore[newpath] = PathScore[path] * y[c]

end

end

end

return UpdatedPathsWithTerminalSymbol, UpdatedPathScore

(only at t=1)

UpdatedPathsWIthTerminalSymbol

S2

S1

BEAM SEARCH: Extending with symbols

Global PathScore, BlankPathScore

function ExtendWithSymbol(PathsWithTerminalBlank, PathsWithTerminalSymbol, SymbolSet, y)

UpdatedPathsWithTerminalSymbol = {}

UpdatedPathScore = []

First extend the paths terminating in blanks. This will always create a new sequence

for path in PathsWithTerminalBlank:

for c in SymbolSet: # SymbolSet does not include blanks

newpath = path + c # Concatenation

UpdatedPathsWithTerminalSymbol += newpath # Set addition

UpdatedPathScore[newpath] = BlankPathScore[path] * y(c)

end

end

Next work on paths with terminal symbols

for path in PathsWithTerminalSymbol:

Extend the path with every symbol other than blank

for c in SymbolSet: # SymbolSet does not include blanks

newpath = (c == path[end]) ? path : path + c # Horizontal transitions don’t extend the sequence

if newpath in UpdatedPathsWithTerminalSymbol: # Already in list, merge paths

UpdatedPathScore[newpath] += PathScore[path] * y[c]

else # Create new path

UpdatedPathsWithTerminalSymbol += newpath # Set addition

UpdatedPathScore[newpath] = PathScore[path] * y[c]

end

end

end

return UpdatedPathsWithTerminalSymbol, UpdatedPathScore

(only at t=1)

UpdatedPathsWIthTerminalSymbol

S2

S1

(figure shows path extensions for only 2 time steps)

Transitions from
“blank” lines
to “symbol” lines

BEAM SEARCH: Extending with symbols

Global PathScore, BlankPathScore

function ExtendWithSymbol(PathsWithTerminalBlank, PathsWithTerminalSymbol, SymbolSet, y)

UpdatedPathsWithTerminalSymbol = {}

UpdatedPathScore = []

First extend the paths terminating in blanks. This will always create a new sequence

for path in PathsWithTerminalBlank:

for c in SymbolSet: # SymbolSet does not include blanks

newpath = path + c # Concatenation

UpdatedPathsWithTerminalSymbol += newpath # Set addition

UpdatedPathScore[newpath] = BlankPathScore[path] * y(c)

end

end

Next work on paths with terminal symbols

for path in PathsWithTerminalSymbol:

Extend the path with every symbol other than blank

for c in SymbolSet: # SymbolSet does not include blanks

newpath = (c == path[end]) ? path : path + c # Horizontal transitions don’t extend the sequence

if newpath in UpdatedPathsWithTerminalSymbol: # Already in list, merge paths

UpdatedPathScore[newpath] += PathScore[path] * y[c]

else # Create new path

UpdatedPathsWithTerminalSymbol += newpath # Set addition

UpdatedPathScore[newpath] = PathScore[path] * y[c]

end

end

end

return UpdatedPathsWithTerminalSymbol, UpdatedPathScore

(only at t=1)

UpdatedPathsWIthTerminalSymbol

S2

S1

(figure shows path extensions for only 2 time steps)

Transitions from
“symbol” lines

to “symbol” lines
(including horizontal
transitions)

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1

NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =

InitializePaths(SymbolSet, y[:,0])

Subsequent time steps

for t = 1:T

Prune the collection down to the BeamWidth
PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =

Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,

NewBlankPathScore, NewPathScore, BeamWidth)

First extend paths by a blank

NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(P

Pa
athsWithTerminalBlank,
thsWithTerminalSymbol, y[:,t])

sWithTerminalBlank,

Next extend paths by a symbol

NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(Path
PathsWithTerminalSymbol, SymbolSet, y[:,t])

end

Merge identical paths differing only by the final blank

MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore

NewPathsWithTerminalSymbol, NewPathScore)

Pick best path

BestPath = argmax(FinalPathScore) # Find the path with the best score

Returning to this routine

Pruning deletes unpromising paths
from contention, to reduce
computation

Consider this instant

BEAM SEARCH: Pruning low-scoring entries

Global PathScore, BlankPathScore

function Prune(PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)

PrunedBlankPathScore = []

PrunedPathScore = []

First gather all the relevant scores

i = 1

for p in PathsWithTerminalBlank

scorelist[i] = BlankPathScore[p]

i++

end

for p in PathsWithTerminalSymbol

scorelist[i] = PathScore[p]

i++

end

Sort and find cutoff score that retains exactly BeamWidth paths

sort(scorelist) # In decreasing order

cutoff = BeamWidth < length(scorelist) ? scorelist[BeamWidth] : scorelist[end]

PrunedPathsWithTerminalBlank = {}

for p in PathsWithTerminalBlank

if BlankPathScore[p] >= cutoff

PrunedPathsWithTerminalBlank += p# Set addition

PrunedBlankPathScore[p] = BlankPathScore[p]

end

end

PrunedPathsWithTerminalSymbol = {}

for p in PathsWithTerminalSymbol

endif PathScore[p] >= cutoff PrunedPathsWithTerminalSymbol += p# Set addition PrunedPathScore[p] =

PathScore[p]

end

return PrunedPathsWithTerminalBlank, PrunedPathsWithTerminalSymbol, PrunedBlankPathScore, PrunedPathScore

BEAM SEARCH: Pruning low-scoring entries

Global PathScore, BlankPathScore

function Prune(PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)

PrunedBlankPathScore = []

PrunedPathScore = []

First gather all the relevant scores

i = 1

for p in PathsWithTerminalBlank

scorelist[i] = BlankPathScore[p]

i++

end

for p in PathsWithTerminalSymbol

scorelist[i] = PathScore[p]

i++

end

Sort and find cutoff score that retains exactly BeamWidth paths

sort(scorelist) # In decreasing order

cutoff = BeamWidth < length(scorelist) ? scorelist[BeamWidth] : scorelist[end]

PrunedPathsWithTerminalBlank = {}

for p in PathsWithTerminalBlank

if BlankPathScore[p] >= cutoff

PrunedPathsWithTerminalBlank += p# Set addition

PrunedBlankPathScore[p] = BlankPathScore[p]

end

end

PrunedPathsWithTerminalSymbol = {}

for p in PathsWithTerminalSymbol

if PathScore[p] >= cutoff

PrunedPathsWithTerminalSymbol += p# Set addition

PrunedPathScore[p] = PathScore[p]

end

end

return PrunedPathsWithTerminalBlank, PrunedPathsWithTerminalSymbol, PrunedBlankPathScore, PrunedPathScore

Consider this instant

Aggregate scores from

both “symbol” rows

and “blank” rows

BEAM SEARCH: Pruning low-scoring entries

Global PathScore, BlankPathScore

function Prune(PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)

PrunedBlankPathScore = []

PrunedPathScore = []

First gather all the relevant scores

i = 1

for p in PathsWithTerminalBlank

scorelist[i] = BlankPathScore[p]

i++

end

for p in PathsWithTerminalSymbol

scorelist[i] = PathScore[p]

i++

end

Sort and find cutoff score that retains exactly BeamWidth paths

sort(scorelist) # In decreasing order

cutoff = BeamWidth < length(scorelist) ? scorelist[BeamWidth] : scorelist[end]

PrunedPathsWithTerminalBlank = {}

for p in PathsWithTerminalBlank

if BlankPathScore[p] >= cutoff

PrunedPathsWithTerminalBlank += p# Set addition

PrunedBlankPathScore[p] = BlankPathScore[p]

end

end

PrunedPathsWithTerminalSymbol = {}

for p in PathsWithTerminalSymbol

if PathScore[p] >= cutoff

PrunedPathsWithTerminalSymbol += p# Set addition

PrunedPathScore[p] = PathScore[p]

end

end

return PrunedPathsWithTerminalBlank, PrunedPathsWithTerminalSymbol, PrunedBlankPathScore, PrunedPathScore

Sort the scores
Find the largest score
Find the cutoff score (the Kth largest score)

BEAM SEARCH: Pruning low-scoring entries

Global PathScore, BlankPathScore

function Prune(PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)

PrunedBlankPathScore = []

PrunedPathScore = []

First gather all the relevant scores

i = 1

for p in PathsWithTerminalBlank

scorelist[i] = BlankPathScore[p]

i++

end

for p in PathsWithTerminalSymbol

scorelist[i] = PathScore[p]

i++

end

Sort and find cutoff score that retains exactly BeamWidth paths

sort(scorelist) # In decreasing order

cutoff = BeamWidth < length(scorelist) ? scorelist[BeamWidth] : scorelist[end]

PrunedPathsWithTerminalBlank = {}

for p in PathsWithTerminalBlank

if BlankPathScore[p] >= cutoff

PrunedPathsWithTerminalBlank += p# Set addition

PrunedBlankPathScore[p] = BlankPathScore[p]

end

end

PrunedPathsWithTerminalSymbol = {}

for p in PathsWithTerminalSymbol

if PathScore[p] >= cutoff

PrunedPathsWithTerminalSymbol += p# Set addition

PrunedPathScore[p] = PathScore[p]

end

end

return PrunedPathsWithTerminalBlank, PrunedPathsWithTerminalSymbol, PrunedBlankPathScore, PrunedPathScore

Find nodes on
“blank” rows
with scores above cutoff

and add them to the
“active” list

Consider this instant

Effectively, prune out

nodes on “blank” rows
with scores below cutoff

They will subsequently
not contribute to the
computation

Retain nodes on
“blank” rows
with scores above cutoff

BEAM SEARCH: Pruning low-scoring entries

Global PathScore, BlankPathScore

function Prune(PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)

PrunedBlankPathScore = []

PrunedPathScore = []

First gather all the relevant scores

i = 1

for p in PathsWithTerminalBlank

scorelist[i] = BlankPathScore[p]

i++

end

for p in PathsWithTerminalSymbol

scorelist[i] = PathScore[p]

i++

end

Sort and find cutoff score that retains exactly BeamWidth paths

sort(scorelist) # In decreasing order

cutoff = BeamWidth < length(scorelist) ? scorelist[BeamWidth] : scorelist[end]

PrunedPathsWithTerminalBlank = {}

for p in PathsWithTerminalBlank

if BlankPathScore[p] >= cutoff

PrunedPathsWithTerminalBlank += p# Set addition

PrunedBlankPathScore[p] = BlankPathScore[p]

end

end

PrunedPathsWithTerminalSymbol = {}

for p in PathsWithTerminalSymbol

if PathScore[p] >= cutoff

PrunedPathsWithTerminalSymbol += p# Set addition

PrunedPathScore[p] = PathScore[p]

end

end

return PrunedPathsWithTerminalBlank, PrunedPathsWithTerminalSymbol, PrunedBlankPathScore, PrunedPathScore

Find nodes on
“symbol” rows
with scores above cutoff

and add them to the
“active” list

Consider this instant

Retain nodes on
“symbol” rows
with scores above cutoff

Effectively prune out

nodes on “symbol” rows
with scores below cutoff

They will subsequently
not contribute to the
computation

Retain nodes on
“symbol” rows
with scores above cutoff

Effectively prune out

nodes on “symbol” rows
with scores below cutoff

They will subsequently
not contribute to the
computation

Consider this instant

BEAM SEARCH: Pruning low-scoring entries

Global PathScore, BlankPathScore

function Prune(PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)

PrunedBlankPathScore = []

PrunedPathScore = []

First gather all the relevant scores

i = 1

for p in PathsWithTerminalBlank

scorelist[i] = BlankPathScore[p]

i++

end

for p in PathsWithTerminalSymbol

scorelist[i] = PathScore[p]

i++

end

Sort and find cutoff score that retains exactly BeamWidth paths

sort(scorelist) # In decreasing order

cutoff = BeamWidth < length(scorelist) ? scorelist[BeamWidth] : scorelist[end]

PrunedPathsWithTerminalBlank = {}

for p in PathsWithTerminalBlank

if BlankPathScore[p] >= cutoff

PrunedPathsWithTerminalBlank += p# Set addition

PrunedBlankPathScore[p] = BlankPathScore[p]

end

end

PrunedPathsWithTerminalSymbol = {}

for p in PathsWithTerminalSymbol

if PathScore[p] >= cutoff

PrunedPathsWithTerminalSymbol += p# Set addition

PrunedPathScore[p] = PathScore[p]

end

end

return PrunedPathsWithTerminalBlank, PrunedPathsWithTerminalSymbol, PrunedBlankPathScore, PrunedPathScore

The overall effect of these steps:

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1

NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPat hScore, NewPathScore =
InitializePaths(SymbolSet, y[:,0])

Subsequent time steps

for t = 1:T

Prune the collection down to the BeamWidth

PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =

Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,

NewBlankPathScore, NewPathScore, BeamWidth)

First extend paths by a blank

Next extend paths by a symbol

NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(Pa

PathsWith

PathsWithTerminalBlank,
athsWithTerminalSymbol, y[:,t])

thsWithTerminalBlank,
TerminalSymbol, SymbolSet, y[:,t])

end

Merge identical paths differing only by the final blank

MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore

NewPathsWithTerminalSymbol, NewPathScore)

Pick best path

BestPath = argmax(FinalPathScore) # Find the path with the best score

Why is the pruning here and not at
the end of the loop?

NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(Because we don’t want to prune paths at
P

the final time. This loses
information.
Instead at the final time we will merge
paths that represent the same symbol
sequence

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1

NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =

InitializePaths(SymbolSet, y[:,0])

Subsequent time steps

for t = 1:T

Prune the collection down to the BeamWidth

PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =

Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,

NewBlankPathScore, NewPathScore, BeamWidth)

First extend paths by a blank

NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,

PathsWithTerminalSymbol, y[:,t])

Next extend paths by a symbol

NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,

PathsWithTerminalSymbol, SymbolSet, y[:,t])

end

Merge identical paths differing only by the final blank

MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore

NewPathsWithTerminalSymbol, NewPathScore)

Pick best path

BestPath = argmax(FinalPathScore) # Find the path with the best score

Merge scores for

“S2” and “S2-”

S2 -

S1 -

S2

S1

Merge scores for

“S1” and “S1-”

BEAM SEARCH: Merging final paths

Global PathScore, BlankPathScore

function MergeIdenticalPaths(PathsWithTerminalBlank, PathsWithTerminalSymbol)

All paths with terminal symbols will remain

MergedPaths = PathsWithTerminalSymbol

FinalPathScore = PathScore

Paths with terminal blanks will contribute scores to existing identical paths from

PathsWithTerminalSymbol if present, or be included in the final set, otherwise

for p in PathsWithTerminalBlank

if p in MergedPaths

FinalPathScore[p] += BlankPathScore[p]

else

MergedPaths += p# Set addition

FinalPathScore[p] = BlankPathScore[p]

end

end

return MergedPaths, FinalPathScore

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1

NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =

InitializePaths(SymbolSet, y[:,0])

Subsequent time steps

for t = 1:T

Prune the collection down to the BeamWidth

PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =

Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,

NewBlankPathScore, NewPathScore, BeamWidth)

First extend paths by a blank

NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,

PathsWithTerminalSymbol, y[:,t])

Next extend paths by a symbol

NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,

PathsWithTerminalSymbol, SymbolSet, y[:,t])

end

Merge identical paths differing only by the final blank

MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore

NewPathsWithTerminalSymbol, NewPathScore)

Pick best path

BestPath = argmax(FinalPathScore) # Find the path with the best score

