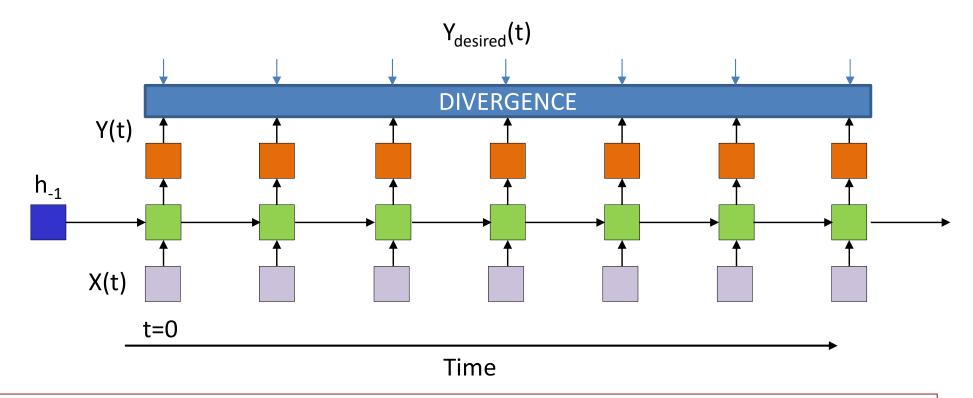
Deep Learning Recurrent Networks: Part 4 Spring 2022

Story so far



- Recurrent structures can be trained by minimizing the divergence between the *sequence* of outputs and the *sequence* of desired outputs
 - Through gradient descent and backpropagation
- The challenge: Defining this divergence
 - Inputs and outputs may not be time aligned or even synchronous

Variants of recurrent nets

one to one

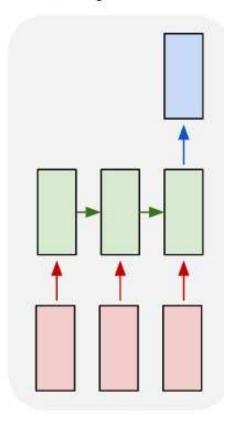
many to many

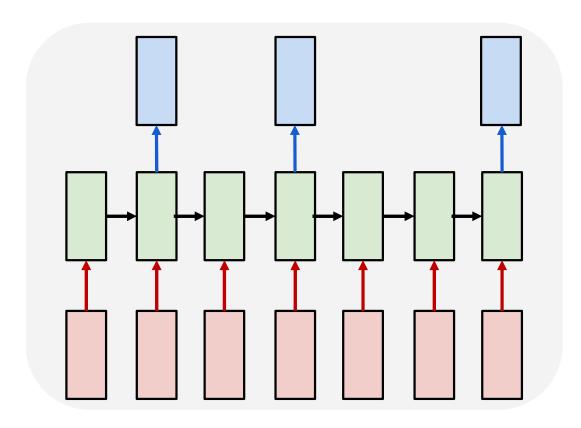
Images from Karpathy

- Conventional MLP
- Time-synchronous outputs
 - E.g. part of speech tagging

Variants of recurrent nets

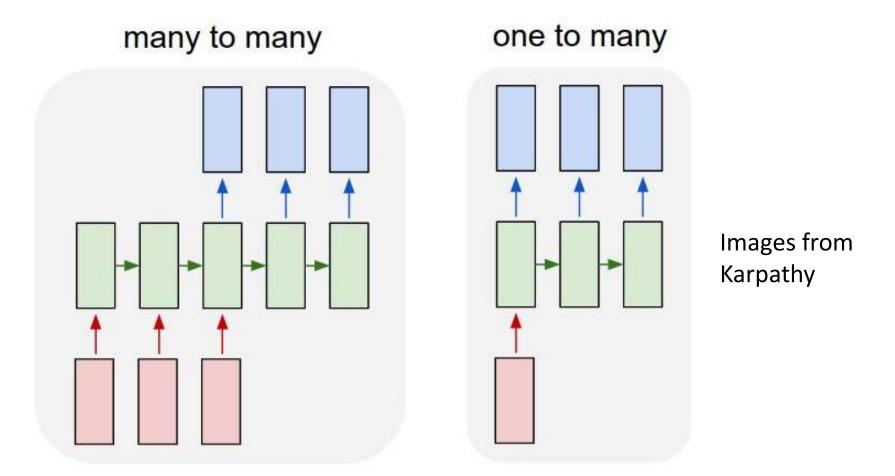
many to one





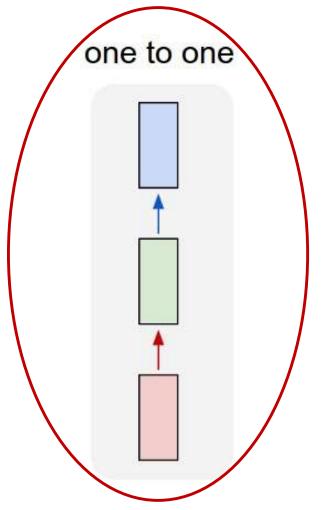
- Sequence classification: Classifying a full input sequence
 - E.g isolated word/phrase recognition
- Order synchronous, time asynchronous sequence-to-sequence generation
 - E.g. speech recognition
 - Exact location of output is unknown a priori

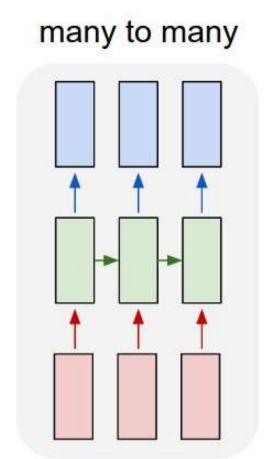
More variants



- A posteriori sequence to sequence: Generate output sequence after processing input
 - E.g. language translation
- Single-input a posteriori sequence generation
 - E.g. captioning an image

Variants of recurrent nets

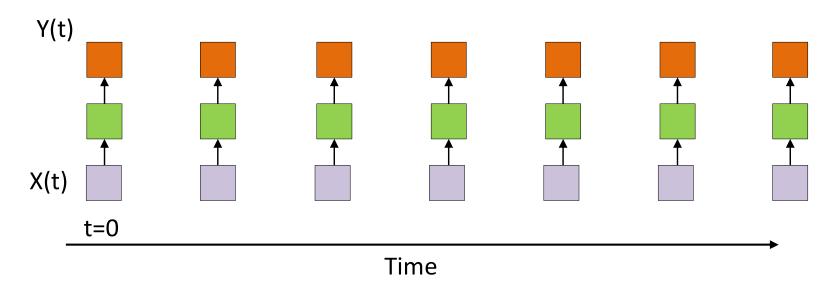




Images from Karpathy

- Conventional MLP
- Time-synchronous outputs
 - E.g. part of speech tagging

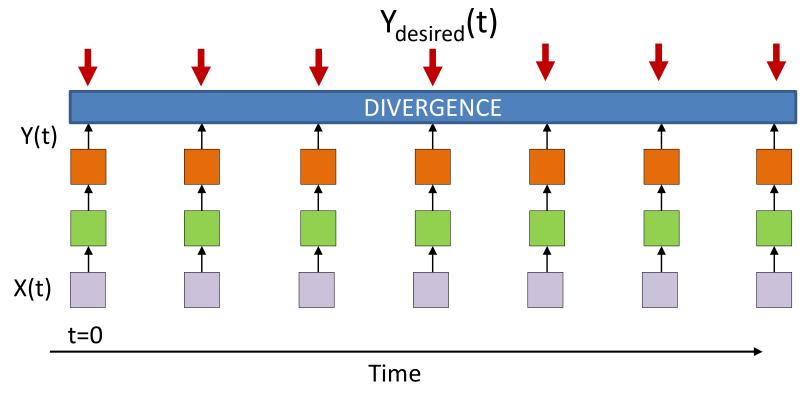
This is a regular MLP



No recurrence

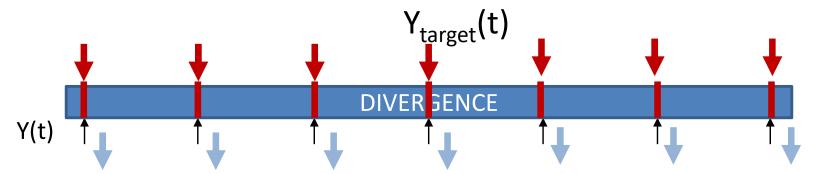
- Exactly as many outputs as inputs
- The output at time t is unrelated to the output at $t' \neq t$.

Learning in a regular MLP for series



- In the context of analyzing time series, the divergence to minimize is still the divergence between two series
 - Must be differentiable w.r.t every Y(t)
- In this setting: One-to-one correspondence between actual and target outputs
- Common assumption: Total divergence is the sum of local divergences at individual times
 - Simplifies model and maths

"Series MLP" as a regular MLP



Gradient backpropagated at each time

$$\nabla_{Y(t)}Div(Y_{target}(1...T), Y(1...T))$$

Common assumption: One-to-one correspondence

$$Div(Y_{target}(1 \dots T), Y(1 \dots T)) = \sum_{t} Div(Y_{target}(t), Y(t))$$

$$\nabla_{Y(t)} Div(Y_{target}(1 \dots T), Y(1 \dots T)) = \nabla_{Y(t)} Div(Y_{target}(t), Y(t))$$

This is further backpropagated to update weights etc

Poll 1

• @,@

Poll 1

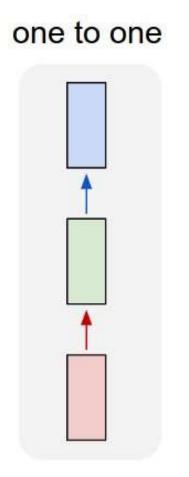
Conventional MLPs too can be used to model sequences, True or false

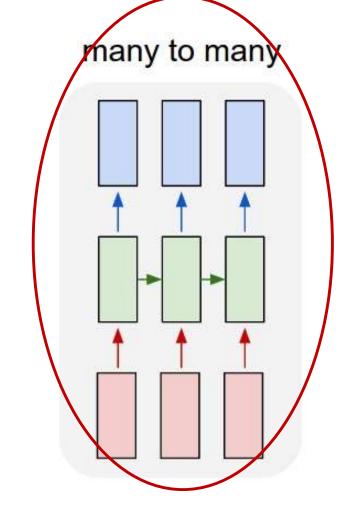
- True
- False

When we use conventional MLPs to model sequences, the sequence nature of the problem is captured through the divergence, which is now computed between the output *sequence* and the desired output *sequence*, true or false

- True
- False

Variants of recurrent nets

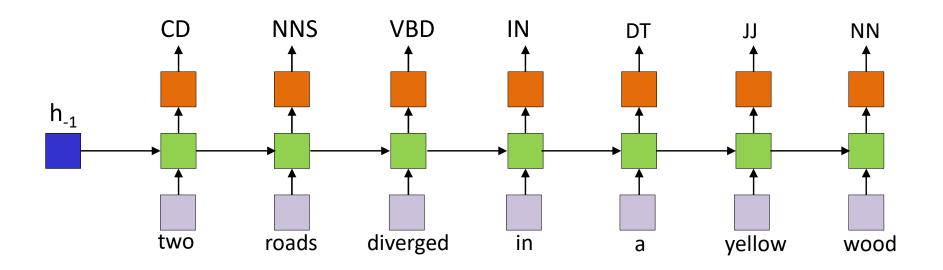




Images from Karpathy

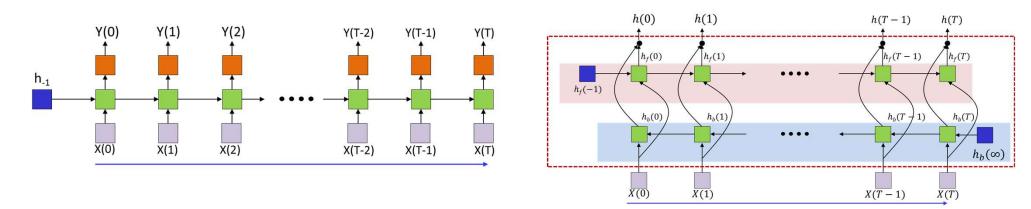
- Conventional MLP
- Time-synchronous outputs
 - E.g. part of speech tagging

Time synchronous network



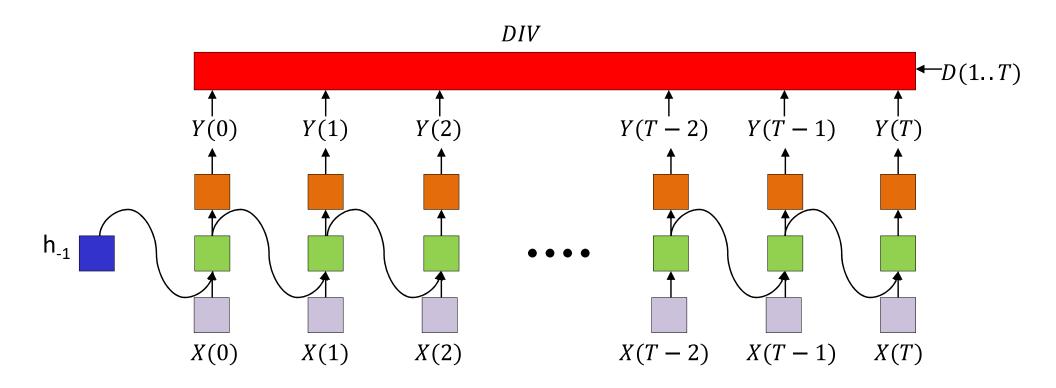
- Network produces one output for each input
 - With one-to-one correspondence
 - E.g. Assigning grammar tags to words
 - May require a bidirectional network to consider both past and future words in the sentence

Time-synchronous networks: Inference



- One sided network: Process input left to right and produce output after each input
- Bi-directional network: Process input in both directions
- In all cases, there is an output for every input with exact one-to-one time-synchronous correspondence
 - Will continue to assume unidirectional models for explanations

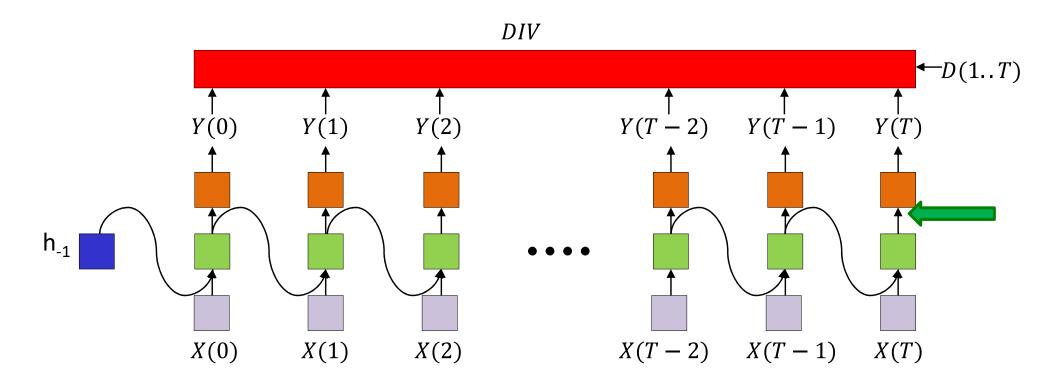
Back Propagation Through Time



- Train given a set of input-target output pairs that are time synchronous
 - $(\mathbf{X}_i, \mathbf{D}_i)$, where $\mathbf{X}_i = X_{i,0}, \dots, X_{i,T}$, $\mathbf{D}_i = D_{i,0}, \dots, D_{i,T}$
- The divergence computed is between the sequence of outputs by the network and the desired sequence of outputs

$$Div(Y_{target}(1 ... T), Y(1 ... T))$$

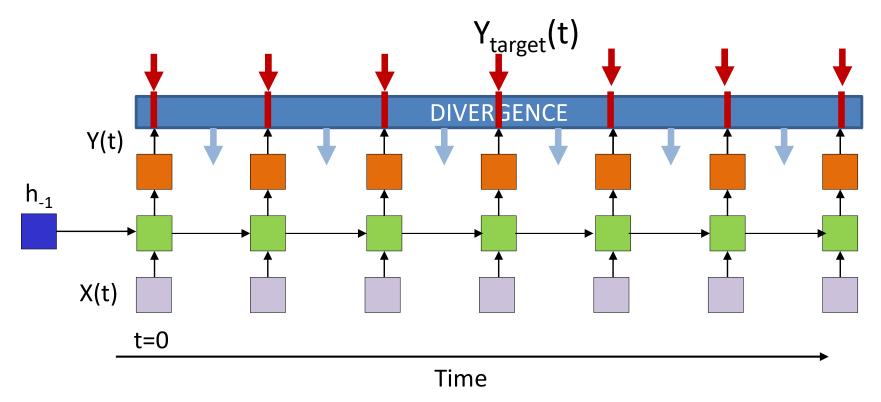
Back Propagation Through Time



First step of backprop: Compute $\nabla_{Y(t)}DIV$ for all t

- The key component is the computation of this derivative!!
- This depends on the definition of "DIV"

BPTT: Time-synchronous recurrence



Usual assumption: Sequence divergence is the sum of the divergence at individual instants

$$Div(Y_{target}(1 \dots T), Y(1 \dots T)) = \sum_{t} Div(Y_{target}(t), Y(t))$$

$$\nabla_{Y(t)} Div(Y_{target}(1 \dots T), Y(1 \dots T)) = \nabla_{Y(t)} Div(Y_{target}(t), Y(t))$$

Typical Divergence for classification: $Div(Y_{target}(t), Y(t)) = KL(Y_{target}(t), Y(t))$

Poll 2

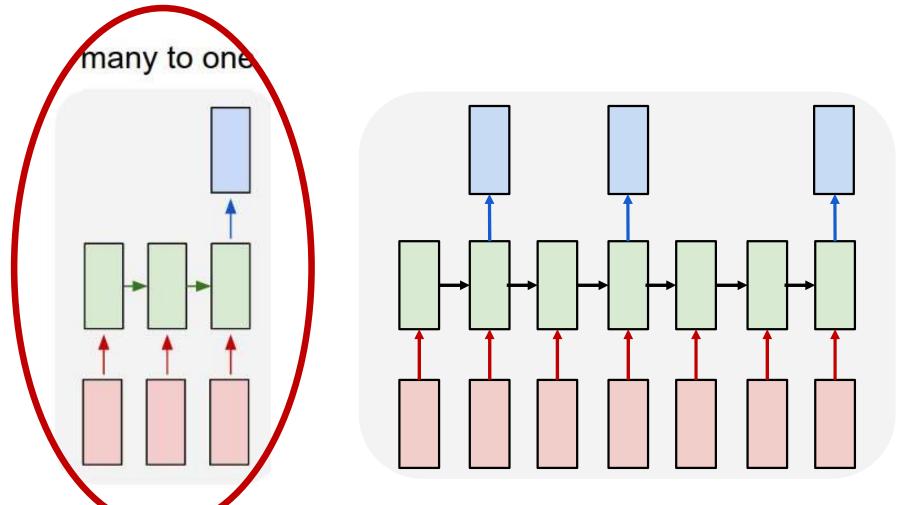
• @

Poll 2

Select all that are true about time-synchronous RNNs

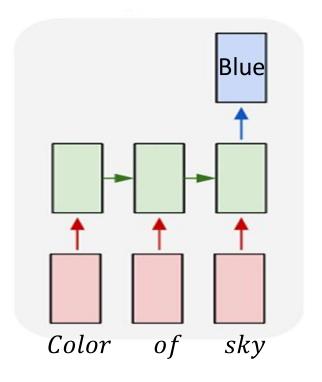
- There is one output corresponding to every input
- They can only be unidirectional, i.e. either forward recursion or backward recursion, but not both.
- The divergence between true and desired outputs can have an additive contribution from the output at each time.

Variants of recurrent nets



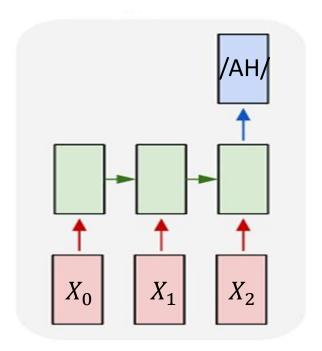
- Sequence classification: Classifying a full input sequence
 - E.g phoneme recognition
- Order synchronous, time asynchronous sequence-to-sequence generation
 - E.g. speech recognition
 - Exact location of output is unknown a priori

Example..



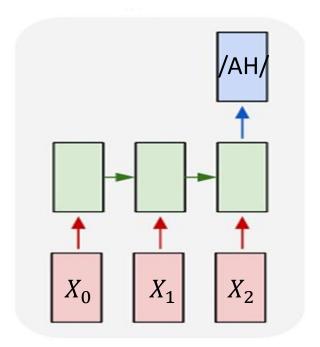
- Question answering
- Input : Sequence of words
- Output: Answer at the end of the question

Example...



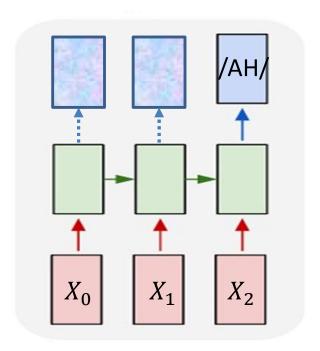
- Speech recognition
- Input: Sequence of feature vectors (e.g. Mel spectra)
- Output: Phoneme ID at the end of the sequence
 - Represented as an N-dimensional output probability vector,
 where N is the number of phonemes

Inference: Forward pass

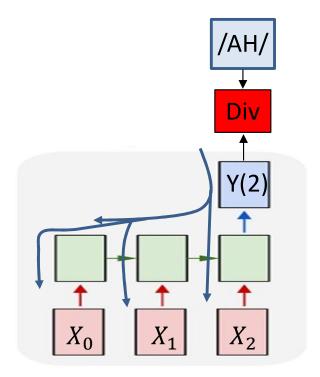


- Exact input sequence provided
 - Output generated when the last vector is processed
 - Output is a probability distribution over phonemes
- But what about at intermediate stages?

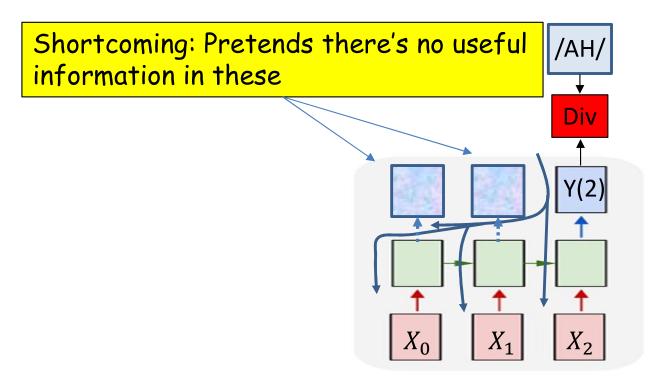
Forward pass



- Exact input sequence provided
 - Output generated when the last vector is processed
 - Output is a probability distribution over phonemes
- Outputs are actually produced for every input
 - We only read it at the end of the sequence



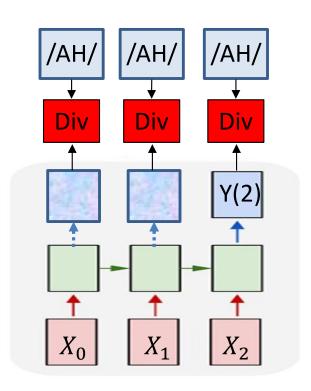
- The Divergence is only defined at the final input
 - $-DIV(Y_{target}, Y) = KL(Y(T), Phoneme)$
- This divergence must propagate through the net to update all parameters



- The Divergence is only defined at the final input
 - $-DIV(Y_{target}, Y) = KL(Y(T), Phoneme)$
- This divergence must propagate through the net to update all parameters

Fix: Use these outputs too.

These too must ideally point to the correct phoneme

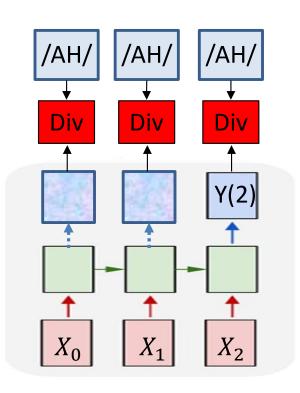


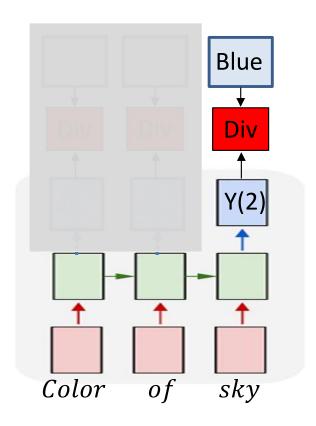
- Exploiting the untagged inputs: assume the same output for the entire input
- Define the divergence everywhere

$$DIV(Y_{target}, Y) = \sum_{t} w_{t}KL(Y(t), Phoneme)$$

Fix: Use these outputs too.

These too must ideally point to the correct phoneme



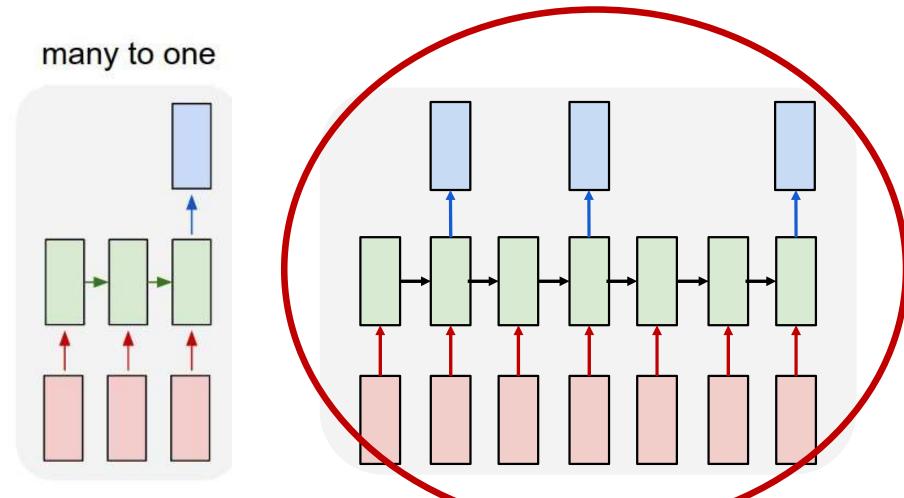


Define the divergence everywhere

$$DIV(Y_{target}, Y) = \sum_{t} w_{t}KL(Y(t), Phoneme)$$

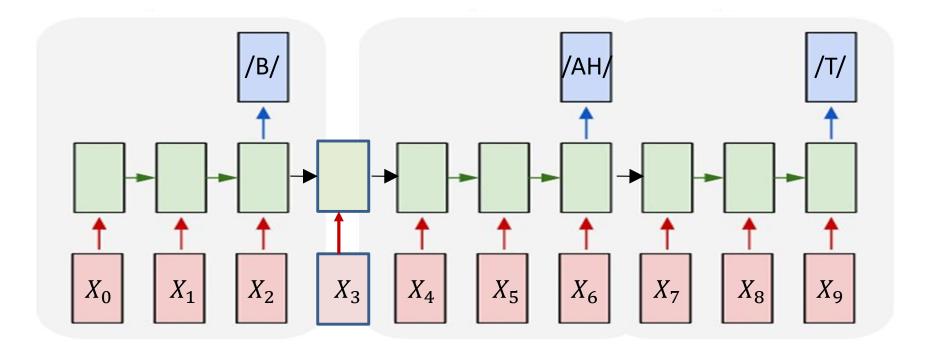
- Typical weighting scheme for speech: all are equally important
- Problem like question answering: answer only expected after the question ends
 - Only w_T is high, other weights are 0 or low

Variants on recurrent nets



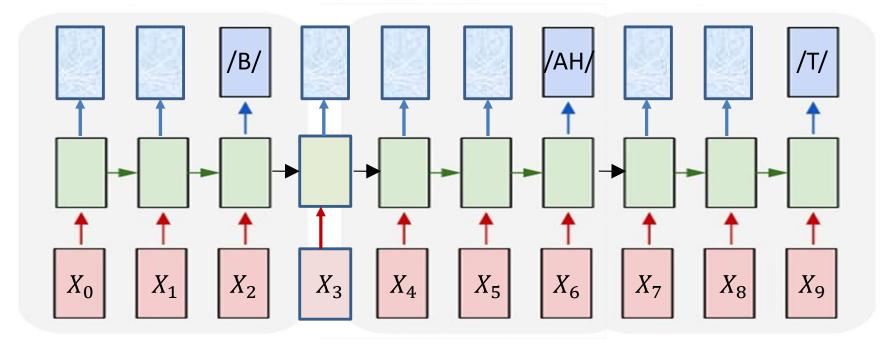
- Sequence classification: Classifying a full input sequence
 - E.g phoneme recognition
- Order synchronous, time asynchronous sequence-to-sequence generation
 - E.g. speech recognition
 - Exact location of output is unknown a priori

A more complex problem



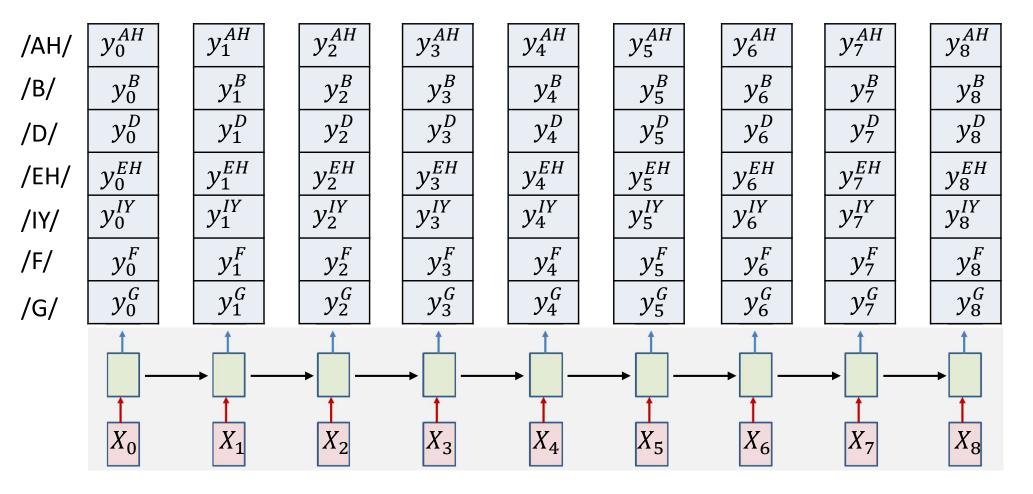
- Objective: Given a sequence of inputs, asynchronously output a sequence of symbols
 - This is just a simple concatenation of many copies of the simple "output at the end of the input sequence" model we just saw
- But this simple extension complicates matters...

The sequence-to-sequence problem



- How do we know when to output symbols
 - In fact, the network produces outputs at every time
 - Which of these are the real outputs
 - Outputs that represent the definitive occurrence of a symbol

The actual output of the network



 At each time the network outputs a probability for each output symbol given all inputs until that time

- E.g.
$$y_4^D = prob(s_4 = D|X_0 ... X_4)$$

Recap: The output of a network

 Any neural network with a softmax (or logistic) output is actually outputting an estimate of the a posteriori probability of the classes given the output

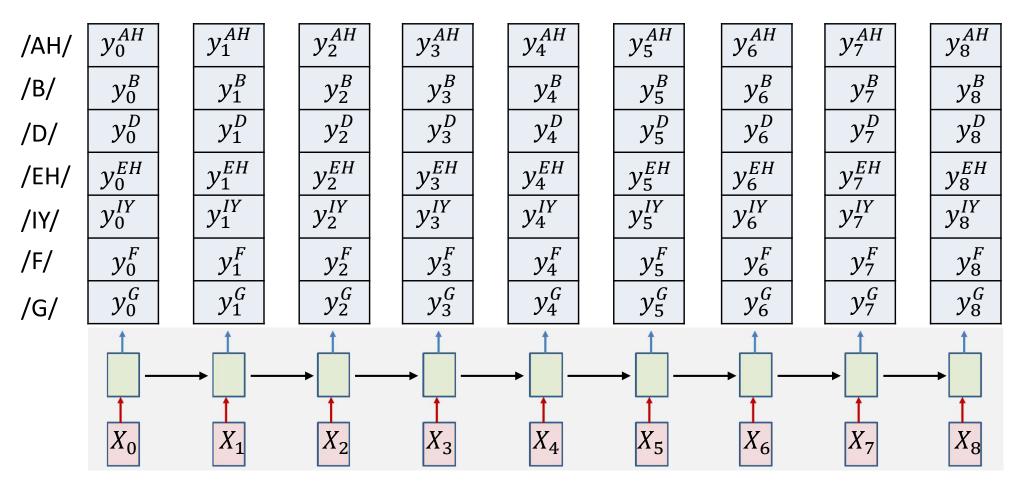
$$[P(c_1|X), P(c_2|X), ..., P(c_K|X)]$$

 Selecting the class with the highest probability results in maximum a posteriori probability classification

$$Class = \operatorname*{argmax}_{i} P(Y_{i}|X)$$

We use the same principle here

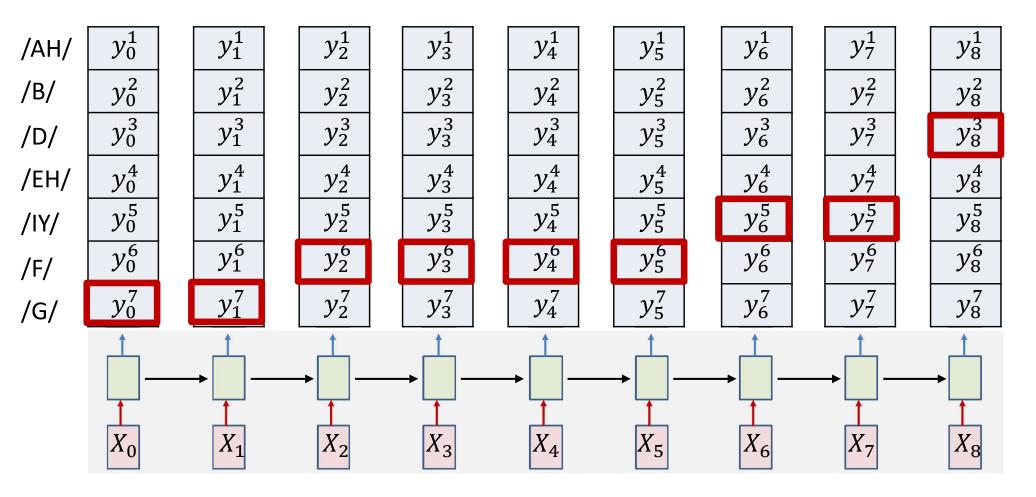
Overall objective



• Find most likely symbol sequence given inputs $S_0 \dots S_{K-1} = \operatorname{argmax} \ prob(S_0' \dots S_{K-1}' | X_0 \dots X_{N-1})$

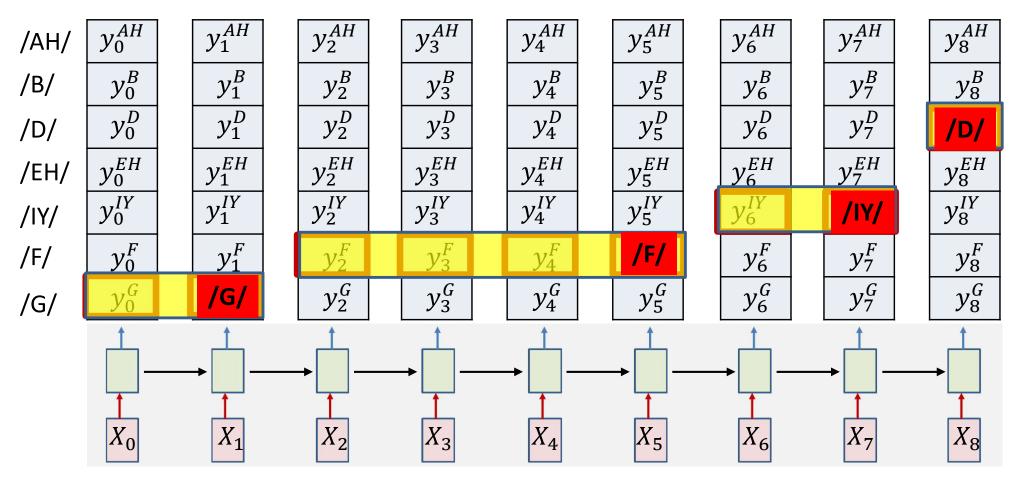
$$S_0'...S_{K-1}'$$

Finding the best output



 Option 1: Simply select the most probable symbol at each time

Finding the best output

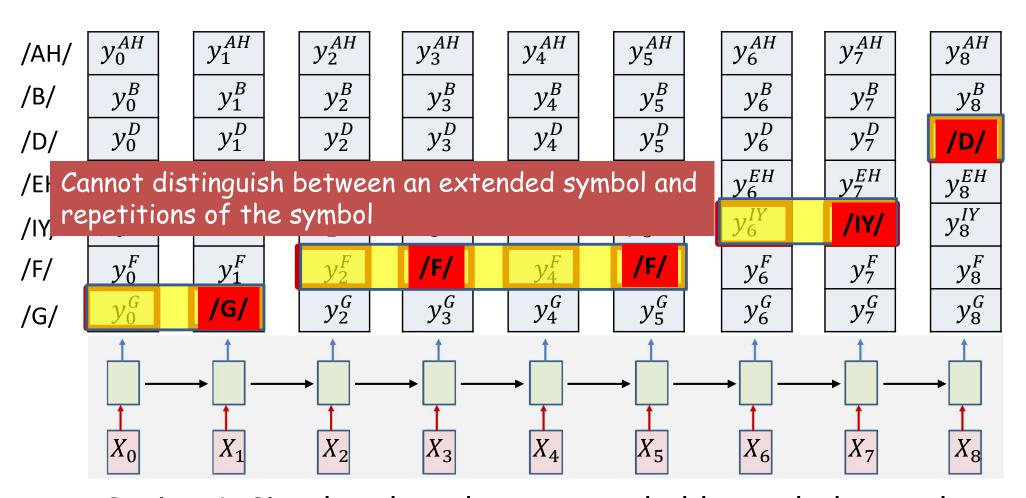


- Option 1: Simply select the most probable symbol at each time
 - Merge adjacent repeated symbols, and place the actual emission of the symbol in the final instant

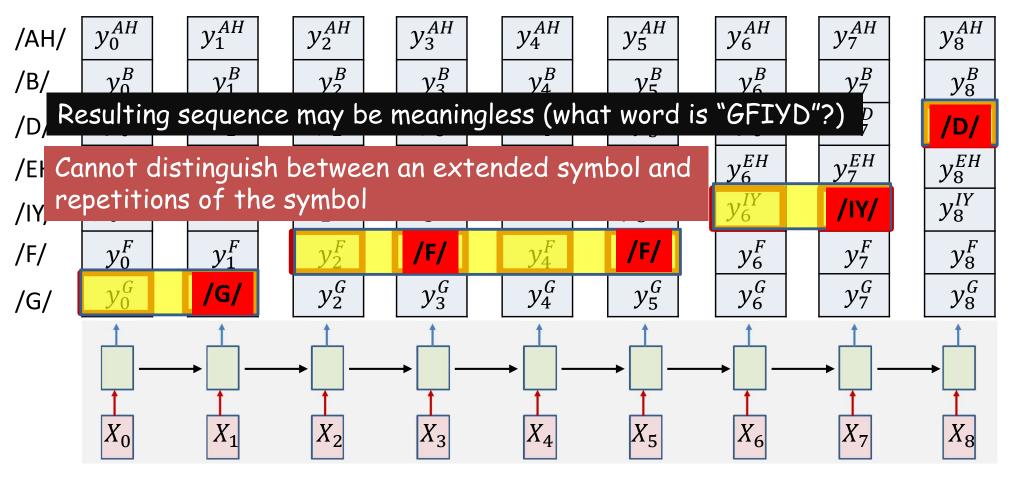
Simple pseudocode

• Assuming y(t,i), $t=1\dots T$, $i=1\dots N$ is already computed using the underlying RNN

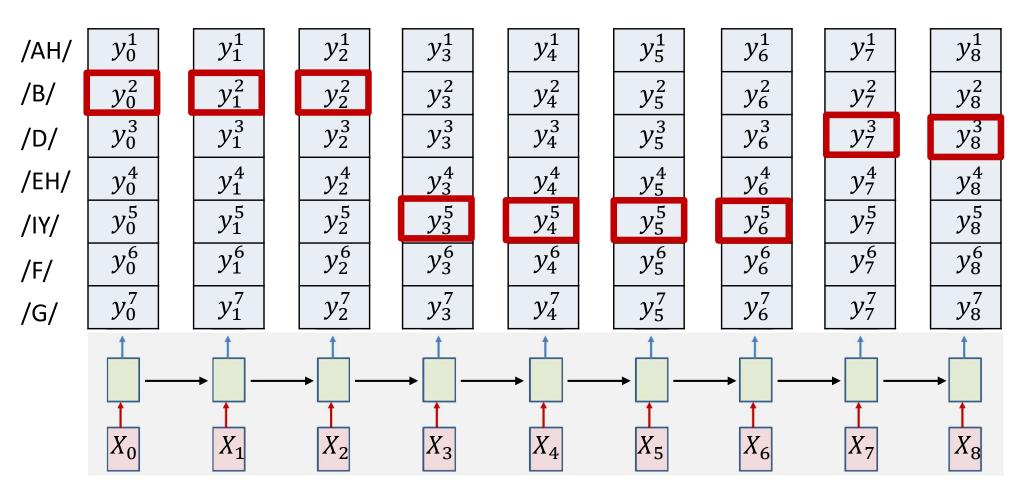
```
n = 1
best(1) = argmax<sub>i</sub>(y(1,i))
for t = 1:T
    best(t) = argmax<sub>i</sub>(y(t,i))
    if (best(t) != best(t-1))
        out(n) = best(t-1)
        time(n) = t-1
        n = n+1
```



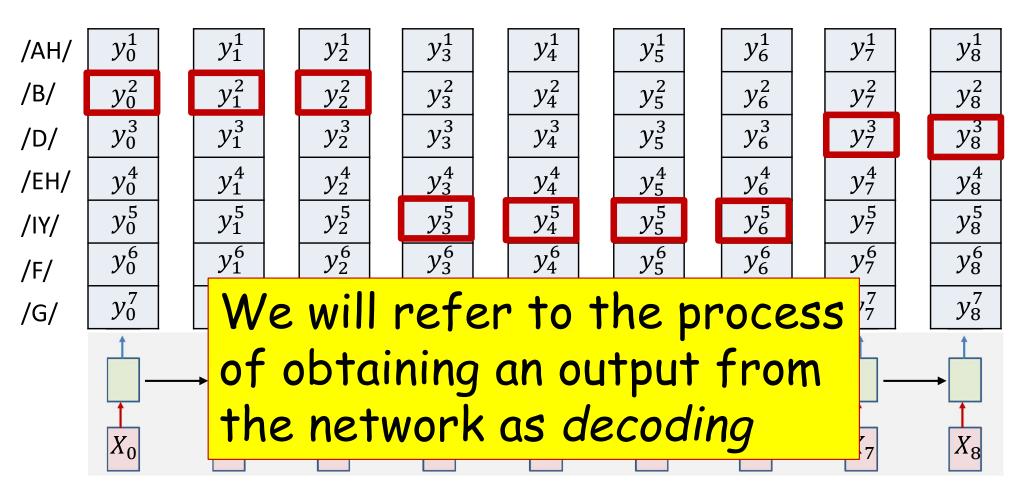
- Option 1: Simply select the most probable symbol at each time
 - Merge adjacent repeated symbols, and place the actual emission of the symbol in the final instant



- Option 1: Simply select the most probable symbol at each time
 - Merge adjacent repeated symbols, and place the actual emission of the symbol in the final instant

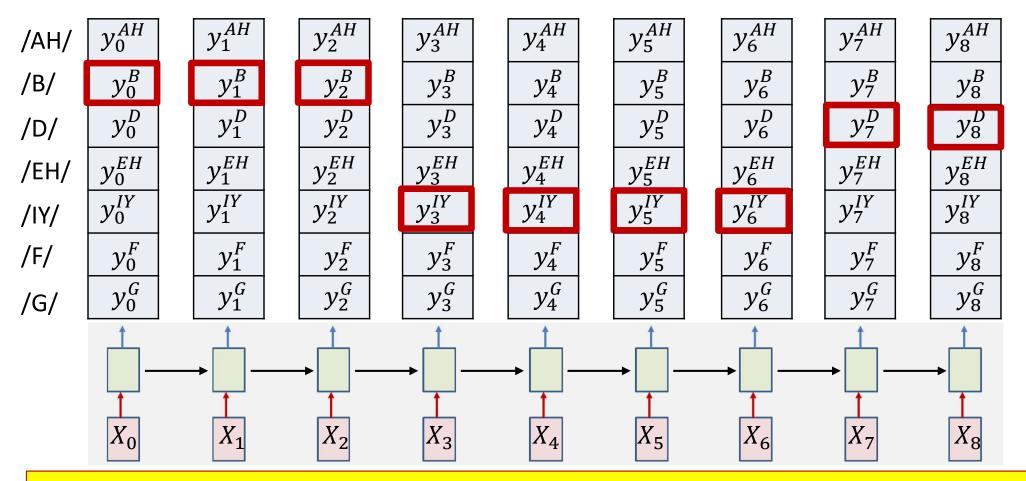


- Option 2: Impose external constraints on what sequences are allowed
 - E.g. only allow sequences corresponding to dictionary words
 - E.g. using special "separating" symbols to separate repetitions



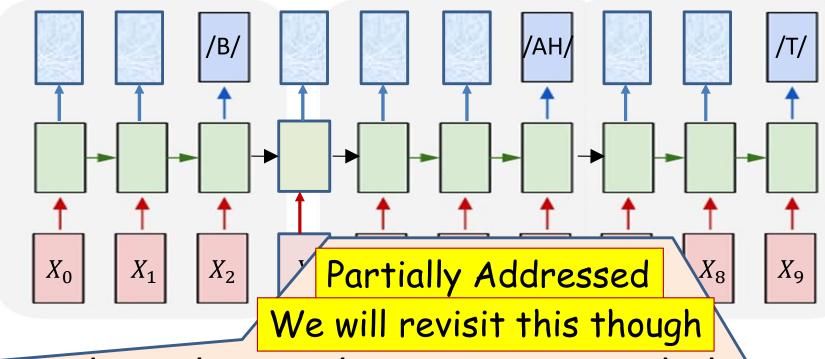
- Option 2: Impose external constraints on what sequences are allowed
 - E.g. only allow sequences corresponding to dictionary words
 - E.g. using special "separating" symbols to separate repetitions

Decoding



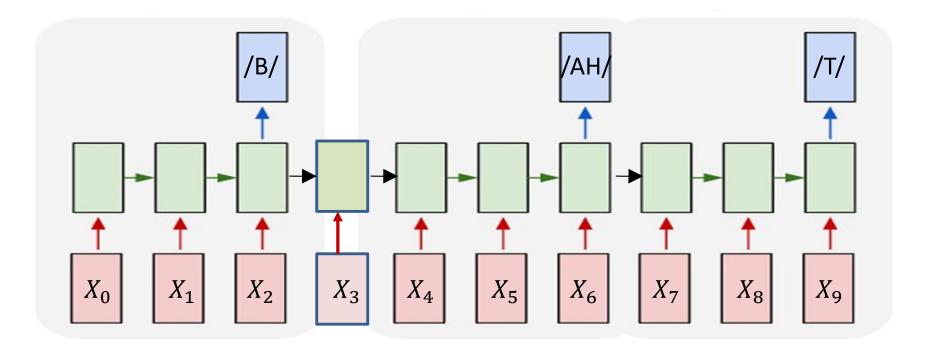
- This is in fact a *suboptimal* decode that actually finds the most likely *time-synchronous* output sequence
 - Which is not necessarily the most likely order-synchronous sequence
 - The "merging" heuristics do not guarantee optimal order-synchronous sequences
 - We will return to this topic later

The sequence-to-sequence problem



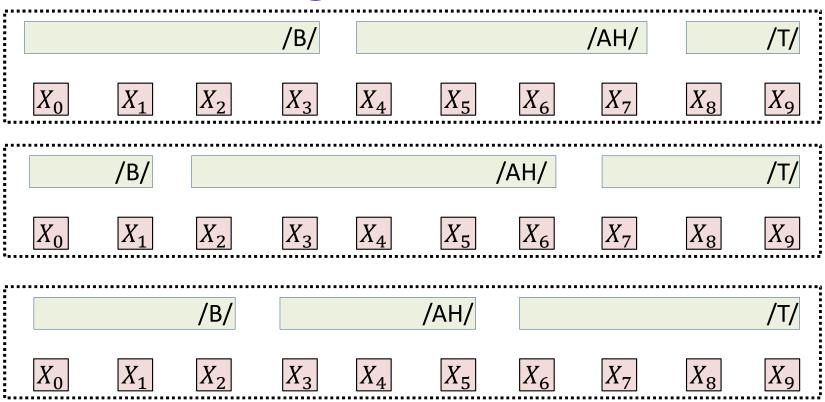
- How do we know when to output symbols
 - In fact, the network produces outputs at every time
 - Which of these are the real outputs
- How do we train these models?

Training



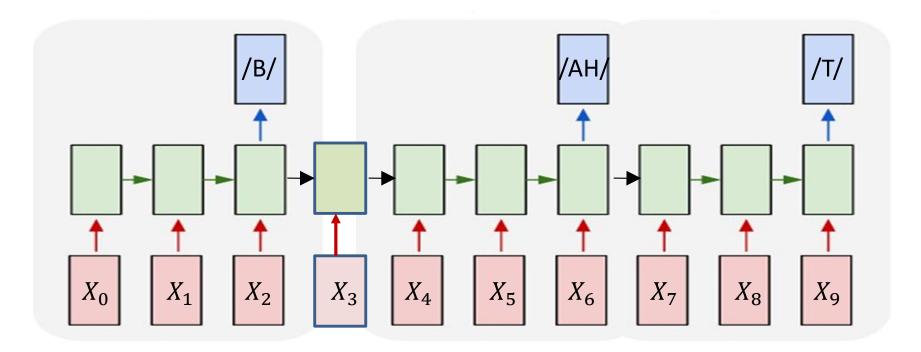
- Training data: input sequence + output sequence
 - Output sequence length <= input sequence length</p>
- Given output symbols at the right locations
 - The phoneme /B/ ends at X_2 , /AH/ at X_6 , /T/ at X_9

The "alignment" of labels

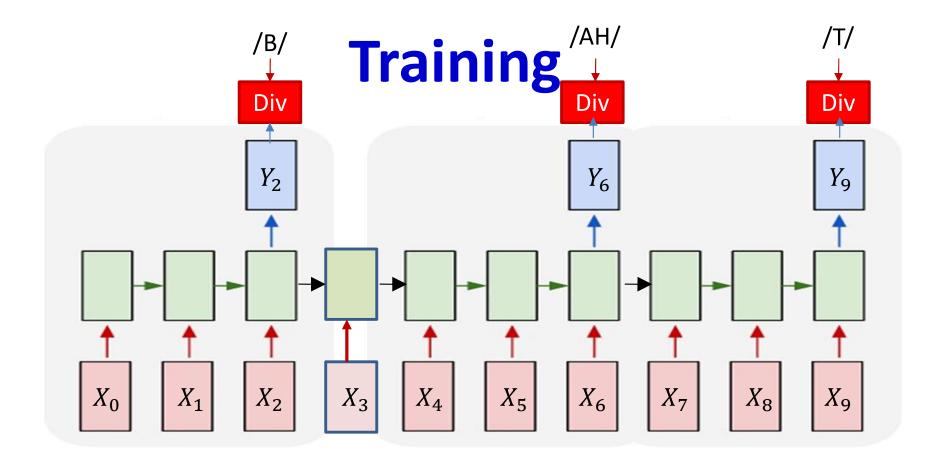


- The time-stamps of the output symbols give us the "alignment" of the output sequence to the input sequence
 - Which portion of the input aligns to what symbol
- Simply knowing the output sequence does not provide us the alignment
 - This is extra information

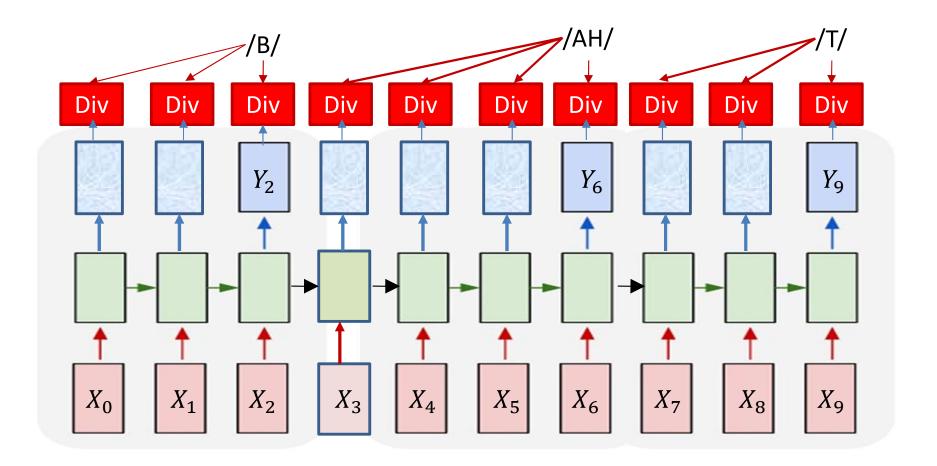
Training with alignment



- Training data: input sequence + output sequence
 - Output sequence length <= input sequence length</p>
- Given the alignment of the output to the input
 - The phoneme /B/ ends at X_2 , /AH/ at X_6 , /T/ at X_9



- Either just define Divergence as: $DIV = KL(Y_2, B) + KL(Y_6, AH) + KL(Y_9, T)$
- Or...



• Either just define Divergence as:

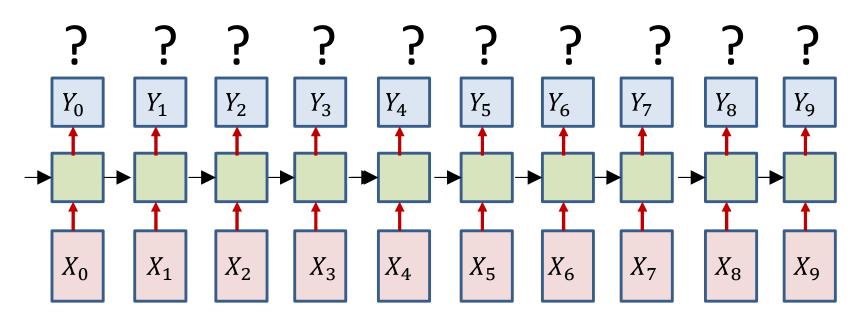
$$DIV = KL(Y_2, B) + KL(Y_6, AH) + KL(Y_9, T)$$

Or repeat the symbols over their duration

$$DIV = \sum_{t} KL(Y_t, symbol_t) = -\sum_{t} \log Y(t, symbol_t)$$

Problem: No timing information provided

/B/ /AH/ /T/



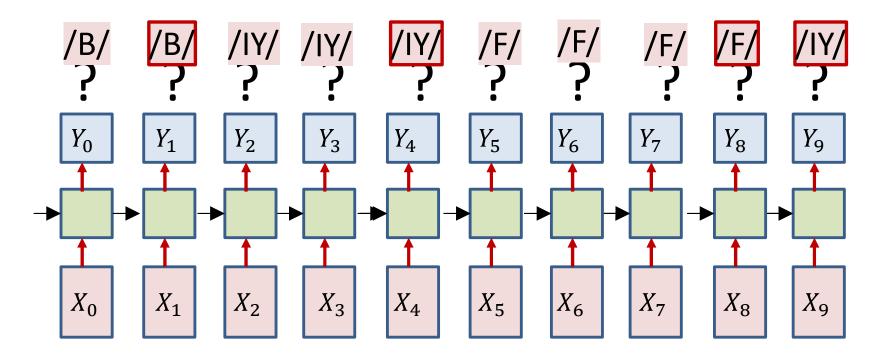
- Only the sequence of output symbols is provided for the training data
 - But no indication of which one occurs where
- How do we compute the divergence?
 - And how do we compute its gradient w.r.t. Y_t

Training without alignment

- We know how to train if the alignment is provided
- Problem: Alignment is not provided

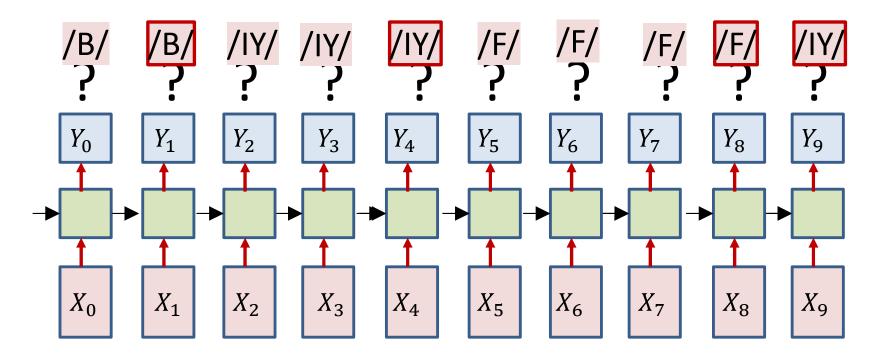
- Solution:
 - 1. Guess the alignment
 - 2. Consider all possible alignments

Solution 1: Guess the alignment



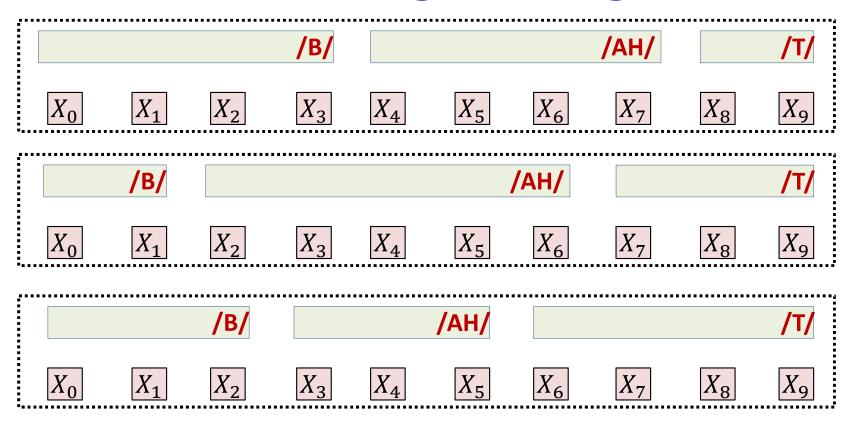
- Guess an initial alignment and iteratively refine it as the model improves
- Initialize: Assign an initial alignment
 - Either randomly, based on some heuristic, or any other rationale
- Iterate:
 - Train the network using the current alignment
 - Reestimate the alignment for each training instance

Solution 1: Guess the alignment



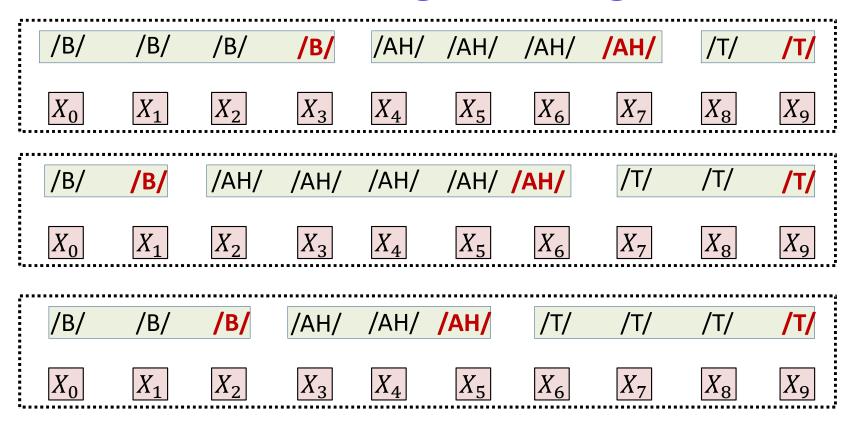
- Guess an initial alignment and iteratively refine it as the model improves
- Initialize: Assign an initial alignment
 - Either randomly, based on some heuristic, or any other rationale
- Iterate:
 - Train the network using the current alignment
 - Reestimate the alignment for each training instance

Characterizing the alignment



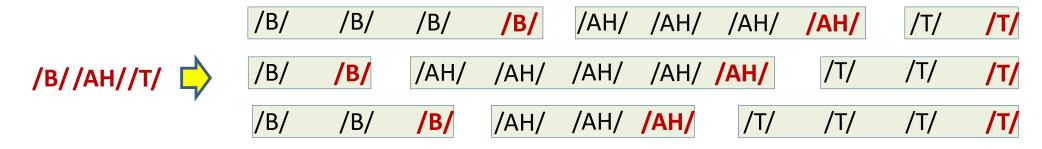
- The "alignment" tells us which portion of the input aligns to what symbol in the sequence
 - Examples show different alignments of /B/ /AH/ /T/ to $X_0 \dots X_9$

Characterizing the alignment



- The "alignment" tells us which portion of the input aligns to what symbol in the sequence
 - Examples show different alignments of /B/ /AH/ /T/ to $X_0 \dots X_9$
- An alignment can be represented as a repetition of symbols
 - The "expansion" of the "compressed" sequence to the length of the input

Expansion and Compression



 The same asynchronous "compressed" sequence can be "expanded" in many different ways to align it to an input

```
/B/
       /B/
              /B/
                     /B/
                                                /AH/
                                                          /T/
                            /AH/
                                  /AH/
                                         /AH/
                                                  /T/
                                                         /T/
/B/
       /B/
              /AH/
                     /AH/
                            /AH/
                                  /AH/ /AH/
                                                                          /B//AH//T/
/B/
              /B/
       /B/
                     /AH/
                            /AH/ /AH/
                                           /T/
                                                  /T/
                                                         /T/
```

- Many different alignments for an input can compress to the same unaligned "compressed" sequence
- The problem of finding the alignment: find the best expansion of a compressed sequence, for a given input, given a model

Estimating an alignment

- Alignment problem: Given
 - The unaligned K-length compressed symbol sequence $S = S_0 \dots S_{K-1}$
 - E.g. /B/ /IY/ /F/ /IY/
 - An N-length input (N ≥ K)
 - E.g. input $X_0, X_1, ..., X_9$
 - And a (trained) recurrent network
- Find the most likely alignment:

$$argmax P(s_0, s_1, ..., s_{N-1} | S_0, S_1, ..., S_K, X_0, X_1, ..., X_{N-1})$$

Such that

$$compress(s_0, s_1, ..., s_{N-1}) \equiv S_0, S_1, ..., S_K$$

compress() is the operation of compressing repetitions into one

Poll 3

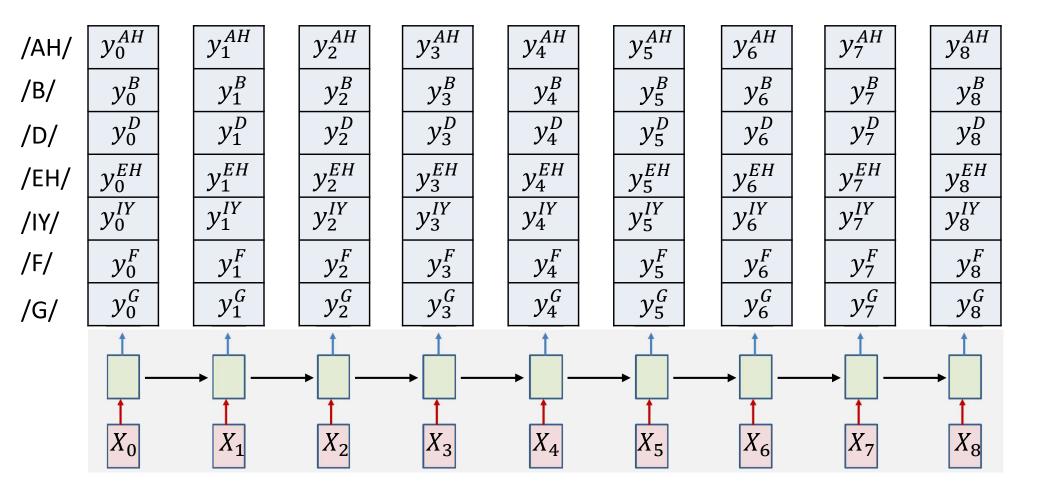
• @

Poll 3

Select all that are true about alignments, time-synchronous sequences, order-synchronous sequences, compression, and compressed sequences

- An order-synchronous symbol sequence that is shorter than the input can be "aligned" to the input by repeating symbols until the expanded sequence is exactly as long as the input
- The "alignment" of an order-synchronous symbol sequence to an input is a time-synchronous symbol sequence
- A symbol sequence that is time-synchronous with an input can be compressed to a shorter order-synchronous input by eliminating repetitions of symbols
- Order-synchronous symbol sequences that are shorter than the input are compressed symbol sequences
- There is only one way of generating an alignment of a compressed symbol sequence to an input

Recall: The actual output of the network



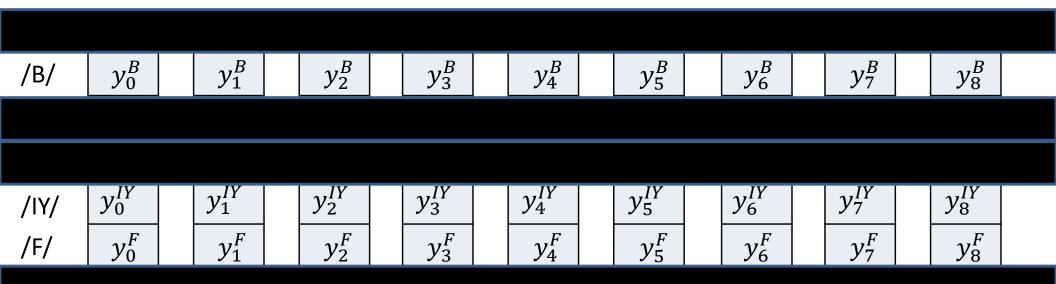
 At each time the network outputs a probability for each output symbol

Recall: unconstrained decoding

/AH/	y_0^{AH}	y_1^{AH}	y_2^{AH}	y_3^{AH}	y_4^{AH}	y_5^{AH}	y_6^{AH}	y_7^{AH}	y_8^{AH}	
/B/	y_0^B	y_1^B	y_2^B	y_3^B	y_4^B	y_5^B	y_6^B	y_7^B	y_8^B	
/D/	y_0^D	y_1^D	y_2^D	y_3^D	y_4^D	y_5^D	y_6^D	y_7^D	y_8^D	
/EH/	y_0^{EH}	y_1^{EH}	y_2^{EH}	y_3^{EH}	y_4^{EH}	y_5^{EH}	y_6^{EH}	y_7^{EH}	y_8^{EH}	
/IY/	y_0^{IY}	y_1^{IY}	y_2^{IY}	y_3^{IY}	y_4^{IY}	y_5^{IY}	y_6^{IY}	y_7^{IY}	y_8^{IY}	
/F/	y_0^F	y_1^F	y_2^F	y_3^F	y_4^F	y_5^F	y_6^F	y_7^F	y_8^F	
/G/	y_0^G	y_1^G	y_2^G	y_3^G	y_4^G	y_5^G	y_6^G	y_7^G	y_8^G	

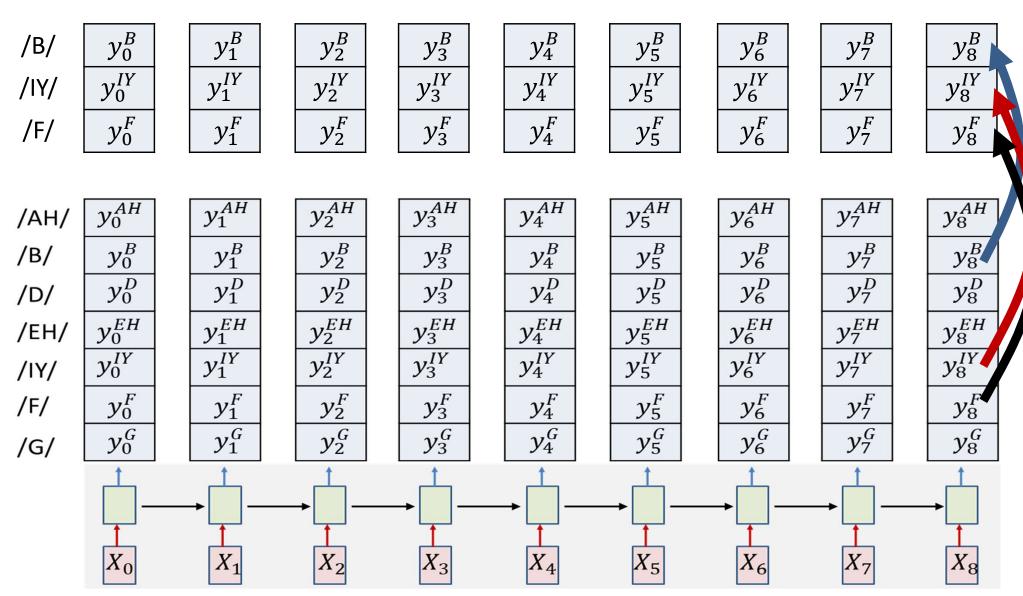
- We find the most likely sequence of symbols
 - (Conditioned on input $X_0 ... X_{N-1}$)
- This may not correspond to an expansion of the desired symbol sequence
 - E.g. the unconstrained decode may be /AH//AH//AH//D//D//AH//F//IY//IY/
 - Contracts to /AH/ /D/ /AH/ /F/ /IY/
 - Whereas we want an expansion of /B//IY//F//IY/

Constraining the alignment: Try 1



- Block out all rows that do not include symbols from the target sequence
 - E.g. Block out rows that are not /B/ /IY/ or /F/

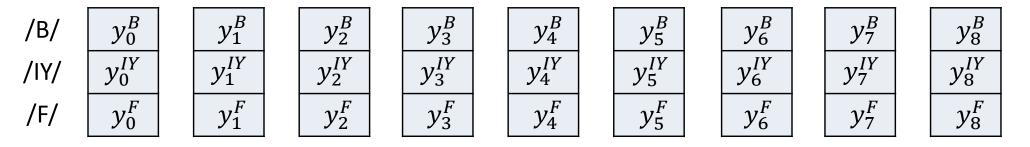
Blocking out unnecessary outputs



Compute the entire output (for all symbols)

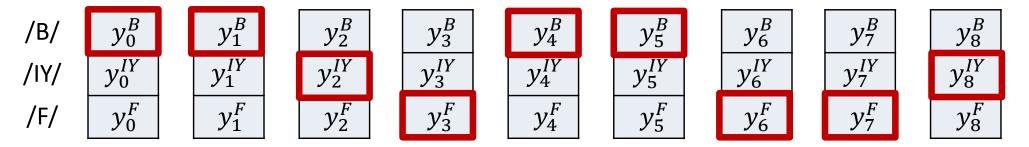
Copy the output values for the target symbols into the secondary reduced structure

Constraining the alignment: Try 1



- Only decode on reduced grid
 - We are now assured that only the appropriate symbols will be hypothesized

Constraining the alignment: Try 1



- Only decode on reduced grid
 - We are now assured that only the appropriate symbols will be hypothesized
- Problem: This still doesn't assure that the decode sequence correctly expands the target symbol sequence
 - E.g. the above decode is not an expansion of /B//IY//F//IY/
- Still needs additional constraints

Try 2: Explicitly arrange the constructed table

/B/ y_0^B /IY/ y_0^{IY} /F/ y_0^F /IY/ y_0^{IY}

 $\begin{array}{c|c} y_1^B \\ y_1^{IY} \\ \hline y_1^F \\ \hline y_1^{IY} \\ \end{array}$

 $\begin{array}{c|c} y_2^B \\ y_2^{IY} \\ \hline y_2^F \\ y_2^{IY} \\ \end{array}$

 $\begin{bmatrix} y_3^B \\ y_3^{IY} \\ y_3^F \\ y_3^{IY} \end{bmatrix}$

 $\begin{array}{|c|c|}\hline y_4^B \\ \hline y_4^{IY} \\ \hline y_4^F \\ \hline y_4^{IY} \\ \hline \end{array}$

 y_5^B y_5^{IY} y_5^F y_5^{IY}

 $\begin{array}{c}
y_6^B \\
y_6^{IY} \\
y_6^F \\
y_6^{IY}
\end{array}$

 $\begin{array}{c|c} y_7^B \\ \hline y_7^{IY} \\ \hline y_7^F \\ \hline y_7^{IY} \\ \end{array}$

 y_8^B y_8^{IY} y_8^F y_8^{IY}

/AH/ y_0^{AH} /B/ y_0^{B} /D/ y_0^{D} /EH/ y_0^{EH} /IY/ y_0^{IY} /F/ y_0^{F} /G/ y_0^{G}

 $egin{array}{c} y_1^{AH} \ y_1^{B} \ y_1^{D} \ y_1^{EH} \ y_1^{IY} \ y_1^{G} \ \end{array}$

 $egin{array}{c} y_2^{AH} \ y_2^{B} \ y_2^{D} \ y_2^{EH} \ y_2^{IY} \ y_2^{G} \ \end{array}$

 y_{3}^{AH} y_{3}^{B} y_{3}^{D} y_{3}^{EH} y_{3}^{IY} y_{3}^{IS} y_{3}^{G}

 y_{4}^{AH} y_{4}^{B} y_{4}^{D} y_{4}^{EH} y_{4}^{IY} y_{4}^{IY} y_{4}^{G}

 y_{5}^{AH} y_{5}^{B} y_{5}^{D} y_{5}^{EH} y_{5}^{IY} y_{5}^{G}

 y_{7}^{AH} y_{7}^{B} y_{7}^{D} y_{7}^{D} y_{7}^{EH} y_{7}^{IY} y_{7}^{F} y_{7}^{G}

 $egin{array}{c} y_8^{AH} \ y_8^{B} \ y_8^{EH} \ y_8^{IY} \ y_8^{IY} \ y_8^{G} \ \end{array}$

Arrange the constructed table so that from top to bottom it has the exact sequence of symbols required

Try 2: Explicitly arrange the constructed table

/B/ y_0^B /IY/ y_0^{IY} /F/ y_0^F /IY/ y_0^{IY}

 $\begin{array}{c|c} y_1^B \\ y_1^{IY} \\ \hline y_1^F \\ \hline y_1^{IY} \\ \end{array}$

 $\begin{array}{c} y_2^B \\ y_2^{IY} \\ y_2^F \\ y_2^{IY} \end{array}$

 $\begin{array}{c|c}
y_3^B \\
y_3^{IY} \\
\hline
y_3^F \\
y_3^{IY}
\end{array}$

 $\begin{array}{c|c} y_4^B \\ \hline y_4^{IY} \\ \hline y_4^F \\ \hline y_4^{IY} \\ \end{array}$

 $\begin{array}{c|c}
y_5^B & y_6^B \\
y_5^{IY} & y_6^{IY} \\
y_5^F & y_6^F \\
y_5^{IY} & y_6^{IY}
\end{array}$

 y_7^B y_7^{IY} y_7^F y_7^{IY}

 y_8^B y_8^{IY} y_8^F y_8^{IY}

Note: If a symbol occurs multiple times, we repeat the row in the appropriate location.

E.g. the row for /IY/ occurs twice, in the 2nd and 4th positions

/B/ y_0^B y_6^B $\overline{y_0^D}$ $\overline{y_1^D}$ $\overline{y_2^D}$ y_3^D $\overline{y_4^D}$ y_5^D y_6^D y_7^D y_8^D /D/ y_5^{EH} y_0^{EH} y_1^{EH} y_2^{EH} y_3^{EH} y_4^{EH} y_6^{EH} y_7^{EH} /EH/ $\overline{y_1^{IY}}$ y_5^{IY} y_0^{IY} y_2^{IY} y_3^{IY} y_4^{IY} y_6^{IY} y_7^{IY} y_8^{IY} /IY/ y_2^F y_0^F y_1^F y_3^F y_5^F y_6^F y_7^F /F/ y_4^G y_5^G y_7^G y_0^G /G/

Arrange the constructed table so that from top to bottom it has the exact sequence of symbols required

Composing the graph

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#T = length of input

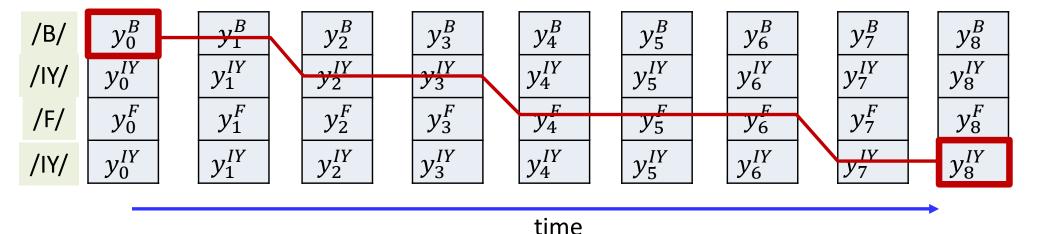
#First create output table

```
For i = 1:N
 s(1:T,i) = y(1:T, S(i))
```

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

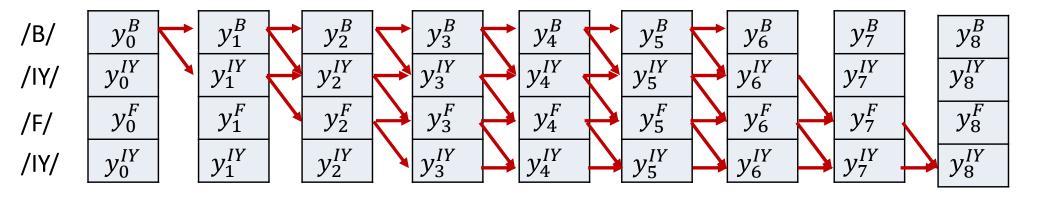
/B/	y_0^B	y_1^B	\mathcal{Y}_2^B	y_3^B	y_4^B	y_5^B	y_6^B	y_7^B	y_8^B
/IY/	y_0^{IY}	y_1^{IY}	y_2^{IY}	y_3^{IY}	y_4^{IY}	${\cal Y}_5^{IY}$	y_6^{IY}	\mathcal{Y}_7^{IY}	y_8^{IY}
/F/	y_0^F	y_1^F	\mathcal{Y}_2^F	y_3^F	y_4^F	${\mathcal Y}_5^F$	y_6^F	\mathcal{Y}_7^F	\mathcal{Y}_8^F
/IY/	y_0^{IY}	y_1^{IY}	${\cal Y}_2^{IY}$	y_3^{IY}	y_4^{IY}	${\cal Y}_5^{IY}$	y_6^{IY}	\mathcal{Y}_7^{IY}	y_8^{IY}

Explicitly constrain alignment



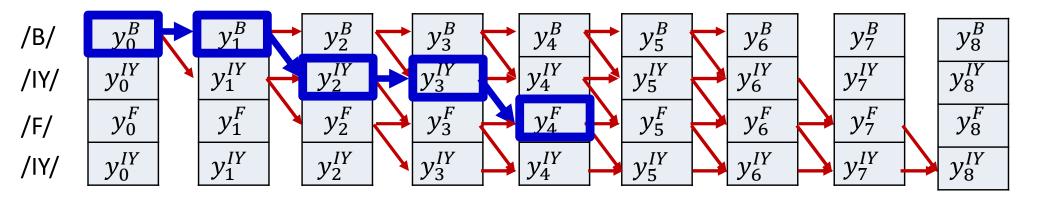
- Constrain that the first symbol in the decode must be the top left block
- The last symbol must be the bottom right
- The rest of the symbols must follow a sequence that monotonically travels down from top left to bottom right
 - I.e. symbol chosen at any time is at the same level or at the next level to the symbol at the previous time
- This guarantees that the sequence is an expansion of the target sequence
 - /B//IY//F//IY/ in this case

Explicitly constrain alignment



- Compose a graph such that every path in the graph from source to sink represents a valid alignment
 - Which maps on to the target symbol sequence (/B//IY//F//IY/)
- Edge scores are 1
- Node scores are the probabilities assigned to the symbols by the neural network

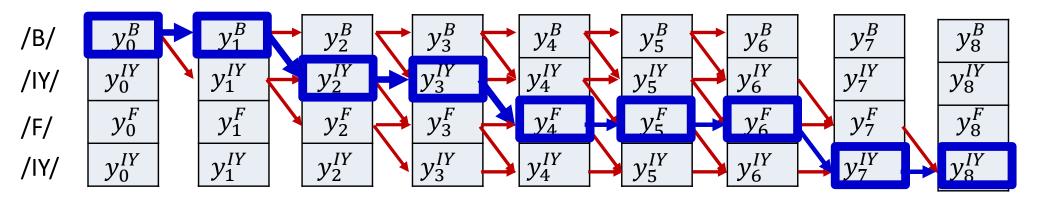
Path Score (probability)



- Compose a graph such that every path in the graph from source to sink represents a valid alignment
 - Which maps on to the target symbol sequence (/B//IY//F//IY/)
- Edge scores are 1
- Node scores are the probabilities assigned to the symbols by the neural network
- The "score" of a path is the product of the probabilities of all nodes along the path
- E.g. the probability of the marked path is

$$Scr(Path) = y_0^B y_1^B y_2^{IY} y_3^{IY} y_4^F$$

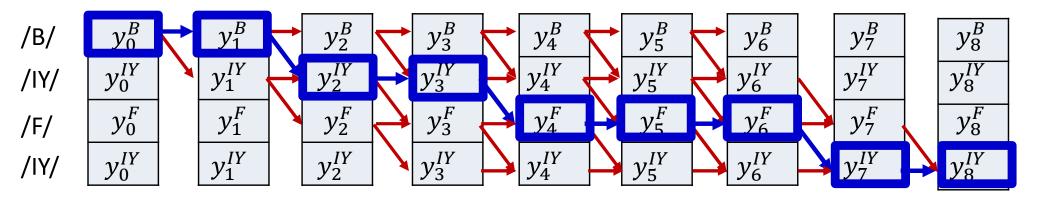
Path Score (probability)



- Compose a graph such that every path in the graph from source to sink represents a valid alignment
 - Which maps on to the target symbol sequence (/B//IY//F//IY/)
- Edge scores are 1
- Node scores are the probabilities assigned to the symbols by the neural network
- The "score" of a path is the product of the probabilities of all nodes along the path

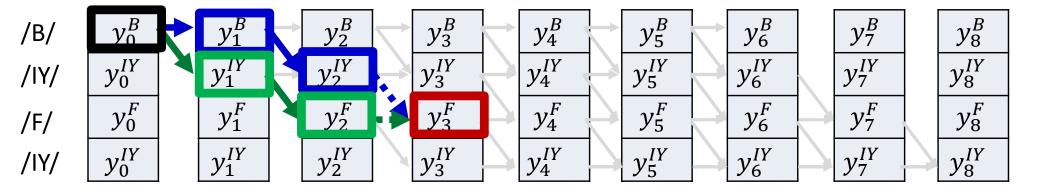
Figure shows a typical end-to-end path. There are an exponential number of such paths. Challenge: Find the path with the highest score (probability)

Explicitly constrain alignment



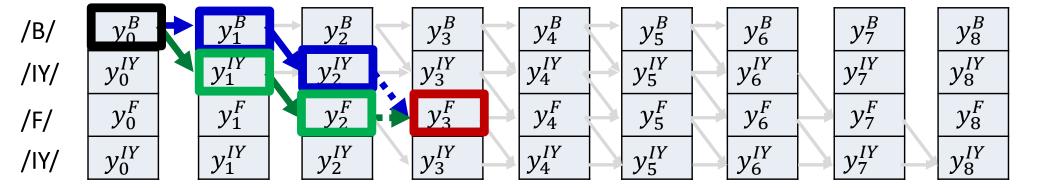
- Find the most probable path from source to sink using any dynamic programming algorithm
 - E.g. The Viterbi algorithm

Viterbi algorithm: Basic idea



- The best path to any node must be an extension of the best path to one of its parent nodes
 - Any other path would necessarily have a lower probability
- The best parent is simply the parent with the bestscoring best path

Viterbi algorithm: Basic idea

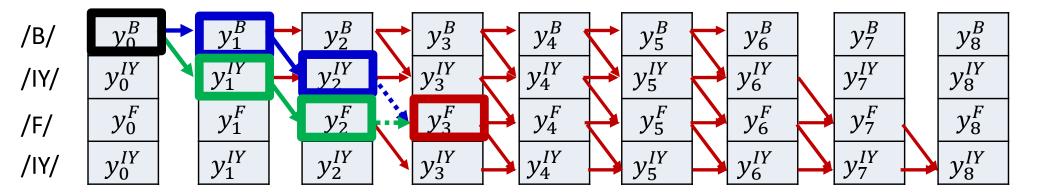


$$BestPath(y_0^B \rightarrow y_3^F) = BestPath(y_0^B \rightarrow y_2^{IY})y_3^F$$

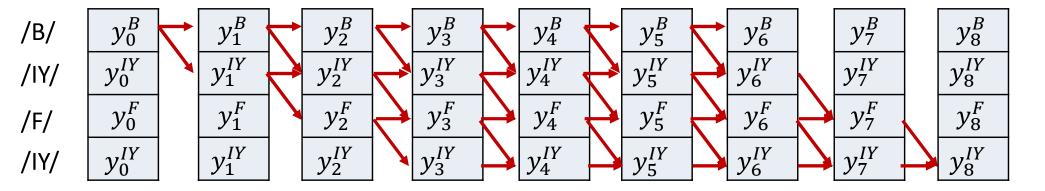
$$or \quad BestPath(y_0^B \rightarrow y_2^F)y_3^F$$

$$BestPath(y_0^B \rightarrow y_3^F) = BestPath(y_0^B \rightarrow BestParent)y_3^F$$

- The best parent is simply the parent with the best-scoring best path BestParent
 - = $argmax_{Parent \in (y_2^{IY}, y_2^F)}(Score(BestPath(y_0^B \rightarrow Parent)))$



- Dynamically track the best path (and the score of the best path) from the source node to every node in the graph
 - At each node, keep track of
 - The best incoming parent edge
 - The score of the best path from the source to the node through this best parent edge
- Eventually compute the best path from source to sink



- First, some notation:
- $y_t^{S(r)}$ is the probability of the target symbol assigned to the r-th row in the t-th time (given inputs $X_0 \dots X_t$)
 - E.g., S(0) = /B/
 - The scores in the 0^{th} row have the form y_t^B
 - E.g. S(1) = S(3) = /IY/
 - The scores in the 1st and 3rd rows have the form y_t^{IY}
 - E.g. S(2) = /F/
 - The scores in the 2^{nd} row have the form y_t^F



Initialization:

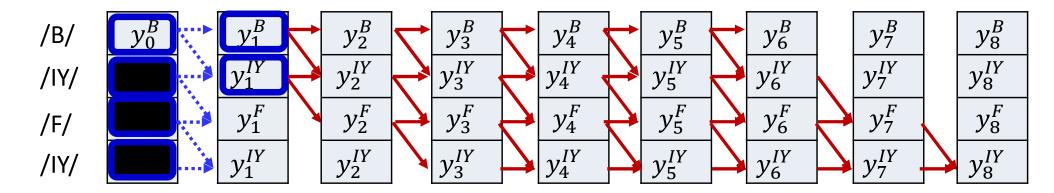
$$BP(0,i) = null, i = 0 ... K - 1$$

$$Bscr(0,0) = y_0^{S(0)}, Bscr(0,i) = 0 for i = 1 ... K - 1$$

77

BP := Best Parent

Bscr := Bestpath Score to node

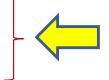


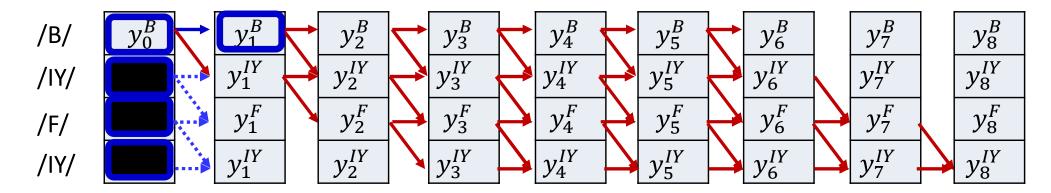
Initialization:

$$BP(0,i) = null, i = 0 ... K - 1$$

 $Bscr(0,0) = y_0^{S(0)}, Bscr(0,i) = 0 for i = 1 ... K - 1$

- for $t = 1 \dots T 1$ for $l = 0 \dots K - 1$
 - $BP(t, l) = \underset{p \in parents(l)}{\operatorname{argmax}} Bscr(t 1, p)$
 - $Bscr(t, l) = Bscr(BP(t, l)) \times y_t^{S(l)}$



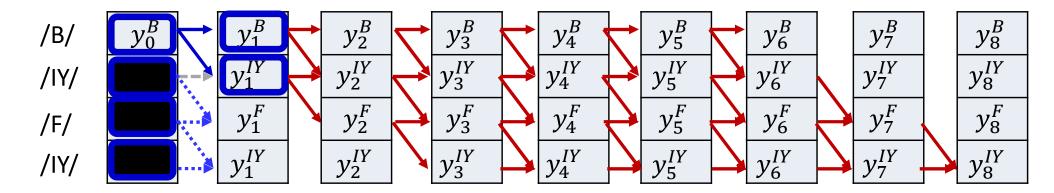


Initialization:

$$BP(0,i) = null, i = 0 ... K - 1$$

 $Bscr(0,0) = y_0^{S(0)}, Bscr(0,i) = 0 for i = 1 ... K - 1$

$$BP(t,0) = 0; Bscr(t,0) = Bscr(t-1,0) \times y_t^{S(0)}$$



Initialization:

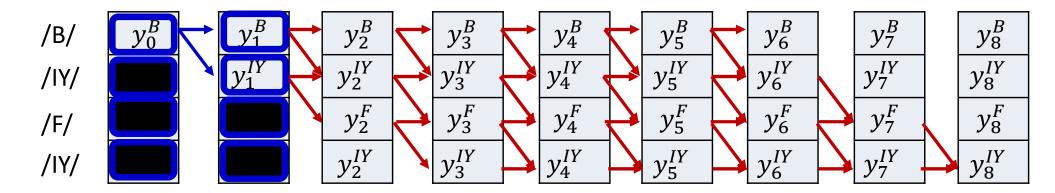
$$BP(0,i) = null, i = 0 ... K - 1$$

 $Bscr(0,0) = y_0^{S(0)}, Bscr(0,i) = 0 for i = 1 ... K - 1$

$$BP(t,0) = 0$$
; $Bscr(t,0) = Bscr(t-1,0) \times y_t^{S(0)}$
for $l = 1 \dots K - 1$

•
$$BP(t,l) = \begin{pmatrix} l-1: & if \left(Bscr(t-1,l-1) > Bscr(t-1,l)\right) \\ & l: else \end{pmatrix}$$

•
$$Bscr(t,l) = Bscr(BP(t,l)) \times y_t^{S(l)}$$



Initialization:

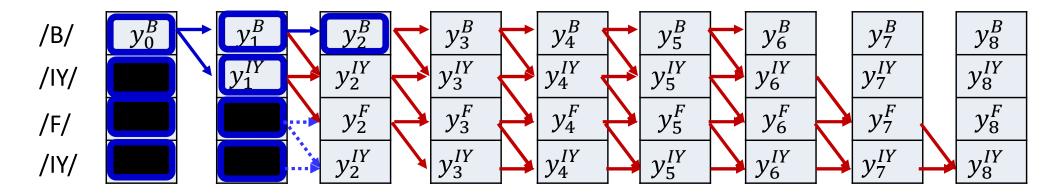
$$BP(0,i) = null, i = 0 ... K - 1$$

 $Bscr(0,0) = y_0^{S(0)}, Bscr(0,i) = 0 for i = 1 ... K - 1$

$$BP(t,0) = 0$$
; $Bscr(t,0) = Bscr(t-1,0) \times y_t^{S(0)}$
for $l = 1 \dots K - 1$

•
$$BP(t,l) = \begin{pmatrix} l-1: & if \left(Bscr(t-1,l-1) > Bscr(t-1,l)\right) & l-1; \\ & l:else \end{pmatrix}$$

•
$$Bscr(t,l) = Bscr(BP(t,l)) \times y_t^{S(l)}$$



Initialization:

$$BP(0,i) = null, i = 0 ... K - 1$$

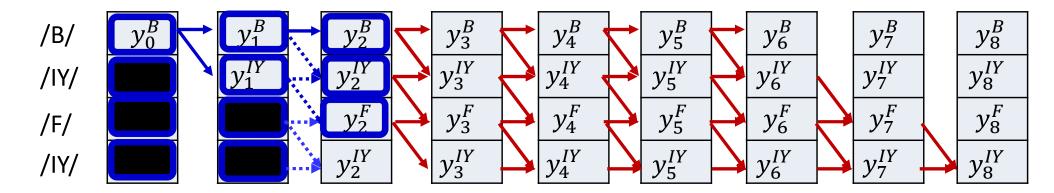
 $Bscr(0,0) = y_0^{S(0)}, Bscr(0,i) = 0 for i = 1 ... K - 1$

$$BP(t,0) = 0; Bscr(t,0) = Bscr(t-1,0) \times y_t^{S(0)}$$

for $l = 1 \dots K - 1$

•
$$BP(t,l) = \begin{pmatrix} l-1: & if \left(Bscr(t-1,l-1) > Bscr(t-1,l)\right) \ l-1; \\ & l:else \end{pmatrix}$$

•
$$Bscr(t, l) = Bscr(BP(t, l)) \times y_t^{S(l)}$$



Initialization:

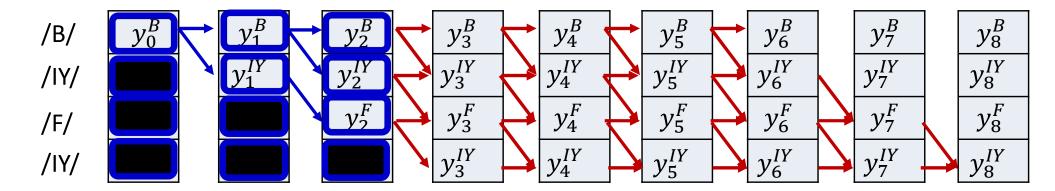
$$BP(0,i) = null, i = 0 ... K - 1$$

 $Bscr(0,0) = y_0^{S(0)}, Bscr(0,i) = 0 for i = 1 ... K - 1$

• for $t = 1 \dots T - 1$

$$BP(t,0) = 0$$
; $Bscr(t,0) = Bscr(t-1,0) \times y_t^{S(0)}$
for $l = 1 \dots K - 1$

- BP(t,l) = (if(Bscr(t-1,l-1) > Bscr(t-1,l)) l-1; else l)
- $Bscr(t,l) = Bscr(BP(t,l)) \times y_t^{S(l)}$



Initialization:

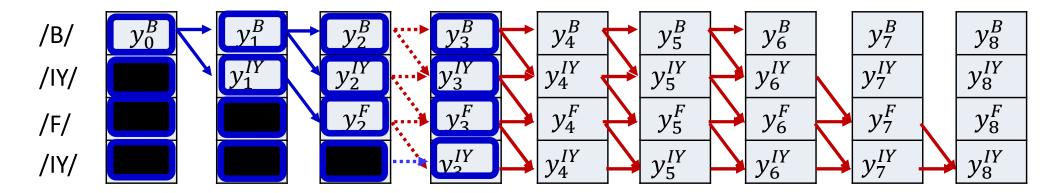
$$BP(0,i) = null, i = 0 ... K - 1$$

 $Bscr(0,0) = y_0^{S(0)}, Bscr(0,i) = 0 for i = 1 ... K - 1$

• for $t = 1 \dots T - 1$

$$BP(t,0) = 0$$
; $Bscr(t,0) = Bscr(t-1,0) \times y_t^{S(0)}$
for $l = 1 \dots K - 1$

- BP(t,l) = (if(Bscr(t-1,l-1) > Bscr(t-1,l)) l-1; else l)
- $Bscr(t,l) = Bscr(BP(t,l)) \times y_t^{S(l)}$



Initialization:

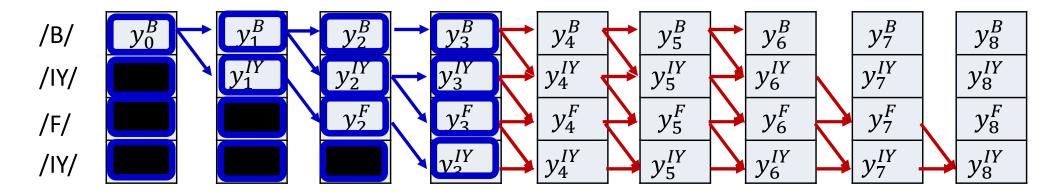
$$BP(0,i) = null, i = 0 ... K - 1$$

 $Bscr(0,0) = y_0^{S(0)}, Bscr(0,i) = 0 \text{ for } i = 1 ... K - 1$

$$BP(t,0) = 0$$
; $Bscr(t,0) = Bscr(t-1,0) \times y_t^{S(0)}$
for $l = 1 \dots K - 1$

•
$$BP(t,l) = \begin{pmatrix} l-1: & if \left(Bscr(t-1,l-1) > Bscr(t-1,l)\right) & l-1; \\ & l:else \end{pmatrix}$$

•
$$Bscr(t,l) = Bscr(BP(t,l)) \times y_t^{S(l)}$$



Initialization:

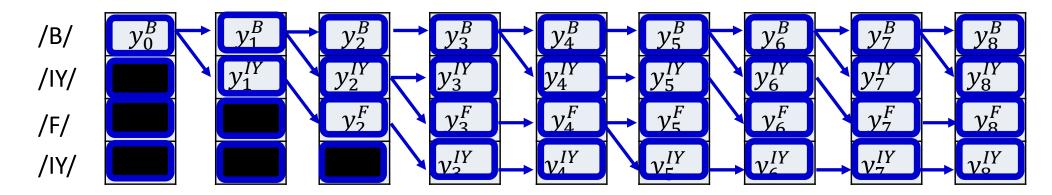
$$BP(0,i) = null, i = 0 ... K - 1$$

 $Bscr(0,0) = y_0^{S(0)}, Bscr(0,i) = 0 \text{ for } i = 1 ... K - 1$

$$BP(t,0) = 0$$
; $Bscr(t,0) = Bscr(t-1,0) \times y_t^{S(0)}$
for $l = 1 \dots K - 1$

•
$$BP(t,l) = \begin{pmatrix} l-1: & if \left(Bscr(t-1,l-1) > Bscr(t-1,l)\right) & l-1; \\ & l:else \end{pmatrix}$$

•
$$Bscr(t,l) = Bscr(BP(t,l)) \times y_t^{S(l)}$$



Initialization:

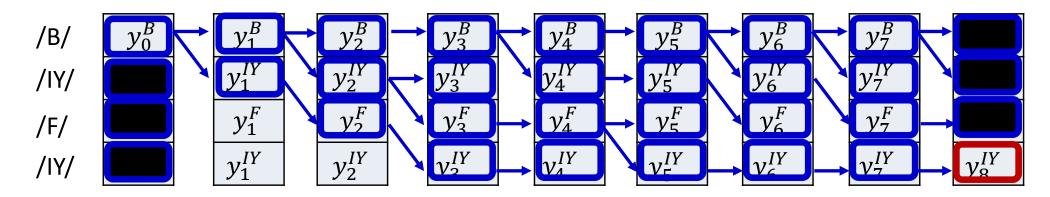
$$BP(0,i) = null, i = 0 ... K - 1$$

 $Bscr(0,0) = y_0^{S(0)}, Bscr(0,i) = 0 \text{ for } i = 1 ... K - 1$

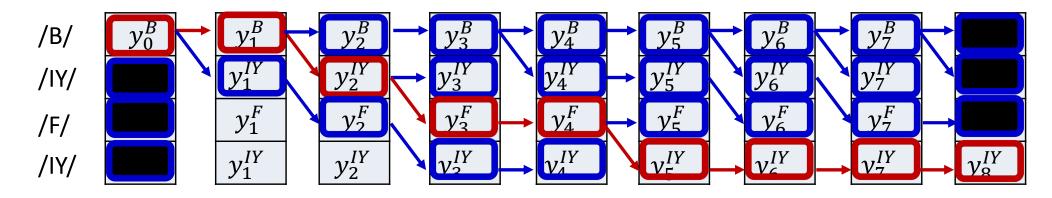
$$BP(t,0) = 0$$
; $Bscr(t,0) = Bscr(t-1,0) \times y_t^{S(0)}$
for $l = 1 \dots K - 1$

•
$$BP(t,l) = \begin{pmatrix} l-1: & if \left(Bscr(t-1,l-1) > Bscr(t-1,l)\right) & l-1; \\ & l:else \end{pmatrix}$$

•
$$Bscr(t,l) = Bscr(BP(t,l)) \times y_t^{S(l)}$$



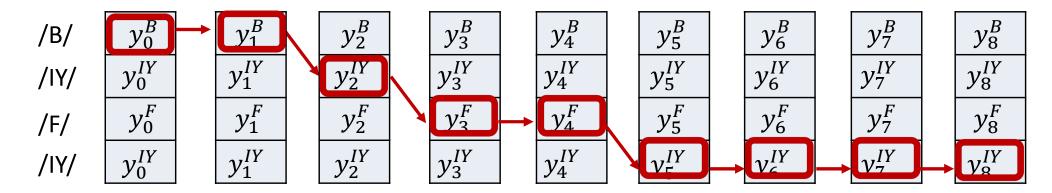
•
$$s(T-1) = S(K-1)$$



•
$$s(T-1) = S(K-1)$$

• for
$$t = T - 1$$
 downto 1

$$s(t-1) = BP(s(t))$$



•
$$s(T-1) = S(K-1)$$

• for
$$t = T - 1$$
 downto 1

$$s(t-1) = BP(s(t))$$

/B/ /B/ /IY/ /F/ /F/ /IY/ /IY/ /IY/ /IY/

Poll 4

• @

Poll 4

Select all that are true about Viterbi decoding

- It finds the most probable alignment of a compressed (order-synchronous) sequence to an input
- Viterbi decoding is run on a table of probabilities constructed for the compressed sequence, with one row for each symbol in the sequence, derived from the probability table generated by from the output of the recurrent network
- Viterbi decoding selects the most probable symbol from each column of the table

VITERBI

```
#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#T = length of input
#First create output table
For i = 1:N
    s(1:T,i) = v(1:T, S(i))
#Now run the Viterbi algorithm
# First, at t = 1
BP(1,1) = -1
Bscr(1,1) = s(1,1)
Bscr(1, 2:N) = 0
for t = 2:T
   BP(t,1) = 1;
    Bscr(t,1) = Bscr(t-1,1)*s(t,1)
    for i = 1:min(t,N)
          BP(t,i) = Bscr(t-1,i) > Bscr(t-1,i-1) ? i : i-1
          Bscr(t,i) = Bscr(t-1,BP(t,i))*s(t,i)
# Backtrace
AlignedSymbol(T) = N
for t = T downto 2
    AlignedSymbol(t-1) = BP(t,AlignedSymbol(t))
```

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

```
VITERBI
#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#T = length of input
#First create output table
For i = 1:N
    s(1:T,i) = y(1:T, S(i))
                                   table
```

#Now run the Viterbi algorithm

```
# First, at t = 1
BP(1,1) = -1
Bscr(1,1) = s(1,1)
Bscr(1,2:N) = 0
for t = 2:T
    BP(t, 1) = 1;
    Bscr(t,1) = Bscr(t-1,1)*s(t,1)
    for i = 2:min(t,N)
```

Do not need explicit construction of output

Information about order already in symbol sequence S(i), so we can use y(t,S(i)) instead of composing s(t,i) = y(t,S(i)) and using s(t,i)

```
BP(t,i) = Bscr(t-1,i) > Bscr(t-1,i-1) ? i : i-1
Bscr(t,i) = Bscr(t-1,BP(t,i)) *s(t,i)
```

Backtrace

```
AlignedSymbol(T) = N
for t = T downto 2
    AlignedSymbol(t-1) = BP(t,AlignedSymbol(t))
```

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

VITERBI

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#T = length of input

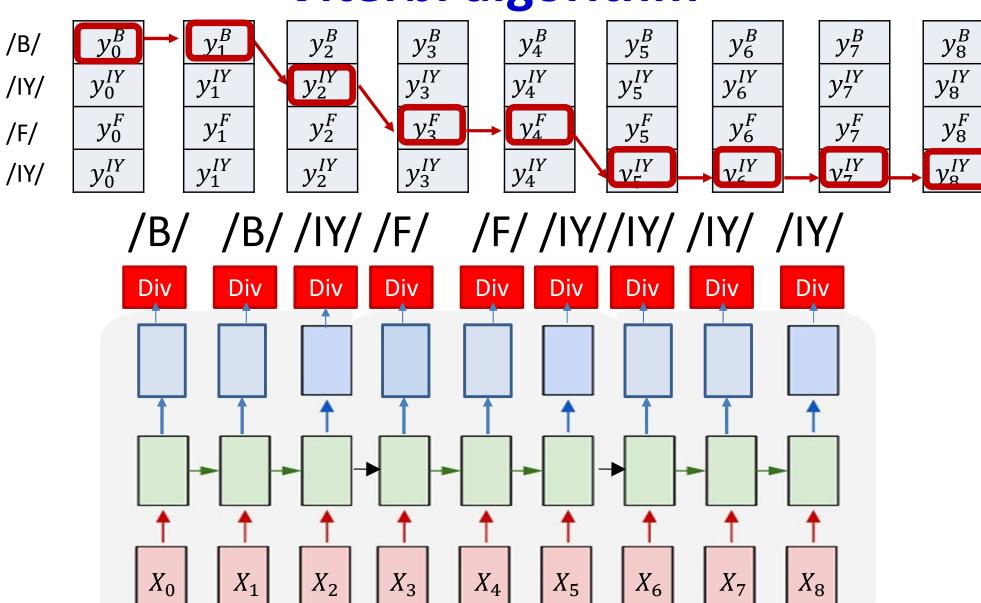
Without explicit construction of output table

Backtrace

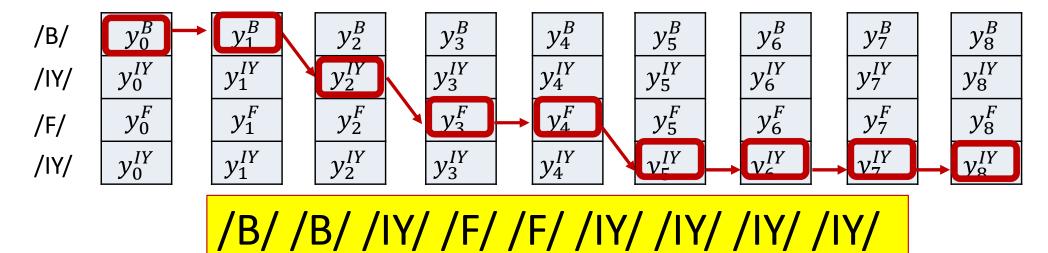
```
AlignedSymbol(T) = N
for t = T downto 2
   AlignedSymbol(t-1) = BP(t,AlignedSymbol(t))
```

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

Assumed targets for training with the Viterbi algorithm



Gradients from the alignment



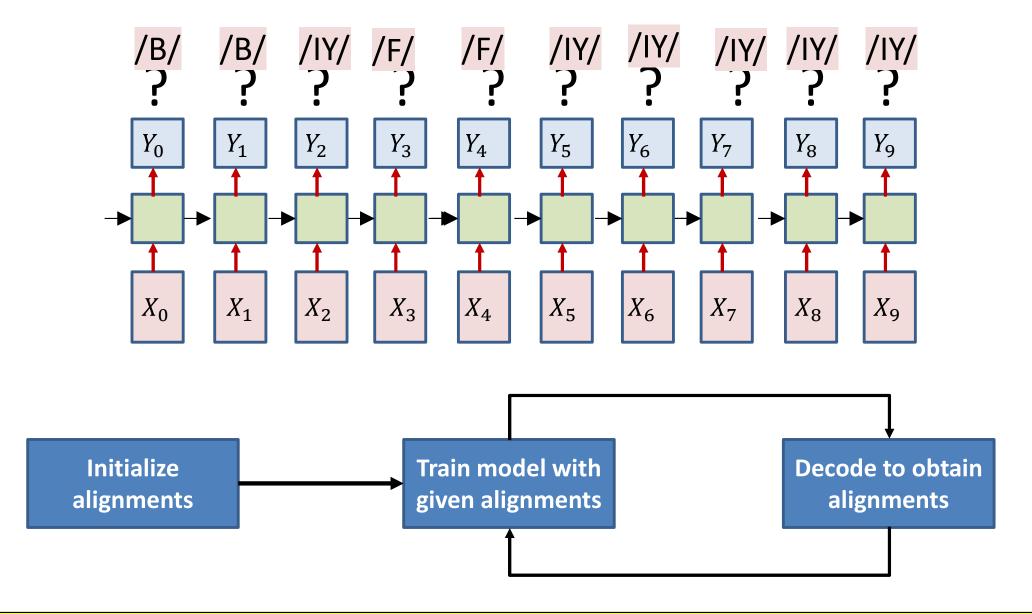
$$DIV = \sum_{t} KL(Y_{t}, symbol_{t}^{bestpath}) = -\sum_{t} \log Y(t, symbol_{t}^{bestpath})$$

• The gradient w.r.t the t-th output vector Y_t

$$\nabla_{Y_t} DIV = \begin{bmatrix} 0 & 0 & \dots & \frac{-1}{Y(t, symbol_t^{bestpath})} & 0 & \dots & 0 \end{bmatrix}$$

Zeros except at the component corresponding to the target in the estimated alignment

Iterative Estimate and Training



The "decode" and "train" steps may be combined into a single "decode, find alignment compute derivatives" step for SGD and mini-batch updates

Iterative update

Option 1:

- Determine alignments for every training instance
- Train model (using SGD or your favorite approach) on the entire training set
- Iterate

Option 2:

- During SGD, for each training instance, find the alignment during the forward pass
- Use in backward pass

Iterative update: Problem

 Approach heavily dependent on initial alignment

Prone to poor local optima

Alternate solution: Do not commit to an alignment during any pass..

Next Class

- Training without explicit alignment...
 - Connectionist Temporal Classification
 - Separating repeated symbols
- The CTC decoder...