Deep Learning
Recurrent Networks: Part 4
Spring 2022

Story so far

Ydesired(t)

Y(t)

X(t)

v

Time

 Recurrent structures can be trained by minimizing the divergence
between the sequence of outputs and the sequence of desired outputs

— Through gradient descent and backpropagation

 The challenge: Defining this divergence
— Inputs and outputs may not be time aligned or even synchronous

Variants of recurrent nets

one to one many to many
! Pt 1
e B
Images from
T ? T ? Karpathy

e Conventional MLP

* Time-synchronous outputs
— E.g. part of speech tagging 3

Variants of recurrent nets

many to one

e Sequence classification: Classifying a full input sequence
— E.gisolated word/phrase recognition
* Order synchronous, time asynchronous sequence-to-sequence generation

— E.g. speech recognition
— Exact location of output is unknown a priori

More variants

many to many one to many

Images from
Karpathy

* A posteriori sequence to sequence: Generate output sequence after processing
input
— E.g.language translation
* Single-input a posteriori sequence generation

— E.g. captioning an image 5

Variants of recurrent nets

one to one many to many

Images from

T T T ? Karpathy

e Conventional MLP

 Time-synchronous outputs
— E.g. part of speech tagging 6

This is a regular MLP

‘E W oEEE RS

X(t)

t=0

Time

* No recurrence

— Exactly as many outputs as inputs

— The output at time t is unrelated to the output at
t" # t.

Learning in a regular MLP for series
Ydesired(t)

A 2 2NN 2N S S

Y(t)

[
»

Time
In the context of analyzing time series, the divergence to minimize is still the
divergence between two series
— Must be differentiable w.r.t every Y(t)

In this setting: One-to-one correspondence between actual and target outputs

Common assumption: Total divergence is the sum of local divergences at individual

times
— Simplifies model and maths 3

“Series MLP” as a regular MLP

Yta rget(t)

R 2R 2N 2 2. A

Y(t)

* Gradient backpropagated at each time

Vv yDiv(Yeargee(1 .. T),Y(1...T))
e Common assumption: One-to-one correspondence

Div(Yigrger(1..T),Y(1..T)) = Z Div(Yearge: (@), Y ()
t

Ty yDiv(Yearget (1 .. T), Y (1 ... T)) = Py Div(Yearge: (), Y (1))

— This is further backpropagated to update weights etc

Typical Divergence for classification: Div(Ytarget(t), Y(t)) = KL(Yiqrget (£), Y (1))

* @0

Poll 1

Poll 1

Conventional MLPs too can be used to model sequences, True or false

e True
e False

When we use conventional MLPs to model sequences, the sequence nature of the problem is
captured through the divergence, which is now computed between the output sequence and the
desired output sequence, true or false

e True
e False

Variants of recurrent nets

one to one any to man
! Pt 1
e B
Images from
T T T ? Karpathy

e Conventional MLP

* Time-synchronous outputs
— E.g. part of speech tagging 1

Time synchronous network
CD NNS VBD IN DT JJ NN
S EEEEE

two roads diverged in a yellow wood

[[[[
> > » >

 Network produces one output for each input
— With one-to-one correspondence
— E.g. Assigning grammar tags to words

* May require a bidirectional network to consider both past
and future words in the sentence

Time-synchronous networks:

r(0) h(1) h(T - 1) h(T)
Y(0) Y(1) Y(2) Y(T2) Y(T-1) (1 S —— L DA SO S L — ,
de e
h.,) -
. eeeoe i
E E E E AT
. LI
X(0) X(1) X(2) X(T-2) X(T-1) X(T) I
X(0) X(1) X(T-1) X(T)
o

One sided network: Process input left to right and produce
output after each input

Bi-directional network: Process input in both directions

In all cases, there is an output for every input with exact
one-to-one time-synchronous correspondence

— Will continue to assume unidirectional models for explanations
14

Back Propagation Through Time

DIV

D(1..T)

Y (0) Y(1) Y(2) Y(T-2) Y(T-1) Y

SEEIEEE

X(0) X(1) X(2) X(T-2) X(T-1 X(T)

* Train given a set of input-target output pairs that are time synchronous
(Xi'Di)l where Xi = Xi,O’ "'rXi,T' Di = Di,O' ""Di,T

* The divergence computed is between the sequence of outputs
by the network and the desired sequence of outputs
Div(Yiargee(1 .. T),Y(1..T))

15

Back Propagation Through Time

DIV

D(1..T)

Y (0) Y(1) Y(2) Y(T-2) Y(T-1) Y

BB TRE

X(0) X(1) X(2) X(T-2) X(T-1 X(T)

First step of backprop: Compute Vy) DIV forall t
/

* The key component is the computation of this derivative!!
* This depends on the definition of “DIV”

16

BPTT: Time-synchronous recurrence

Ytar et(t)
R ¥

X(t)
t=0 R
Time
e Usual assumption: Sequence divergence is the sum of the divergence at
individual instants

Div(Yiargee(1 .. T),Y(1..T)) = Z Div(Yrarger (), Y (1))

VyyDiv(Yrarget(1 .. T), Y (1...T)) = Vyy Div(Yrgrge: (), Y (1))

Typical Divergence for classification: Div(Ytarget(t), Y(t)) = KL(Yiqrget (£), Y (1))

Poll 2

Poll 2

Select all that are true about time-synchronous RNNs

e There is one output corresponding to every input

e They can only be unidirectional, i.e. either forward recursion or backward recursion, but not
both.

e The divergence between true and desired outputs can have an additive contribution from the
output at each time.

19

Variants of recurrent nets

Seguence on: Classifying a full input sequence
— E.g phoneme recognition
Order synchronous , time asynchronous sequence-to-sequence generation

— E.g. speech recognition
— Exact location of output is unknown a priori

20

Example..

Blue|

T

- =1 @} =]

t t 1

Color of sky

* Question answering
* |[nput : Sequence of words

* Output: Answer at the end of the question

Example..

VAH/

* Speech recognition
* Input : Sequence of feature vectors (e.g. Mel spectra)

 Qutput: Phoneme ID at the end of the sequence

— Represented as an N-dimensional output probability vector,
where N is the number of phonemes

22

Inference: Forward pass

VAH/

T

t t 1

Xo| | X1| |42

* Exact input sequence provided

— Output generated when the last vector is processed

e Outputis a probability distribution over phonemes

 But what about at intermediate stages?

Forward pass

VAH/

t t 1

Xo| | X1| |42

* Exact input sequence provided

— OQOutput generated when the last vector is processed
e Qutput is a probability distribution over phonemes

e OQOutputs are actually produced for every input
— We only read it at the end of the sequence

Training

JAH/

o

i

\Y(Z)

T

t Lt v 1
Xo| [X1] |X2

* The Divergence is only defined at the final input
— DIV (Yiarget, Y) = KL(Y(T), Phoneme)

* This divergence must propagate through the net
to update all parameters

Training

Shortcoming: Pretends there's no useful ||/AH/

information in these T
\A !
\ Y(2)
(_7—.’/ t
t Lt v 1
Xo| | X |X2
* The Divergence is only defined at the final input

— DIV (Yiarger, Y) = KL(Y(T), Phoneme)

* This divergence must propagate through the net
to update all parameters

Training

Fix: Use these /aH/| [/aH/| | /AR/
outputs too.

v v v
These too must F F !

ideally point to the

correct phoneme Y(2)
H . T
t t t
X, | | x| | X

* Exploiting the untagged inputs: assume the same output for the
entire input

* Define the divergence everywhere

DIV(Ytarget, Y) = Z w:KL(Y(t), Phoneme)
t

27

Training

Fix: Use these /AH/| |/AH/| | /AH/ Blue
outputs too.

v v v v
These too must F F ! !

ideally point to the

correct phoneme Y(2) Y(2)
= T 1 t
T T 1t T T il
Xo| | Xi| [X2

Color of sky

 Define the divergence everywhere
DIV (Yarges Y) = z w,KL(Y(t), Phoneme)
t

* Typical weighting scheme for speech: all are equally important
 Problem like question answering: answer only expected after the question ends

— Only wry is high, other weights are 0 or low -

Variants on recurrent nets

many to one

e Sequence classification: Classifying a full inpe
— E.g phoneme recognition

* Order synchronous, time asynchronous sequence-to-sequence generation
— E.g. speech recognition
— Exact location of output is unknown a priori -9

A more complex problem

/B/

/AH/

T

/T/

T

T

T

I

T

T

Xo

X1

X3

X3

X4

Xe

* Objective: Given a sequence of inputs, asynchronously

output a sequence of symbols

— This is just a simple concatenation of many copies of the simple

“output at the end of the input sequence” model we just saw

But this simple extension complicates matters..

30

The sequence-to-sequence problem

/B/ /AH/ [T/
r ¢+ tr r 1 ¢+ 1t 1T 1
TR TS | (R T T T
X, X | | X X:| | X, Xs| | X | | X, Xa| | Xo

How do we know when to output symbols
— In fact, the network produces outputs at every time
— Which of these are the real outputs

* Outputs that represent the definitive occurrence of a symbol

31

/AH/
/B/
/D/
/EH/
/IY/
/F/
/G/

The actual output of the network

AH
Vs

Ve

Ve

EH
b4

Y
Vs

Vg

R A i R A Al I T
Yo vi Vs Vs Ve ve Ve y7
V6 yr Vs V3 Ve ve Ve V7

vor | |y | |ws™ | | w57 |yat | | ¥ET| |wET | |y

Yo' yi© vs' vz’ Vs Ve Ve yi¥
Yo vi Vs V3 Va v Ve vy
Y6 %4 ek Vel Vi %3 Ve %

| | | | 1 1 1 1
X, X, X, X, X, X< X, X,

Vs

1

Xg

At each time the network outputs a probability for
each output symbol given all inputs until that time

—E.g.y2 = prob(s, = D|X, ... X,)

Recap: The output of a network

e Any neural network with a softmax (or logistic) output
is actually outputting an estimate of the a posteriori
probability of the classes given the output

[P(c11X), P(c2]|X), ..., P(ck|X)]
* Selecting the class with the highest probability results
in maximum a posteriori probability classification

Class = argmax P(Y;|X)
i

* We use the same principle here

/AH/
/B/
/D/
/EH/
/IY/
/F/
/G/

Overall objective

Nz i N U2 i I 7 T 6 2 o 17l I O V7l O 1 7 O 5 N I Vo
Yo vi Vs Vs Ve ve Ve v7 Ve
V6 yr Vs V3 Ve ve Ve y7 Ve

vor | |y | |y | |57 |yl | | yET| |wET | | yi" | | "

Yo i vy s Vs ve' Ve vy Vg
Yo vi Vs V3 Va v Ve vy Ve
Y6 %4 ek Vel Vi %3 Ve el %

| | | | 1 1 1 1 |
X, X, X, X, X, X< X, X, Xq

ind most likely symbol sequence given inputs

So ... Sg_1 = argmax prob(Sy ...Sx_1|Xo .- Xy_1)

/ !
St Se_1

/AH/
/B/
/D/
/EH/
/IY/
[F/

Finding the best output

Yo Vi Y2 Y3 Ya Vs Yo y7 Vg
Y6 i V5 3 Vi ys Vé s Vs
Yo Vi V5 3 Vi s Ve 3
Yo i s y3 Vi Vs Ve y7 Vs
% i V3 y3 Vi v g
Yo %1 Ve Y5 Vg
/G/ i | v | Y] |] [] | v | v | v
I I 1 1 1 1 I I 1
X, X, X, X, X, X X, X, Xq

* Option 1: Simply select the most probable

symbol at each time

35

/AH/
/B/
/D/
/EH/
/IY/
/F/
/G/

Finding the best output

Nz i N U2 i I 7 T 6 2 o 17l I O V7l O 1 7 O 5 N I Vo
Yo vi Vs Vs Ve ve Ve v7
V6 yr Vs V3 Ve ve Ve y7
vor | |t | w2 | | yET | |ya™| | yET] LwET L Lyit | vE"
Vo' i s 5 Vs ve' ' Vg
yE | | yF Il RN
| RN ys s | | Ve Y7 Y8
| | 1 1 1 1 1 1 1
X, X, X, X, X, X< X, X, Xq

 Option 1: Simply select the most probable symbol at each

time

— Merge adjacent repeated symbols, and place the actual emission

of the symbol in the final instant

36

Simple pseudocode

e Assuming y(t,i),t =1..T,i =1..N is already
computed using the underlying RNN

n = 1
best (1)= argmax; (y(1l,1))
for t = 1:T
best (t)= argmax; (y(t,1))

1f (best(t) != best(t-1))
out (n) = best(t-1)
time (n) = t-1

n = n+1

Finding the best output

VA S I Z i 177w B U2 ol I 7o I 5 - T 577 O U7 I B o
/B/ | ¥ yr % y3 Vi g Ve el
/o) | Yo VP %4 s 74 e Ve y7

ve | 1 yi™ | | v§"

e g

Ye y; Vs

Ve % Vs

1 1 1

X, X, X, X, X, X< X, X, Xq

 Option 1: Simply select the most probable symbol at each
time
— Merge adjacent repeated symbols, and place the actual emission
of the symbol in the final instant 38

Finding the best output

yéH V4 V4
B B

"GFIYD"?) %

yEH y£H
e
Ve) Ve
ve V5 Vs
1 1 1
 —— ———
X, X, X, X, X, X< X, X, Xq

 Option 1: Simply select the most probable symbol at each
time
— Merge adjacent repeated symbols, and place the actual emission
of the symbol in the final instant 39

Finding the best output

J/AH/ | Yo i Y2 V3 Va Vs Y6 % Vs
/Bl | 3 yi Y3 Vi ys Y Y7 Vs
o/ | v y3 yi | | ¥ y3 y¢ | | v
/EH/ | ¥o i Y2 V3 Vi Vs Ve y7 Vs
/N/ | Y8 yi y3 y3 Y5
K| Yo Y1 Y3 Y3 ys Y5 yé y7 Ys
/G/ | Y6 y{ Y3 3 Vi yé Yé y7 Y4

I I I I 1 1 I I 1

X, X, X, Xa X, X< X, X, Xq

* Option 2: Impose external constraints on what sequences are allowed
— E.g. only allow sequences corresponding to dictionary words
— E.g. using special “separating” symbols to separate repetitions

Finding the best output

1

1

/AH/ | Yo V1) V3 Vi Vs Y6 Y7 Vs
/Bl | 3 yi Y3 Vi ys Y Y7 Vs
/o) | ¥ yi v3 | | ¥3 vi ye ve
JEH/ | ¥o Y1 Y2 Y3 Vi Ys Y6 Y7 Vs
REIREARE: i | | ¥
K| Yo y1 Y3 Y3 ys Y5 Ye y7 Ys

7 B . 7 7
6/ | ¥ | || We will refer to the process 7| [

f - u

__. of obtaining an output from [1—.

the network as decoding .

L1 L | I I I | I— -

* Option 2: Impose external constraints on what sequences are allowed
— E.g. only allow sequences corresponding to dictionary words
— E.g. using special “separating” symbols to separate repetitions

Decoding

VA S I Z i 177w B U2 ol I 7o I 5 - T 577 O U7 I B o
/B/ Vs Vi Vs Y6 y7 Y8
/o) | ¥8 vy V7 Vel vy v 4
A A R A A N A I A A L A e
A AREARES Y ARES
[Fl | ¥ y1 Vs s Ya s Ye y; Vs
/G | Yo yi %4 ys Vi s Y % Vs

I I 1 1 1 1 I I 1

X, X, X, X, X, X< X, X, Xq

This is in fact a suboptimal decode that actually finds the most likely time-synchronous
output sequence
— Which is not necessarily the most likely order-synchronous sequence

* The “merging” heuristics do not guarantee optimal order-synchronous sequences

— We will return to this topic later

42

The sequence-to-sequence problem

/B/ /AH/ [T/
r r + 1 t+ t+ t 1 1 1
t t 1 1/,T__T__T__T_ t 1
Xo| [%| [X2| || Partially Addressed \{‘ﬂ 26

_/

— Which of these are the real outputs

We will revisit this though
ow do we know when to output symbols

[i In fact, the network produces outputs at every time

e How do we train these models?

43

Training

/B/ /AH/ /T/

t ¢+ ¢+ 1 t ¢+ ¢+ ¢+ t 1

Xo | [x| [X | | Xs| [Xo| [Xs| [Xs| | % | Xs| | Xo

* Training data: input sequence + output sequence

— Output sequence length <= input sequence length

* Given output symbols at the right locations
— The phoneme /B/ ends at X,, /AH/ at X, /T/ at X,

The “alignment” of labels

T T, s ST T T mMms s mmmmmmm s mmm s s s smsmmmmsm,mmmmm s, mm,m M T T I I e Ilmlmmmm, s T

* The time-stamps of the output symbols give us the “alignment” of the
output sequence to the input sequence

— Which portion of the input aligns to what symbol

* Simply knowing the output sequence does not provide us the alignment
— This is extra information

Training with alignment

/B/

/AH/

T

/T/

T

T

T

I

T

T

T

T

T

Xo

X1

X3

X3

X4

Xs

Xe

X7

Xg

* Training data: input sequence + output sequence

— Output sequence length <= input sequence length

* Given the alignment of the output to the input
— The phoneme /B/ ends at X,, /AH/ at X, /T/ at X,

46

/B/
Y,

Training¢
Y,

/AH/

/T/

1 1 1
t + t+ T t f t t t 1
Xo | [x| [X | | Xs| [Xo| [Xs| [Xs| | % | Xs| | Xo

* Either just define Divergence as:
DIV = KL(Y,,B) + KL(Y;, AH) + KL(Y,, T)

e Or..

47

m ra e

N BmEE o

Y, Ye £
r ¢+ t 1 t+ ¢t 1 1 ¢
B I TR B 2 S
Xy X X5 X3 X4 Xs Xe X5 Xg Xq

* Either just define Divergence as:
DIV = KL(Yy, B) + KL(Y,, AH) + KL(Yo,T)

* Orrepeat the symbols over their duration

DIV = z KL(Y;, symbol,) = — z log Y (t,symbol,)
t t

48

Problem: No timing information provided
/B/ /AH/ [T
P PP P PP ? P 7?7

* Only the sequence of output symbols is provided for the

training data
— But no indication of which one occurs where

* How do we compute the divergence?
— And how do we compute its gradient w.r.t. Y; v

Training without alignment

 We know how to train if the alignment is
provided

* Problem: Alignment is not provided

* Solution:
1. Guess the alignment

2. Consider all possible alignments

Solution 1: Guess the alignment
B Y/ /iy, YA /TR RO VRL VY

Guess an initial alignment and iteratively refine it as the model improves

Initialize: Assign an initial alignment

— Either randomly, based on some heuristic, or any other rationale
Iterate:

— Train the network using the current alignment

— Reestimate the alignment for each training instance
51

Solution 1: Guess the alignment
B Y/ /iy, YA /TR RO VRL VY

Guess an initial alignment and iteratively refine it as the model improves

Initialize: Assign an initial alignment
— Either randomly, based on some heuristic, or any other rationale
Iterate:

— Train the network using the current alignment

— Reestimate the alignment for each training instance

52

Characterizing the alighnment

T T, s ST T T mMms s mmmmmmm s mmm s s s smsmmmmsm,mmmmm s, mm,m M T T I I e Ilmlmmmm, s T

 The “alignment” tells us which portion of the input aligns to what symbol in
the sequence

— Examples show different alignments of /B/ /AH/ /T/ to X, ... X,

53

Characterizing the alighnment

T T, s ST T T mMms s mmmmmmm s mmm s s s smsmmmmsm,mmmmm s, mm,m M T T I I e Ilmlmmmm, s T

 The “alignment” tells us which portion of the input aligns to what symbol in
the sequence

— Examples show different alignments of /B/ /AH/ /T/ to X, ... X,

* Analignment can be represented as a repetition of symbols
— The “expansion” of the “compressed” sequence to the length of the input

Expansion and Compression

/8/ /8/ /B/ [B] /AH/ /AH/ J/AH/ [AH/ [T/ [T/

/B/ /AH/ [T/ |:> /B/ /B/ /AH/ JAH/ /AH/ /AH/ AW/ [T/ 1T [T

/8/ /8/ /8] /AH/ /AH/ [AW/ /1))) [T

* The same asynchronous “compressed” sequence can be
“expanded” in many different ways to align it to an input

/8/ /8/ /B/ [B] /AH/ /AH/ /AH/ [AH/

[T/ [T/

/B/ /B/ J/AH/ JAH/ /AH/ JAH/ /AH/ /T/

/Y [Ty /8] AH/[T]

/8/ /8/ [B/] /AH/ [AH/ [AH/ [T/ [T/

AT

* Many different alignments for an input can compress to the same

unaligned “compressed” sequence

 The problem of finding the alignment: find the best expansion of a
compressed sequence, for a given input, given a model

Estimating an alighment

* Alignment problem: Given

— The unaligned K-length compressed symbol sequence S = S, ... Sx_1
 E.g./B//IY/ [F//IY/

— An N-length input (N = K)
* E.g. input Xy, X¢, ..., Xo

— And a (trained) recurrent network

* Find the most likely alignment:
argmax P(sg, S1, o, SN—1150, S1, ++» Sk» Xo, X1, ooy Xn—1)
— Such that
compress(Sg, S1, -, SN—1) = So, S1, -, Sk

— compress() is the operation of compressing repetitions into one

Poll 3

Poll 3

Select all that are true about alighments, time-synchronous sequences, order-synchronous sequences,
compression, and compressed sequences

An order-synchronous symbol sequence that is shorter than the input can be “aligned” to the
input by repeating symbols until the expanded sequence is exactly as long as the input

The “alignment” of an order-synchronous symbol sequence to an input is a time-synchronous
symbol sequence

A symbol sequence that is time-synchronous with an input can be compressed to a shorter
order-synchronous input by eliminating repetitions of symbols

Order-synchronous symbol sequences that are shorter than the input are compressed symbol
sequences

There is only one way of generating an alignment of a compressed symbol sequence to an input

58

Recall: The actual output of the network

VA S I Z i 177w B U2 ol I 7o I 5 - T 577 O U7 I B o
/B/ | ¥& yr % y3 Vi g Ve y7 Y
/o) | Yo VP Vs s 74 e Ve y7 Vs
AR A R A R A A R R A A
N | o v Vs s’ Vi s Ve 7 Ve
[Fl | ¥ y1 Vs v Ya s Ye y; Vs
/G | Yo yi %4 ys Vi s Y % Vs
I I 1 1 1 1 I I |
X, X, X, X, X, X< X, X, Xq

* At each time the network outputs a probability
for each output symbol

/B/
/D/
/EH/
/IY/
/F/
/G/

Recall: unconstrained decoding

Yo

EH
Yo

2%
Yo

AH
Vs

Vs

Yo

VS

We find the most likely sequence of symbols

Ve

' ys | | v yet | | vi"
Yo Y1 Y3 Y3 Y3 ys Y y7
| | A REARE:
2 N 157 Il N 7l N il OO 7 O
yi© | |y | |va | (wa | v | |
1 Y2 Y3 A Ys Y6 y7
yi y: | | v§ Y& s | | ¥ y7

Ve

Vg

— (Conditioned on input X, ... Xy_1)

This may not correspond to an expansion of the desired symbol

sequence

— E.g. the unconstrained decode may be

/AH//AH//AH//D//D//AR/[FI/YINY]

* Contracts to /AH/ /D/ /AH/ [F/ /IY/
— Whereas we want an expansion of /B//IY//F//1Y/

Vs

60

Constraining the alighment: Try 1

AR AN AR AN AN

* Block out all rows that do not include symbols
from the target sequence

— E.g. Block out rows that are not /B/ /IY/ or /F/

/B/
/IY/
/F/

/AH/
/B/
/D/
/EH/
/1Y/
/F/
/G/

Blocking out unnecessary outputs

Ve vy vy V3 Vi ye Ve y7

v yi' vy ys' Vi ye' Ve vy

Yo vi vy ys Vi Ve Ve vy

Vi yitH ysH yiH Vs yiH yaH yAH

y§ vyt vy y5 374 yg Ve e

y& vy y3 y3 yi ye ye yP

y§H yi ys y3H v ye" yer yiH

yo¥ Vi ya¥ y3Y Vi~ ys' yeY y3¥

v§ yi vy vi Vi yE Ve %

v§ yi ys y§ v ys ye vy

| | 1] 1 1]] 1
| | | | | | | | |

Compute the entire output (for all symbols)

Copy the output values for the target symbols into the secondary reduced structure

62

Constraining the alighment: Try 1

/Bl | vE Vi V3 Vs Vi ye Ve vy Vg
7N yi' yiY ys' V¥ ye¥ v yi¥ ve'
/Fl | v& Vi vy Vs Vi Ve Ve i Vg

* Only decode on reduced grid

— We are now assured that only the appropriate
symbols will be hypothesized

Constraining the alighment: Try 1

/B/Mﬂ AR ve | [
Y Iy
V4 Vs

* Only decode on reduced grid

— We are now assured that only the appropriate symbols will
be hypothesized

* Problem: This still doesn’t assure that the decode
sequence correctly expands the target symbol sequence

— E.g. the above decode is not an expansion of /B//1Y//F//1Y/

 Still needs additional constraints y

Try 2: Explicitly arrange the constructed

/B/
/IY/
/F/
/IY/

/AH/
/B/
/D/
/EH/
/1Y/
/F/
/G/

table

Yo

Iy
Yo

Yo

Iy
Yo

AH
Yo

v&

e

EH
Yo

1Y
Yo

Yo

v§

B B B B B B B
Y1) Y3 Ya Vs Yo Y7
1Y 1Y 1Y 1Y 1Y 1Y 1Y
Vi Y2 Y3 Ya Vs Y6 Y7
F F F F F F F
Vi Y2 Y3 Ya Vs Ve Y7
1Y 1Y 1Y 1Y 1Y 1Y 1Y
Y1) Y3 Ya Vs Yo Y7
yit# y3H y3H yiH yéH yéH ysH
yi v yE Vi yg yE vy
vy Vs vy vy ye vE vy
Vi~ ys 1 Vo v yg Ve o y5H
yi¥ vs¥ y3¥ vi© yer yer 7Y
yi v vi Vi v vé vy
v{ Vs v§ vi vE vE 7

1

Y7
T T N e N e

Arrange the constructed table so that from top to bottom it has the exact
sequence of symbols required

| B

== = 4= < ozo==-- A 4zz&ékéao= =

Try 2: Explicitly arrange the constructed

table

/B/ | y& vy vy V3 Vi ye Ve vy Ve
N/ | ydY vi' ya¥ e Vs’ v’ Ve’ yi¥ Vg
/Fl | vE vi Vs Vs Vi Ve Ve) Vg
/Y| ybY yi' yar ys' Vi’ Vs Ve yi¥ Ve
Note: If a symbol occurs multiple times, we repeat the

row in the appropriate location.
E.g. the row for /IY/ occurs twice, in the 2"¢ and 4t positions

/B/)’0 J/1 J’2 3’3 Vi ys 3’6 3’7 V3.

/D/ e 0 vy 1 Vs 2 vy 3 }’4- y 5 vE 6 vy 7

JEH/ | y§H yi vy vz vi" ys" ve" y7

7B vi¥ vs© vi* vi© y&* vé* ol

/F/ v§ i Vs 3 yi ye Yé y7 Y8

/G/ | Y& yi v vs $2% ys vE vy v§
=L .—Tﬁ e e AL sl A r‘ﬁ ain

Arrange the constructed table so that from top to bottom it has the exact

sequence of symbols required

| B

=

1

| I

| I

=l

|

| I |

Composing the graph
#N is the number of symbols in the target output
#S (i) is the ith symbol in target output
#T = length of input

#First create output table
For 1 = 1:N
s(l:T,1) = y(1:T, S(1))

/B/
/IY/
/F/
/IY/

/IY/
/F/
/IY/

Explicitly constrain alighment

/8/ 2l] (o8] [] [02] [o8] [¥2] [
W | A | Yo | D D] [
Yo % Y2 Vs Vi Vs 3 7 Vs
| A D])]]]
time

Constrain that the first symbol in the decode must be the top left block

The last symbol must be the bottom right

The rest of the symbols must follow a sequence that monotonically travels

down from top left to bottom right

— l.e. symbol chosen at any time is at the same level or at the next level to the
symbol at the previous time

This guarantees that the sequence is an expansion of the target sequence
— /B/ /IY/ /F/ /1Y/ in this case

68

Explicitly constrain alighment

/Bxﬁy5< yf:yftyfﬁ:yf' v | | v2] 8
I\ 77 i % v v Sl Sy Y y7 Vg
/Fl | Y6 % Vs §y§ S' Ya >‘ ys M Ve L v: | | ¥&

Vs S» Vi' S\ Vs Ve S 7' S‘ Vs

Y v | |t | |
 Compose a graph such that every path in the graph from source to
sink represents a valid alignment

— Which maps on to the target symbol sequence (/B//1Y//F//1Y/)
 Edge scoresarel

* Node scores are the probabilities assigned to the symbols by the
neural network

69

Path Score (probability)

4 vy Vg

Ve L yi¥ Ve
Ve vy 4

S BZ:!
& DL NP

 Compose a graph such that every path in the graph from source to sink
represents a valid alignment

— Which maps on to the target symbol sequence (/B//IY//F//IY/)
 Edge scoresarel

* Node scores are the probabilities assigned to the symbols by the neural
network

 The “score” of a path is the product of the probabilities of all nodes along
the path

* E.g. the probability of the marked path is
Scr(Path) = y5y7y3' v3' va

70

Path Score (probability)

 Compose a graph such that every path in the graph from source to sink
represents a valid alignment
— Which maps on to the target symbol sequence (/B//IY//F//IY/)
 Edge scoresarel
* Node scores are the probabilities assigned to the symbols by the neural
network

 The “score” of a path is the product of the probabilities of all nodes along
the path

Figure shows a typical end-to-end path. There are an exponential number of
such paths. Challenge: Find the path with the highest score (probability)

/1

Explicitly constrain alighment

* Find the most probable path from source to
sink using any dynamic programming algorithm

— E.g. The Viterbi algorithm

Viterbi algorithm: Basic idea

yE | yE | 2 vy Ve
ys | o|ys o |ye | |7 | [vs
vi | ve Ve vy Ve
ve' |y Ve v’ |y

* The best path to any node must be an extension of
the best path to one of its parent nodes

— Any other path would necessarily have a lower

probability

* The best parent is simply the parent with the best-
scoring best path

73

Viterbi algorithm: Basic idea

/B/ Vi ye Ve Vs Vg
1Y/ V¥ ye¥ v yi¥ ve'
/F/ Vi Ve Ve i Vg
1Y/ ve' |y Vo' yi¥ Ve

BestPath(y§ — yt) = BestPath(yE — yi)yk
or BestPath(yS — yf)y%

BestPath(y§ — y3) = BestPath(y§ — BestParent)ys;

 The best parent is simply the parent with the best-scoring best path
BestParent

= argmax r\(Score(BestPath(y§ — Parent)))
¥3) 0

Parent E(yéy, 2

74

Viterbi algorithm

/8 L2 3 K i K’ v R vé % Vg
7 Nyl Syl Sy Iy y7 g
/Fl | Y6 -' Vi AN ¥s [Ve L yr | Vs
/Y| ye” ys' |ys" S\ ys Ye B y7 5-1 Vs

* Dynamically track the best path (and the score of the
best path) from the source node to every node in the
graph

— At each node, keep track of

* The best incoming parent edge

* The score of the best path from the source to the node through this
best parent edge

* Eventually compute the best path from source to sink

75

/B/
/IY/
/F/
/IY/

Viterbi algorithm

yﬁkyf* yf:yf yft:y?‘ yE yE yE
(I)Y J_, | IY IY

y vi© | vr ys' § V' >‘ ye' Ve L Vs Vg
Yo Vi vy Vs S, vi ¥ vi N ve 3 vy L | ¥§
v yi’ yaY v By Sw ye¥ Ve yi¥ 31 Ve

First, some notation:

yts(r) is the probability of the target symbol assigned to the r-th row

in the t-th time (given inputs X, ... X)
— E.g., S(0)=/B/
* The scores in the 0" row have the form yf
— E.g.S(1) =S(3) = /1Y/
e The scores in the 15t and 3" rows have the form ng
— E.g.S(2) = /F/
* The scores in the 2" row have the form yf

76

Viterbi algorithm

/B/ yr 1 vz Y3 K Vi K’ ys K| Ve Y7 Vs
1Y/ e o I ys S yi Myl (Ml x yi¥ Vg
/F/ Vi vy Vs Vi 5‘ ve M 6 v L | vs
1Y/ yi¥ yaY ys' 3 /7l ¥ ye' Ve B yi¥ S« Ve

BP := Best Parent

Initialization: Bscr := Bestpath Score to node

BP(0,i) = null, i=0..K—1

Bscr(0,0) = yg‘(o)’ Bscr(0,i)=0fori = 1..K—-1

77

Viterbi algorithm

i IC| V8 N yi K: vE) vE | [vB | | 8
v v Sl Syl Iyl v vg
%4 v 3yzf >‘ ys M V6 xyé: L | vé
A 3 Vi' ¥ Vs Ve B yr s

* [nitialization:
BP(0,i)= null, i=0..K—1
Bscr(0,0) = yg(o), Bscr(0,i) =0 fori = 1..K—-1

e fort = 1..T -1
forl =0..K—-1
« BP(t,l) = argmax Bscr(t—1,p)

peparents(l)

« Bscr(t,]) = Bscr(BP(t,1)) x y;®

=

Viterbi algorithm

y1

yE B Vs K Vs K’ ve K| ve y7 Ve
vi© vy Y 3yl Nyl Iyl yi¥ vg'
vi Vs V3 3 Vs 5‘ ve M Ve x vy Ve
Al ys¥ yg’ 3 Vs" >q v’ Ve' 3 yi¥ vg'

* |nitialization:
BP(0,i) = null, i=0..K—1

Bscr(0,0) = yg‘(o)’ Bscr(0,i) =0 for i

 fort =

BP(t,0) = 0; Bscr(t,0) = Bscr(t—1,0) Xy

1.T—-1

<

1..K—-1

79

Viterbi algorithm

yE N yE N yi K: vE) vE | [vB | | 8
v v Sl Syl Iyl v vg
%4 v 3 Vs >‘ ys M V6 x y: L | vé
A 3 Vi' ¥ Vs Ve B 7’ S« Vs

* I|nitialization:
BP(0,i) = null, i=0..K—1
Bscr(0,0) = y(f(o), Bscr(0,i) =0 fori = 1..K—1
e fort =1..T—-1
BP(t,0) = 0; Bscr(t,0) = Bscr(t—1,0) X yS(O)

t
forl =1...K—1

. BP(t]) = <l —1: if (Bser(t _l{’il;el) > Bscr(t —1, l)))

<=

80

« Bscr(t,1) = Bscr(BP(t,1)) xy;®

Viterbi algorithm

i IC| V8 N yi K: vE) vE | [vB | | 8
v v Sl Syl Iyl v vg
%4 v 3yzf >‘ ys M V6 xyé: L | vé
A 3 Vi' ¥ Vs Ve B 7’ S« Vs

* |Initialization:
BP(0,i) = null, i=0..K—1
Bscr(0,0) = y(f(o), Bscr(0,i) =0fori = 1..K—-1

1..T—-1

BP(t,0) = 0; Bscr(t,0) = Bscr(t—1,0) Xy

forl =1..K—-1

 fort =

. BP(t,]) = (l

—1: if (Bscr(t —1,l—1) > Bscr(t—1, l)) [—1;

[:else

e Bscr(t,1) = Bscr(BP(t,1)) x y;®

j

81

Viterbi algorithm

K Vi K’ ys | e y7 Vs
Sl Sy vy Vg
3 Ya >‘ s Ye x vy Vg
3 Vs ¥ ys Ve B vy

* Initialization:
BP(0,i) = null, i=0..K—-1
Bscr(0,0) = y(f(o), Bscr(0,i) =0 for i =
1..T—-1
BP(t,0) = 0;Bscr(t,0) = Bscr(t—1,0) X ytS(O)
forl =1..K—-1

1.K—-1

—

—1: if (Bser(t—1,1—1) > Bscr(t—1,1)) [—1; >
[:else

e fort =

. BP(t1) = (l

* Bscr(t,l) = Bscr(BP(t,1)) ths(l)

Viterbi algorithm

Vi K’ ve K| ve vy Ve
v Syl Iyl v7 Vg

g%

Vi 33}!—?- Ve §y5< Ve
VY ¥ ye' Ve yi¥ S« Ve

* Initialization:
BP(0,i) = null, i=0..K—1
Bscr(0,0) = yg‘(o)’ Bscr(0,i)=0fori = 1..K—-1
e fort = 1..T—-1

BP(t,0) = 0; Bscr(t,0) = Bscr(t—1,0) X ytS(O)

forl =1..K—-1
« BP(t, 1) = (if (Bscr(t —1,l—1) > Bscr(t—1, l)) [—1; else l)

« Bscr(t,1) = Bscr(BP(t,1)) x y°® } :

83

Viterbi algorithm

Vi K’ ve K| ve vy Ve
v Syl Iyl v7 Vg

g%

Vi 33}!—?- Ve §y5< Ve
VY ¥ ye' Ve yi¥ S« Ve

* Initialization:
BP(0,i) = null, i=0..K—1
Bscr(0,0) = yg‘(o)’ Bscr(0,i)=0fori = 1..K—-1
e fort = 1..T—-1

BP(t,0) = 0; Bscr(t,0) = Bscr(t—1,0) X ytS(O)

forl =1..K—-1
« BP(t, 1) = (if (Bscr(t —1,l—1) > Bscr(t—1, l)) [—1; else l)

« Bscr(t,1) = Bscr(BP(t,1)) x y°® } :

84

Viterbi algorithm

Ve y7 Vs
Ve vy Vg
Ye x v: L | v8
Ve S vy 51 Vg

e |Initialization:

BP(0,i) = null, i=0..K—1

Bscr(0,0) = y(f(o), Bscr(0,i) =0fori = 1..K—-1
e fort =1..T—-1

BP(t; O) = 0; BSCT'(t, O) = BSCT‘(t — 1’0) % yS(O)

t
forl =1...K—1

. BP(t,]) = <l —1: if (Bscr(t— 1,1 —1) > Bscr(t -1, l)) [—1;

[:else

« Bscr(t,1) = Bscr(BP(t,1)) xy;®

)

85

Viterbi algorithm

Ve y7 Ve
Ve yir yay
Ve x Y7 A | Y8
Ve 3 Y7 Sﬂq Vg

e |Initialization:

BP(0,i) = null, i=0..K—1

Bscr(0,0) = y(f(o), Bscr(0,i) =0fori = 1..K—-1
e fort =1..T—-1

BP(t; O) = 0; BSCT'(t, O) = BSCT‘(t — 1’0) % yS(O)

t
forl =1...K—1

. BP(t,]) = <l —1: if (Bser(t—1, ll—. ell)se> Bscr(t—1,1)) 1—1;

. BSCT(t, l) = BSCT(BP(t’ l)) Xyég(l)

)

86

Viterbi algorithm

* |nitialization:
BP(0,i) = null, i=0..K—1
Bscr(0,0) = y(f(o), Bscr(0,i) =0fori = 1..K—-1
e fort =1..T—-1
BP(t,0) = 0; Bscr(t,0) = Bscr(t—1,0) X ytS(O) n
forl =1..K—-1

. BP(t]) = <l —1: if (Bscr(t— 1,1 —1) > Bscr(t -1, l)) [—1;) ><

[:else

* Bscr(t,l) = Bscr(BP(t,1)) ny(l)
87

Viterbi algorithm

+ s(T—1) = S(K —1)

88

Viterbi algorithm

e s(T—1) = S(K—-1)
e fort = T —1downto 1
s(t—1) = BP(s(t))

89

Viterbi algorithm

/B/ A NEE y3 Vi yg yé Y7 Y8
oy || \yéy i | |ys" | |y | [| |
REIREARER) ys | v | || | %
m []]]] [
e s(T—1) = S(K—-1)
e fort = T —1downto 1
s(t—1) = BP(s(t))

/B/ [B/ /Y[[F] [F] /WY Y] /1Y))Y/

90

Poll 4

Poll 4

Select all that are true about Viterbi decoding

It finds the most probable alignment of a compressed (order-synchronous) sequence to an
input

Viterbi decoding is run on a table of probabilities constructed for the compressed sequence,
with one row for each symbol in the sequence, derived from the probability table generated
by from the output of the recurrent network

Viterbi decoding selects the most probable symbol from each column of the table

92

VITERBI

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#T = length of input

#First create output table
For 1 = 1:N
s(l:T,1) = y(1:T, S(1i))

#Now run the Viterbi algorithm
First, at t =1

BP(1,1) = -1
Bscr(1l,1) = s(1,1)
Bscr(l,2:N) = 0
for t = 2:7T
BP(t,1l) = 1;
Bscr(t,1l) = Bscr(t-1,1)*s(t,1)
for 1 = 1l:min(t,N)
BP(t,1) = Bscr(t-1,1i) > Bscr(t-1,1i-1) 2 1 : i-1
Bscr(t,1) = Bscr(t-1,BP(t,1))*s(t,1)

Backtrace
AlignedSymbol (T)
for t = T downto

= N
2
AlignedSymbol (t-1) = BP(t,AlignedSymbol (t))

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

VITERBI

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#T = length of input

#First create output table
For 1 = 1:N

s{l:T,1) = y(1:T, 5({1)) Do not need explicit construction of output
#Now run the Viterbi algorithm table
First, at t =1
BP(1,1) = -1 Information about order already in symbol
Bscr(l,1) = s(l,1) sequence S(i), so we can use y(t,S(i)) instead of
Bscr(l,2:N) =0 composing s(t,i) = y(t,S(i)) and using s(t,i)
for t = 2:T ! ! !
BP(t,1) = 1;
Bscr(t,1l) = Bscr(t-1,1)*s(t,1)
for 1 = 2:min (t,N)
BP(t,i) = Bscr(t-1,i) > Bscr(t-1,i-1) 2 i : i-1
Bscr(t,1) = Bscr(t-1,BP(t,1))*s(t,1)

Backtrace
AlignedSymbol (T)
for t = T downto

= N
2
AlignedSymbol (t-1) = BP(t,AlignedSymbol (t))

Using 1.N and 1.T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

VITERBI

#N is the number of symbols in the target output
#S (i) is the ith symbol in target output
#T = length of input
Without explicit construction of output table
First, at t =1
P(1,1) = -1
Bscr(l,1) =
Bscr (1, 2:N)
for t = 2:T
BP(t,1)

(1,5(1))
0

I =

= 1;
Bscr(1) = Bscr(t-1,1)*y(t,S (1))

for 1 = 2:min(t,N)

BP(t,1) = Bscr(t-1,i) > Bscr(t-1,1i-1) 2 i : 1i-1
Bscr(t,1) = Bscr(t-1,BP(t,1))*y(t,S (1))

Backtrace

AlignedSymbol (T) =

for t = T downto 2
AlignedSymbol (t-

N

1) = BP(t,AlignedSymbol (t))

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

Assumed targets for training with the
Viterbi algorithm

/8/ AN AR AR AR AR AR

o v \y§Y vil | |ys | |ve | (7| |

AR EAREl) ra = ys | | Ye | |7 | | s

me (o] [] [b] [
/B/ B/ /Y] [F][F[JWY//WY] /Y] 1Y/

£ [E1 0 E1 e B

r r ¢+ t t t 1 1 ¢

Gradients from the alighment

/B/ (yB R | yB y5 vE Ve Ve y5 Ve

ny | [\ygf | e | el |
/F | Y6 yi vi |\~ i | |2 yE vE
v Tyl Ty | Ty | o | [

/B/ [B/ /Y[[F] [F] /Y[/Y] Y])Y/

DIV = z KL(Yt, SymbolfeStpath) = — z log Y(t, SymbolfeStpath)
))

* The gradient w.r.t the t-th output vector Y;
—1

O O . O - O
Y(t, symbol, eStpath)]

— Zeros except at the component corresponding to the target in the estimated
alignment

VYtDIV —_

97

Iterative Estimate and Training

/B/ /B JIY] [F/ /F/ /IY/ /Y[y, Y)Y/
P A e - B A A

Decode to obtain

Train model with
given alignments

Initialize
alignments

alignments

The "decode” and "train” steps may be combined into a single "decode, find alignment
compute derivatives” step for SGD and mini-batch updates

Iterative update

* Option 1:
— Determine alignments for every training instance

— Train model (using SGD or your favorite approach) on the
entire training set

— |terate

* Option 2:

— During SGD, for each training instance, find the alignment
during the forward pass

— Use in backward pass

Iterative update: Problem

* Approach heavily dependent on initial
alignment

* Prone to poor local optima

e Alternate solution: Do not commit to an
alignment during any pass..

Next Class

* Training without explicit alignment..
— Connectionist Temporal Classification
— Separating repeated symbols

e The CTC decoder..

