Neural Networks

Hopfield Nets and Auto Associators
Spring 2022

Story so far

* Neural networks for computation
* All feedforward structures

* But what about..

v

B

Consider this loopy network

+1ifz>0 y; = 0 ZWjiyj+bi
_1leS \ j#i

O(z) = {

The output of a neuron
affects the input to the
neuron

* Each neuronis a perceptron with +1/-1 output
* Every neuron receives input from every other neuron
* Every neuron outputs sighals to every other neuron

3

Consider this loopy network

{11223 gp - o(Zmes

JED!

A symmetric network:
Wij — Wji

* Each neuronis a perceptron with +1/-1 output
* Every neuron receives input from every other neuron
* Every neuron outputs sighals to every other neuron

Hopfield Net

o= (1120 g 1= o(Zme)

JED!

A symmetric network:
Wij — Wji

* Each neuronis a perceptron with +1/-1 output
* Every neuron receives input from every other neuron
* Every neuron outputs sighals to every other neuron

Loopy network

y; = 0 (Z Wj;yj + bi)

JED!

+1ifz>0
—-1ifz<0

O(z) = {

. » owe: ’)
At each time each neuron receives a “field quti w;;yj + b;

If the sign of the field matches its own sign, it does not
respond

If the sign of the field opposes its own sign, it “flips” to
match the sign of the field

Loopy network

ol AN Vi = @(ijin'l'bi)
Yi 7 —Yi JEi
if i (X2 Wiy + b;) <0

+1ifz>0
o o = {112,
At each time each neuron receives a “field” quti w;;yj + b;

If the sign of the field matches its own sign, it does not
respond

If the sign of the field opposes its own sign, it “flips” to
match the sign of the field

Loopy network
ol AN yi= 0 (Z wj;yj + bi)

YVi 7 Vi jZi

if yi (X Wiy + b)) <0 |
0(z) = +1ifz>0

“ﬁ _\"\H |-1ifz<0
A neuron "flips" if weighted sum of other e)
neurons’ outputs is of the opposite sign fo ES d field Zj:ti W;i Vi + bi

its own current (output) value

' S own sign, it does not
But this may cause other neurons to flip!

T \.—Jrl\ll T'\A

* |f the sign of the field opposes its own sign, it “flips” to
match the sign of the field

10

-10

-15 -10 -5 0 5 10 15

 Red edges are +1, blue edges are -1
* Yellow nodes are -1, black nodes are +1

10

-10

-15 -10 -5 0 5 10 15

 Red edges are +1, blue edges are -1
* Yellow nodes are -1, black nodes are +1

10

-10

-15 -10 -5 0 5 10 15

 Red edges are +1, blue edges are -1
* Yellow nodes are -1, black nodes are +1

10

-10

 Red edges are +1, blue edges are -1
* Yellow nodes are -1, black nodes are +1

Loopy network

D B

* |f the sign of the field at any neuron opposes
its own sign, it “flips” to match the field

— Which will change the field at other nodes
* Which may then flip

— Which may cause other neurons including the first one to
flip...

» And so on...
13

20 evolutions of a loopy net

o(z) = +1ifz>0 | A neuron “flips” if
27 1-1ifz<0 weighted sum of other
) neuron's outputs is of
- the opposite sign
JFL _ = But this may cause

)
L7 A
N
\]
4

2 ¢
h ; p.“ =
A 1) v,

other neurons to flip!

5:-‘.
e
=
va! W
q.

A\ v
]
J

T

* All neurons which do not “align” with the local
field “flip”

14

120 evolutions of a loopy net

-';'
ﬁ

£ -o,,
-, '
W \‘r "' lh

K

Ay
PN .gr SO "a-

v 4"41
e

m .

‘A’v“ ‘!v %h\ %
- ‘f&ﬁ 2P _-?.\. m "

é l“-, 5 r';"‘!l-ld"-. 3
N TR TRRRL
X 'f'«)

XY

f%;"
ﬂ‘gi
“VP 41

.,
e

t.:-r.r

Tt
=
"’R‘.{‘

&
-
X

.'%'-

> o .-'

5

[RS

\ ..'a' v
"

‘-
SRR ".':;?ﬁ'- t::ﬂ'.t o

* All neurons which do not “align
field “flip”

with the local

15

Loopy network

D D

* |f the sign of the field at any neuron opposes
its own sign, it “flips” to match the field

— Which will change the field at other nodes
* Which may then flip

— Which may cause other neurons including the first one to
flip...

* Will this behavior continue for ever??

16

Loopy network

yi= 0 ZWtij + b;

J#FI

+1ifz>0
G(Z):{—lifzﬁo

Let y; be the output of the i-th neuron just before it responds to the
current field

Let yl-+ be the output of the i-th neuron just after it responds to the current
field

if yi = sign(X ;. wjiy; + b;), theny; =y

— If the sign of the field matches its own sign, it does not flip

vi (2 WjiYj + bi) — Vi (Z wjiyj + bi) =0

J#FI J#Fi

Loopy network
Z wj;yj + b;

JED!

+1ifz>0
6(2) = { lifz<0

e Ify; # sign(Zjiiniyj + bi), then yl-+ ==Y

v (Z w;jiyj + bi) Vi (Z w;iy; + b;) = 2y; (Z w;j;iyj + bi)

J#i JFi J#i
— This term is always positive!

* Every flip of a neuron is guaranteed to locally increase

Vi (2 wj;yj + bi)

J#L
18

Globally

Consider the following sum across all nodes

D(yl:yZJ . !yN) — Zyl (Z W]lyJ + b;

J#1

Z wiiyiyj + Z b;y;

NEI
— Assume w;; =0

For any unit k that “flips” because of the local field

AD() = Dy, e, Vi s V) = Dy oy Vi

This is strictly positive

AD(yy) = 2yy (Z Wjry; + bk>

Jj*k

)

,YN)

19

Upon flipping a single unit

AD(yi) = D(y4, ---:ylj» vy YN) = D(YV1, s Vg s YN
* Expanding

AD(y) = vk — Yk) (2 Wikyj + bk)
J*k
— All other terms that do not include y;, cancel out

* This is always positive!

* Every flip of a unit results in an increase in D

20

Hopfield Net

s

Flipping a unit will result in an increase (non-decrease) of

D = zwuylyj zblyl

I,j#i

Dimax = z |Wl]| +Z|b |

[,j#i

D is bounded

The minimum increment of D in a flip is

2 Z W]ly] + bi

J#I

AD. . = min
Ty, i=1.N)

Any sequence of flips must converge in a finite number of steps

21

The Energy of a Hopfield Net

* Define the Energy of the network as

= ——(2 WijYi¥j = 2 blyl)

NE}
— Just 0.5 times the negative of D
* The 0.5 is only needed for convention
* The evolution of a Hopfield network
constantly decreases its energy

Story so far

A Hopfield network is a loopy binary network with symmetric connections

Every neuron in the network attempts to “align” itself with the sign of the
weighted combination of outputs of other neurons

— The local “field”

Given an initial configuration, neurons in the net will begin to “flip” to
align themselves in this manner

— Causing the field at other neurons to change, potentially making them flip

Each evolution of the network is guaranteed to decrease the “energy” of
the network

— The energy is lower bounded and the decrements are upper bounded, so the
network is guaranteed to converge to a stable state in a finite number of steps

The Energy of a Hopfield Net

* Define the Energy of the network as

= ——(2 WijYi¥j = 2 blyl)

i,j#Ii

— Just 0.5 times the negative of D

* The evolution of a Hopfield network
constantly decreases its energy

* Where did this “energy” concept suddenly sprout
from?

24

Magnetic diploes in a disordered magnetic material
Each dipole tries to align itself to the local field
— In doing so it may flip
This will change fields at other dipoles
— Which may flip
Which changes the field at the current dipole...

25

Analogy: Spin Glasses

T =
t *: —.9“‘- — —
—" = | : :
— - T Total field at current dipole:
I R~ -
—- - — ! . —_— s . .
T - i S f(pl)_ E]]Lx]+bl
: et — - ""_ s L J#1
— — e
e g — ™ N /
.+ - - - intrinsic external
W - -

* p; is vector position of i-th dipole

The field at any dipole is the sum of the field contributions of all other dipoles

The contribution of a dipole to the field at any point depends on interaction
— Derived from the “Ising” model for magnetic materials (Ising and Lenz, 1924)

26

Analogy: Spin Glasses

= = = = Total field at current dipole:
= -yl T, f (i) =Z]jixj+bi
o o == ==L d Response of current dipole
= —— —.-;, — _—
o | - - 3 o
e - v =)Xl sign(x; f(p)) =1
— - - [— .
) il [o A ~ —Xx; otherwise

* A Dipole flips if it is misaligned with the field
in its location

27

Analogy: Spin Glasses

= == = Total field at current dipole:
= -yl T, f(pi)=Z]jixj+bi
o o == ==L d Response of current dipole
= —— —.-;, — _—
e - v =)Xl sign(x; f(p)) =1
— - - [— .
) il [o A ~ —Xx; otherwise
— et . — D

Dipoles will keep flipping
— Aflipped dipole changes the field at other dipoles
* Some of which will flip
— Which will change the field at the current dipole
* Which may flip
— Etc..

28

Analogy: Spin Glasses

 When will it stop???

Total field at current dipole:

f(p)) = Z]jixj + b;

JES!

Response of current dipole

x; = {xi if sign(x; f(p)) =1

—Xx; otherwise

29

Analogy: Spin Glasses

= == = Total field at current dipole:
N |
= = T = f (i) =Z]jixj+bi
-l e JF
— -'—. P—. — - :
o o == ==L d Response of current dipole
= —— —.’—,. — _—
| - - " - e
e - v =)Xl sign(x; f(p)) =1
- - — - .
v - e R ' —Xx; otherwise
—t ot .',_ —

The “Hamiltonian” (total energy) of the system

E = —% . xif (p;) = _zzjjixixj _Zbixi

i i j>i i
The system evolves to minimize the energy

— Dipoles stop flipping if any flips result in increase of energy

30

Spin Glasses

state

* The system stops at one of its stable configurations

— Where energy is a local minimum

 Any small jitter from this stable configuration returns it to the stable
configuration

— l.e. the system remembers its stable state and returns to it .,

Hopfield Network

yi= 0 (Z wjiyj + bi)

J#FI

+1ifz>0
G(Z):{—lifzﬁo

= ——(Z WijYiVj — Z blyl)

NES!

* This is analogous to the potential energy of a spin glass

— The system will evolve until the energy hits a local minimum

32

Hopfield Network

Typically will not utilize bias: The bias is similar to having
a single extra neuron that is pegged to 1.0

Removing the bias term does not affect the rest of the
discussion in any manner

We will bring it back later in the discussion when needed

Hopfield Network

(g

J#FI

+1ifz>0
G(Z):{—lifzﬁo

E=-5) wjyy;

* This is analogous to the potential energy of a spin glass

— The system will evolve until the energy hits a local minimum

* Above equation is a factor of 0.5 off from earlier definition for
conformity with thermodynamic system ”

Evolution

1
E = 5 Z WijYilj

ij<i

&Aw

— >
state

* The network will evolve until it arrives at a

local minimum in the energy contour

35

Content-addressable memory

X

A

(AN
Q.

state
 Each of the minima is a “stored” pattern

— If the network is initialized close to a stored pattern, it
will inevitably evolve to the pattern

* This is a content addressable memory

— Recall memory content from partial or corrupt values

* Also called associative memory .

Evolution

1
E =) Z WijYilj

ij<i

| h vw unknown source

* The network will evolve until it arrives at a

local minimum in the energy contour

37

Evolution

* The network will evolve until it arrives at a local minimum in the
energy contour

* We proved that every change in the network will result in decrease
In energy

— So path to energy minimum is monotonic 38

Evolution

* For threshold activations the energy contour is only
defined on a lattice

— Corners of a unit cube on [-1,1]N

39

Evolution

1
E =) Z WiiViY;j

1,j<i

* For threshold activations the energy contour is only
defined on a lattice

— Corners of a unit cube on [-1,1]N

 For tanh activations it will be a continuous function .,

Evolution

For threshold activations the energy contour is only defined on a
lattice

— Corners of a unit cube
For tanh activations it will be a continuous function
— With outputin [-1 1]

41

“Energy”contour for a 2-neuron net

1 :

0.5;

-0.5;

1 0.5 0 0.5 1

* Two stable states (tanh activation)

— Symmetric, not at corners
— Blue arc shows a typical trajectory for tanh activation

42

“Energy”contour for a 2-neuron net

0.5}
ol
sl
Why symmetric?
Because —%yTWy — _%(_Y)TW(—y) 0.5 0 t 0.5 1
| If ¥ is a local minimum, so is —§

— Blue arc shows a typical trajectory for sigmoid activation

43

3-neuron net

#2 4479
#3 .
(1,1,1)
: N o
stahle state E”' e '
€11, ERTA ey
ir;,:r‘l" = i P
-.:|._|_|:! - L l:]-: '15 1}
j | Stable state
- |
&
#3 1,-1,-1) (1,-1,-1)

* 8 possible states
» 2 stable states (hard thresholded network)

44

Examples: Content addressable
memory

FEeconstruction

Hopfield network reconstmicting degraded images
frotn nowsy (top) o partial (bottorn) cues.

* http://staff.itee.ug.edu.au/janetw/cmc/chapters/Hopfield/

Hopfield net examples

46

Computational algorithm

1. Initialize network with initial pattern

yi(O):xi' 0<i<N-1

2. lterate until convergence

JES!

 Verysimple
* Updates can be done sequentially, or all at once

* Convergence
E=- Z Z WjiVjYi

i j>i
does not change significantly any more

Computational algorithm

1. Initialize network with initial pattern

y =X, 0<i<N-1

2. lterate until convergence
y = 0(Wy)

Writingy = [y1,y2,¥3, -, ynl"
and arranging the weights as a matrix W

* Very simple
 Updates can be done sequentially, or all at once
* Convergence
E = —-0.5y "Wy
does not change significantly any more

Story so far

A Hopfield network is a loopy binary network with symmetric
connections

— Neurons try to align themselves to the local field caused by other neurons

* Given an initial configuration, the patterns of neurons in the net will
evolve until the “energy” of the network achieves a local minimum

— The evolution will be monotonic in total energy
— The dynamics of a Hopfield network mimic those of a spin glass
— The network is symmetric: if a pattern Y is a local minimum, sois -Y

 The network acts as a content-addressable memory

— If you initialize the network with a somewhat damaged version of a local-
minimum pattern, it will evolve into that pattern

— Effectively “recalling” the correct pattern, from a damaged/incomplete
version

Issues

* How do we make the network store a specific
pattern or set of patterns?

* How many patterns can we store?

* How to “retrieve” patterns better..

Issues

* How do we make the network store a specific
pattern or set of patterns?

* How many patterns can we store?

* How to “retrieve” patterns better..

How do we remember a specific
pattern?

How do we teach a network
to “remember” this image

For an image with N pixels we need a network
with N neurons

Every neuron connects to every other neuron

Weights are symmetric (not mandatory)
N(N-1)

weights in all

Storing patterns: Training a network

* A network that stores pattern P also naturally stores - P
— Symmetry E(P) = E(—P)since E is a function of y,,

E=- Z Z WjiVjYi

I Jj<i 53

A network can store multiple patterns

PE

state

* Every stable point is a stored pattern

* So we could design the net to store multiple patterns

— Remember that every stored pattern P is actually two stored patterns,
P and —P

54

Storing a pattern

* Design {w;;} such that the energy is a local
minimum at the desired P = {y,}

Storing specific patterns

e Storing 1 pattern: We want

sign (z le-yj) =y; VI

J#Fi
e This is a stationary pattern

56

Storing specific patterns

HEBBIAN LEARNING:
Wji = YjDi

e Storing 1 pattern: We want

sign (z le-yj) =y; VI

J#Fi
e This is a stationary pattern

57

Storing specific patterns

HEBBIAN LEARNING:
Wji = VjVi

’ Sign(zjiiwfiyf) — Sign(zjiiyfyiyf)

= SiQTL(

J#i

Z yjzyi> = sign(y;) = y;

Storing specific patterns

HEBBIAN LEARNING:
Wji = VjVi

The pattern is stationary
’ Sign(zjiiwjiyj) — Sign(zjiiyfyiyf)

= sign (Z yjzyi> = sign(y;) = y;

J#i

Storing specific patterns

HEBBIAN LEARNING:

Wji = VjVi
E = _zzwjiyjyi = —22%'2)’]2
i j<i i j<i
— —22 1= —05N(N — 1)

i j<i

* This is the lowest possible energy value for the network

60

Storing specific patterns

HEBBIAN LEARNING:
Wji = VjVi

The patternis STABLE

E = _ZzwtijYi = —ZZ%‘Z)’JZ

i j<i i j<i

— —221 — _0.5N(N — 1)

i j<i
* This is the lowest possible energy value for the network

Hebbian learning: Storing a 4-bit pattern

-1,-1 -1,1 1.1 1,-1 -1,-1 -1,1 1.1 1,-1

e Left: Pattern stored. Right: Energy map
e Stored pattern has lowest energy

e Gradation of energy ensures stored pattern (or its ghost) is recalled
from everywhere 62

Storing multiple patterns

* {¥p} is the set of patterns to store

* Super/subscript p represents the specific pattern

63

How many patterns can we store?

& B W

* Hopfield: For a network of N neurons can
store up to ~0.15N random patterns through

Hebbian learning
— Provided they are “far” enough

e Where did this number come from?

64

The limits of Hebbian Learning

Consider the following: We must store K N-bit patterns of the form
Vi = [VE vE, ¥kl k=1..K

, : : 1 L :
Hebbian learning (scaling by " for normalization, this does not affect
actual pattern storage):

For any pattern y,, to be stable:

yiPZWijy]p >0 Vi

]
pl k. k.D .
Y NZZ%Y] Yj >0 Vi
T Kk

65

The limits of Hebbian Learning

* For any pattern y, to be stable:

1 .
yipﬁzzyf‘y}" v} >0 Vi
7k

1 1 |
i ﬁz vl vl vl +yf Nz Z yEyfyl >0 vi
J j k#p

* Note that the first term equals 1 (because y]py]p = yipyip =1)

— i.e. fory, to be stable the requirement is that the second crosstalk term:

1 .
yfﬁzzyf‘y}‘ y; >—1 Vi

J k#p

 The pattern will fail to be stored if the crosstalk

1 .
v Nz z Viyf y; <=1 foranyi
J k#p

66

The limits of Hebbian Learning

For any random set of K patterns to be stored, the probability of the
following must be low

1
(cg’ = Nz 2 yPykyk y]P> < -1

J k#p

For large N and K the probability distribution of Cipapproaches a
Gaussian with 0 mean, and variance K/N

— Considering that individual bits yl-l € {—1,+1} and have variance 1
For a Gaussian, C~N(0,K/N)
— P(C < —1|u = 0,0% = K/N) < 0.004 for K/N < 0.14

l.e. To have less than 0.4% probability that stored patterns will not
be stable, K < 0.14N

67

How many patterns can we store?

A network of N neurons trained by Hebbian learning can store up to
~0.14N random patterns with low probability of error
— Computed assuming prob(bit = 1) = 0.5

* On average no. of matched bits in any pair = no. of mismatched bits

— Patterns are “orthogonal” — maximally distant — from one another

— Expected behavior for non-orthogonal patterns?

To get some insight into what is stored, lets see some examples

68

Hebbian learning: One 4-bit pattern

Topological representation on a Karnaugh map 1 pattern of 4 bits

.51 =2

-1.1 -1,1

1;1 1,1

1,-1 1,1

-1,-1 -1,1 1.1 1,1 -1,-1 -1,1 1.1 1,-1

e Left: Pattern stored. Right: Energy map

* Note: Pattern is an energy well, but there are other local minima
— Where?

— Also note “shadow” pattern
69

Storing multiple patterns:
Orthogonality

 The maximum Hamming distance between two N-bit
patternsis N /2

— Because any patternY = —Y for our purpose

* Two patterns y;and y, that differ in N/2 bits are
orthogonal

— Because yly, =0

e For N = 2M], where L is an odd number, there are at most
2M orthogonal binary patterns

— Others may be almost orthogonal

Two orthogonal 4-bit patterns

2 orthogonal patterns

Patterns are local minima (stationary and stable)
— No other local minima exist
— But patterns perfectly confusable for recall

71

Two non-orthogonal 4-bit patterns

2 nonorthogonal patterns

-1,-1 -1,1 1.1 1,1 -1,-1 -1,1 1.1 1,-1

e Patterns are local minima (stationary and stable)
— No other local minima exist

— Actual wells for patterns
* Patterns may be perfectly recalled!

— NoteK>0.14 N

72

Three orthogonal 4-bit patterns

1,1 F
A1F

1,171

3 orthogonal patterns

-1,-1 -1.1 1.1 1,1 -1,-1 -1.,1

1.1

1,-1

e All patterns are local minima (stationary)

— But recall from perturbed patterns is random

73

Three non-orthogonal 4-bit patterns

3 nonorthogonal patterns

=2

-1,1

1,1

1,1

-1,-1 -1,1 1.1 1,1 -1,-1 -1,1 1.1 1,-1

e Patterns in the corner are not recalled
— They end up being attracted to the -1,-1 pattern

I”

— Note some “ghosts” ended up in the “well” of other patterns

* So one of the patterns has stronger recall than the other two
74

Four orthogonal 4-bit patterns

4 orthogonal patterns

* All patterns are stationary, but none are stable

— Total wipe out

75

Four nonorthogonal 4-bit patterns

4 nonorthogonal patterns

=2

-1,1

1,1

1,-1

-1,-1 -1.1 1.1 1,1 -1,-1 -1,1 1.1 1,-1

* One stable pattern

— “Collisions” when the ghost of one pattern occurs
next to another

76

How many patterns can we store?

Hopfield: For a network of N neurons can store up to 0.14N
random patterns

Apparently a fuzzy statement
— What does it really mean to say “stores” 0.14N random patterns?

» Stationary? Stable? No other local minima?

— What if the patterns to store are not random?

N=4 may not be a good case (N too small)

77

A 6-bit pattern

"Unrolled” 3D Karnaugh map

1 pattern of 6 bits

000 000

001 001
011 011
010 010

110 110

111 111

101 101

100 100

o0 001 o011 010 110 111 101 100 o0 o001 011 010 110 111 101 100

Perfectly stationary and stable

But many spurious local minima..

— Which are “fake” memories -

Two orthogonal 6-bit patterns

000

001

011

010

110

111

101

100

oo o001 o011 010 110 111 101 100

000

001

011

010

110

111

101

100

2 orthogonal patterns

oo o001 O11 010 110 111 101 100

e Perfectly stationary and stable

e Several spurious “fake-memory” local minima..

— Figure overstates the problem: actually a 3-D Kmap

Two non-orthogonal 6-bit patterns

2 nonorthogonal patterns

000 000

001 001
011 011
010 010

110 110

111 111

101 101

100 100

oo o001 o011 010 110 111 101 100 oo o001 O11 010 110 111 101 100

e Perfectly stationary and stable

 Some spurious “fake-memory” local minima..
— But every stored pattern has “bowl”
— Fewer spurious minima than for the orthogonal case %0

Three non-orthogonal 6-bit patterns

3 nonorthogonal patterns

000 000

001 001
011 011
010 010

110 110

111 111

101 101

100 100

oo o001 o011 010 110 111 101 100 oo o001 O11 010 110 111 101 100

* Note: Cannot have 3 or more orthogonal 6-bit patterns..
e Patterns are perfectly stationary and stable (K> 0.14N)
 Some spurious “fake-memory” local minima..

— But every stored pattern has “bowl”

— Fewer spurious minima than for the orthogonal 2-pattern case o

Four non-orthogonal 6-bit patterns

4 nonorthogonal patterns

000 000

001 001
011 011
010 010

110 110

111 111

101 101

100 100

oo o001 o011 010 110 111 101 100 oo o001 O11 010 110 111 101 100

e Patterns are perfectly stationary for K> 0.14N

* Fewer spurious minima than for the orthogonal 2-
pattern case

— Most fake-looking memories are in fact ghosts.. .

Six non-orthogonal 6-bit patterns

6 nonorthogonal patterns

000 000

01 Q01

a11 a11
o110 o110

110 110

111 111

101 101

100 100

Ooo0001011010110111 101 100 o000 001011010110111 101 100

* Breakdown largely due to interference from “ghosts”

 But multiple patterns are stationary, and often stable
— For K>>0.14N

83

More visualization..

* Lets inspect a few 8-bit patterns

— Keeping in mind that the Karnaugh map is now a
4-dimensional tesseract

One 8-bit pattern

1 pattern of 8 bits

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
111
1110
1010
1011
1001
1000

00000006010010110110100100100101111110010011001000

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000

00000000106010110110100100100101111110010011001000

Its actually cleanly stored, but there are a few

spurious minima

Two orthogonal 8-bit patterns

2 orthogonal patterns

00 ooo [| B

0001 0001 f

0011 0011

0010 0010

0110 0110

0111 0111

0101 0101

0100 0100 F

1100 1100

1101 1101 f

1111 M1E

1110 1110 |

1010 1010

1011 1011

1001 1001

1000 1000 | N
0000000010010110116100100100101111110010011001000 0000000010010110110100100100101111110010011001000

Both have regions of attraction

Some spurious minima

86

Two non-orthogonal 8-bit patterns

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
111
1110
1010
1011
1001
1000

00000006010010110110100100100101111110010011001000

0000
0001
0011
0010
0110
0111
0101

0100
1100

1101
1111

1110 |
1010 |

1011
1001
1000

2 nonorthogonal patterns

00000000106010110110100100100101111110010011001000

* Actually have fewer spurious minima

— Not obvious from visualization..

87

Four orthogonal 8-bit patterns

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000

00000006010010110110100100100101111110010011001000

Successfully stored

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000

4 orthogonal patterns

00000000106010110110100100100101111110010011001000

88

Four non-orthogonal 8-bit patterns

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
111
1110
1010
1011
1001
1000

00000006010010110110100100100101111110010011001000

4 nonorthogonal patterns

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000

00000000106010110110100100100101111110010011001000

e Stored with interference from ghosts..

89

Eight orthogonal 8-bit patterns

8 orthogonal patterns

0000 0000
0001 0001
0011 0011
0010 0010
0110 0110
0111 0111
0101 0101
0100 0100
1100 1100
1101 1101
1111 1111
1110 1110
1010 1010
1011 1011 l
1001 1001
1000 1000
O OEODOPHOMDHIDHD TDTDHI- HHOGRNODD0 O O OEODOPHOMDHIDHD TDTDHI- HNOGENODD0 O

* Wipeout

90

Eight non-orthogonal 8-bit patterns

8 nonorthogonal patterns

0000 oooo0 | |

0001 0001 | I

0011 0011 _

0010 0010 .- '

0110 0110 L]

011 0111

0101 0101 Tl il

0100 0100

1100 1100 o |

1101 1101 | |

1111 1111

1110 1110 N |

1010 1010

1011 1011

1001 1001

1000 1000 .
O CIIEODIODHO TMDEICID O O CIEEODIDHON MIDIENOTDO O

* Nothing stored

— Neither stationary nor stable

91

Observations

* Many “parasitic” patterns

— Undesired patterns that also become stable or
attractors

* Apparently a capacity to store more than
0.14N patterns

Parasitic Patterns

Target patterns Parasites

Energy %

* Parasitic patterns can occur because sums of odd numbers
of stored patterns are also stable for Hebbian learning:

v

state

— Yparasite = sign(y, +yp +¥c)
* They are also from other random local energy minima from
the weights matrices themselves

93

Capacity

Seems possible to store K> 0.14N patterns

— i.e. obtain a weight matrix W such that K> 0.14N patterns are
stationary

— Possible to make more than 0.14N patterns at-least 1-bit stable

Patterns that are non-orthogonal easier to remember

— l.e. patterns that are closer are easier to remember than
patterns that are farther!!

Can we attempt to get greater control on the process than
Hebbian learning gives us?

— Can we do better than Hebbian learning?

e Better capacity and fewer spurious memories?

Story so far

A Hopfield network is a loopy binary net with symmetric connections
— Neurons try to align themselves to the local field caused by other neurons

Given an initial configuration, the patterns of neurons in the net will evolve until
the “energy” of the network achieves a local minimum

— The network acts as a content-addressable memory

* Given a damaged memory, it can evolve to recall the memory fully

The network must be designed to store the desired memories
— Memory patterns must be stationary and stable on the energy contour

Network memory can be trained by Hebbian learning

— Guarantees that a network of N bits trained via Hebbian learning can store 0.14N
random patterns with less than 0.4% probability that they will be unstable

However, empirically it appears that we may sometimes be able to store more
than 0.14N patterns

Bold Claim

* | can always store (upto) N orthogonal
patterns such that they are stationary!

— Why?

* | can avoid spurious memories by adding
some noise during recall!

Recap: Hebbian Learning to Store a
Specific Pattern

HEBBIAN LEARNING:
Wji = VjVi

W=y,y, —1I

* For a single stored pattern, Hebbian learning
results in a network for which the target
pattern is a global minimum

Storing multiple patterns

* Lety, be the vector representing p-th pattern
* LetY = |y, y, ...| be a matrix with all the stored patterns
 Then..

W = Z(ypyg — 1) = YYT = NI
p

Number of patterns

98

A minor adjustment

Note behavior of E(y) =y’ Wy with _

W =YY — N I | / Energy landscape \

only differs by
Is identical to behavior with

an additive constant

W = YYT . Gradients and location
" of minima remain same

: N
Since

y' (YYT — N1)y =ylYYTy — NN,

But W = YY" is easier to analyze. Hence in the
following slides we will use W = YY'

/
pd
-
_—

99

A minor adjustment

* Note behavior of E(y) = y' Wy with

T Energy landscape
W=YY N I only differs by \ |

an additive constant

ya Both have the

same Eigen vectors behavior with

- - W = YYT . Gradients and location
S * of minima remain same

y" (YY" = N,1)y =y YY"y — NN,

e But W =YY/ is easier to analyze. Hence in the
following slides we will use W = YY'

100

A minor adjustment

* Note behavior of E(y) = y' Wy with

T Energy landscape
W=YY" —-N I/ only differs by \

an additive constant

ya /’ Both have the

same Eigen vectors &ehavior with

N W = YYT . Gradients and location

~—__ _—

N : ™~ " of minima remain same
~~ NOTE: This \ \
° S IS a positive \\\ ///
A Semldeflnl’re matrix . . —
y o lvpl) <y YY"y — NN,

e« But W = YY/! is easier to analyze. Hence in the
following slides we will use W = YY'

101

Consider the energy function

Consider the energy function

This is a quadratic!

For Hebbian learning
W is positive semidefinite

E is concave

1
E=—-y' Wy

* The Energy function is concave if W is positive
(semi) definite

103

The Energy function

* E is a concave quadratic

104

The Energy function

E = —%yTWy @
©

 E is a concave quadratic
— Shown from above (assuming O bias)

105

The energy function

1
|
=
{<'ﬂ
=
<
)

=

— Shown from above (assuming 0 bias)

 FEis a concave quadratic

 The minima will lie on the boundaries of the hypercube
— But components of y can only take values +1

— l.e. y lies on the corners of the unit hypercube
106

The energy function

=

d patterns

SN
i

* The stored values of y are the
adjacent corners are lower on

ones where all
the quadratic

107

Patterns you can store

Ghosts (negations)

Stored patterns

A
v

e All patterns are on the corners of a hypercube

o

— |If a pattern is stored, it’s “ghost” is stored as well

— Intuitively, patterns must ideally be maximally far apart

* Though this doesn’t seem to hold for Hebbian learning 108

Evolution of the network

Note: for real vectors sign(y)is a projection
— Projects y onto the nearest corner of the hypercube

— It “quantizes” the space into orthants

Response to field: y « sign(Wy)

— Each step rotates the vector y and then projects it onto the nearest
Projection: sign(Wy)

corner
2D example 3D example)
| . | y sl w
1 Slgn(Wy) : v
'\Rro'ection E
-T Y i /
- A :
' :
I 1
. A 4 ; |
_1 1 II'
Tl;énSform
U4

109

Storing patterns

A pattern yp is stored if:
— Sign(Wyp) =y, for all target patterns

Training: Design W such that this holds

Simple solution: y, is an Eigenvector of W
— And the corresponding Eigenvalue is positive

Wy, = 1y,
— More generally orthant(Wy,) = orthant(y,)

How many such y,,can we have?

Random fact that should interest you

* Number of ways of selecting two N-bit binary
patterns y;and y, such that they differ from

3N
one another in exactly N/2 bits is 0(2 2)

* The size of the largest set of N-bit binary
patterns {y, ¥,, ... } that all differ from one
another in exactly N /2 bits is at most N

— Trivial proof.. ©

Only N patterns?

(1,1)

(11'1)

* Symmetric weight matrices have orthogonal Eigen vectors

* You can have max N orthogonal vectors in an N-dimensional
space

112

random fact that should interest you

* The Eigenvectors of any symmetric matrix W
are orthogonal

 The Eigenvalues may be positive or negative

Storing more than one pattern

* Requirement: Giveny4, Yy, ..., Vp
— Design W such that
. Sign(Wyp) =y, for all target patterns

* There are no other binary vectors for which this holds

* What is the largest number of patterns that
can be stored?

Storing K orthogonal patterns

* Simple solution: Design W such that y;,
Y-, ..., Vi are the Eigen vectors of W

—LetY =y, y2 ... x|

W = YAY!
— A4, ..., Ag are positive
— For A{ = A, = A = 1 this is exactly the Hebbian

rule

* The patterns are provably stationary

115

Hebbian rule

* |n reality

—LetY = [y1 ¥2 .-V Tk+1 Tk42 - I

W = YAY!

— Ik4q k4o ... Iy are orthogonaltoy; v, ... yx
—/11 — Az — A’K — 1
_AK+1) ...,AN — O

116

Storing N orthogonal patterns

* When we have N orthogonal (or near
orthogonal) patterns y4, y», ..., ¥y

-Y =y y2...ynl

W = YAY!
_Al — /12 — /1N — 1
* The Eigen vectors of W span the space

* Also, for any y,
Wyi = ¥k

117

Storing N orthogonal patterns

* The N orthogonal patterns y4, V¥, ..., Yy Span the

space

* Any patterny can be written as

y=ay:s Tay>

aAnyYn

Wy = a; Wy, + a, Wy, + -+ ayWyy
= ay1 T Ay, + -+ ayyy =Yy

* All patterns are stable

— Remembers everything

— Completely useless network

118

Storing K orthogonal patterns

Even if we store fewer than N patterns

— LetY = [y, ¥ .. Yk Tk1 Tk42 - In]

W =YAYT
— TIg4q k4o ... Ty are orthogonaltoy; v, ... Vx
A=A =A=1
— Adgs1, Ay =0
Any pattern that is entirely in the subspace spanned by y,
V- ... Vris also stable (same logic as earlier)

Only patterns that are partially in the subspace spanned by
V1 V7 ... Vi are unstable

— Get projected onto subspace spanned by y; V5 ... Vx

119

Problem with Hebbian Rule

* Even if we store fewer than N patterns

—LetY = [y1 ¥2 ... Yk Tk+1 k42 - In]

W =YAYT

— Igyq1 P40 ... Iy are orthogonaltoy, v, ... Vx

Ch=ta=I=D

¢ Problems arise because Eigen values are all 1.0

— Ensures stationarity of vectors in the subspace
— All stored patterns are equally important
— What if we get rid of this requirement?

120

Hebbian rule and general (non-
orthogonal) vectors

What happens when the patterns are not orthogonal

What happens when the patterns are presented more than
once

— Different patterns presented different numbers of times

— Equivalent to having unequal Eigen values..
Can we predict the evolution of any vector y

— Hint: For real valued vectors, use Lanczos iterations

* Canwrite Yp = UpAVy, > W = UpA*Uj
— Tougher for binary vectors (NP)

The bottom line

With a network of N units (i.e. N-bit patterns)

The maximum number of stationary patterns is actually
exponential in N

— McElice and Posner, 84’

— E.g. when we had the Hebbian net with N orthogonal base
patterns, all patterns are stationary

For a specific set of K patterns, we can always build a
network for which all K patterns are stable provided K < N

— Mostafa and St. Jacques 85’

* Forlarge N, the upper bound on K is actually N/4logN
— MctElice et. Al. 87’

— But this may come with many “parasitic” memories

122

The bottom line

With an network of N units (i.e. N-bit patterns)

The maximum number of stable patterns is actually
exponential in N

— McElice and Posner, 84’

How do we find this

— E.g. when we had the network?

patterns, all patterns are stabie

iSe

For a specific set of K patterns, we can always build a
network for which all K patterns are stable provided K < N

— Mostafa and St. Jacques 85’

* Forlarge N, the upper bound on K is actually N/4logN
— MctElice et. Al. 87’

— But this may come with many “parasitic” memories

123

The bottom line

With an network of N units (i.e. N-bit patterns)

The maximum number of stable patterns is actually
exponential in N

— McElice and Posner, 84’

How do we find this

— E.g. when we had the network?

patterns, all patterns are stabie

iSe

For a specific set of K patterns, we can always build a
network for which all K patterns are sta ided K < N

— Mostafa and St. Jacques 85’ Can we do something

_ about this?
* Forlarge N, the upper bound on K is actuany
— MctElice et. Al. 87’

— But this may come with many “parasitic” memories

124

Story so far

Hopfield nets with N neurons can store up to 0.14N random patterns
through Hebbian learning with 0.996 probability of recall

— The recalled patterns are the Eigen vectors of the weights matrix with the
highest Eigen values

Hebbian learning assumes all patterns to be stored are equally important

— For orthogonal patterns, the patterns are the Eigen vectors of the constructed
weights matrix

— All Eigen values are identical

In theory the number of stationary states in a Hopfield network can be
exponential in N

The number of intentionally stored patterns (stationary and stable) can be
as large as N

— But comes with many parasitic memories

