
Neural Networks
Learning the network: Part 3

11-785, Spring 2022
Lecture 5

1

Training neural nets through Empirical
Risk Minimization: Problem Setup

• Given a training set of input-output pairs

• The divergence on the ith instance is
–

• The loss (empirical risk)

• Minimize w.r.t using gradient descent

2

Notation

• The input layer is the 0th layer

• We will represent the output of the i-th perceptron of the kth layer as
()

– Input to network:
()

– Output of network:
(ே)

• We will represent the weight of the connection between the i-th unit of
the k-1th layer and the jth unit of the k-th layer as

()

– The bias to the jth unit of the k-th layer is
()

3

ଵ

ଵ
(ଵ)

ଵ
(ଶ)

ଵ

(ଵ)

(ଶ)

(ଷ)

(ସ)

ଵ
(ଷ)

(ଵ)

(ଶ)

(ଷ)

(ସ)

Recap: Gradient Descent Algorithm

• Initialize:
–

–

• do
–
–

• while

11-755/18-797 4

To minimize any function Loss(W) w.r.t W

Recap: Gradient Descent Algorithm

• In order to minimize w.r.t.
• Initialize:

–

–

• do
– For every component

•

–

• while
11-755/18-797 5

Explicitly stating it by component

Training Neural Nets through Gradient
Descent

• Gradient descent algorithm:

• Initialize all weights and biases
– Using the extended notation: the bias is also a weight

• Do:
– For every layer for all update:

• ,
()

,
() ௗ௦௦

ௗ௪
,ೕ
(ೖ)

• Until has converged
6

Total training Loss:

Assuming the bias is also
represented as a weight

Training Neural Nets through Gradient
Descent

• Gradient descent algorithm:

• Initialize all weights

• Do:
– For every layer for all update:

• ,
()

,
() ௗ௦௦

ௗ௪
,ೕ
(ೖ)

• Until has converged
7

Total training Loss:

Assuming the bias is also
represented as a weight

The derivative

• Computing the derivative

8

Total derivative:

Total training Loss:

Training by gradient descent

• Initialize all weights

• Do:

– For all , initialize ௗ௦௦

ௗ௪
,ೕ
(ೖ)

– For all
• For every layer for all :

– Compute ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕)
ௗ௪

,ೕ
(ೖ)

–
ௗ௦

ௗ௪
,ೕ
(ೖ) +=

ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕)
ௗ௪

,ೕ
(ೖ)

– For every layer for all :

,
()

,
()

,
()

• Until has converged
9

The derivative

• So we must first figure out how to compute the
derivative of divergences of individual training
inputs

10

Total derivative:

Total training Loss:

Calculus Refresher: Basic rules of
calculus

11

For any differentiable function

with derivative
ௗ௬

ௗ௫

the following must hold for sufficiently small

Calculus Refresher: Basic rules of
calculus

12

For any differentiable function

with derivative
ௗ௬

ௗ௫

the following must hold for sufficiently small

Introducing the
“influence” diagram:
x influences y

Calculus Refresher: Basic rules of
calculus

13

For any differentiable function

with derivative
ௗ௬

ௗ௫

the following must hold for sufficiently small

Introducing the
“influence” diagram:
x influences y

The derivative graph:
The edge carries the
derivative.

Node and edge weights
multiply

Calculus Refresher: Basic rules of calculus

14

For any differentiable function
ଵ ଶ ெ

with partial derivatives
డ௬

డ௫భ

డ௬

డ௫మ

డ௬

డ௫ಾ

the following must hold for sufficiently small ଵ ଶ ெ

What is the influence diagram relating ଵ ଶ ெ and ?

Calculus Refresher: Basic rules of calculus

15

For any differentiable function
ଵ ଶ ெ

with partial derivatives
డ௬

డ௫భ

డ௬

డ௫మ

డ௬

డ௫ಾ

the following must hold for sufficiently small ଵ ଶ ெ

The derivative diagram?

Calculus Refresher: Basic rules of calculus

16

For any differentiable function
ଵ ଶ ெ

with partial derivatives
డ௬

డ௫భ

డ௬

డ௫మ

డ௬

డ௫ಾ

the following must hold for sufficiently small ଵ ଶ ெ

ଵ

ଶ

ெ

Calculus Refresher: Chain rule

17

For any nested function

Calculus Refresher: Chain rule

18

For any nested function

Distributed Chain Rule: Influence
Diagram

19

Shorthand:

Distributed Chain Rule: Influence
Diagram

• affects through each of

20

ଵ

ଶ

ெ

ଵ

ଶ

ெ
Derivative rule?

Distributed Chain Rule: Influence
Diagram

21

ଵ

ଶ

ெ

ଵ

ଶ

ெ

𝜕𝑦

𝜕𝑧ଵ

𝜕𝑦

𝜕𝑧ଶ

𝜕𝑦

𝜕𝑧ெ

𝜕𝑧ଵ

𝜕𝑥

𝜕𝑧ଶ

𝜕𝑥

𝜕𝑧ெ

𝜕𝑥

Calculus Refresher: Chain rule
summary

22

For
where

Calculus Refresher: Chain rule
summary

23

For any nested function

For

where

where

Our problem for today

• How to compute for a single data

instance

24

Poll 1

1. The chain rule of derivatives can be derived from the basic definition of derivatives, dy = derivative
* dx, true or false
 True (correct)
 False

2. Which of the following is true of the “influence diagram”
 It graphically shows all paths (and variables) through which one variable influences the other

(true)
 The derivative of the influenced (outcome) variable with respect to the influencer (input)

variable must be summed over all outgoing paths from the influencer variable (true)

25

Poll 1

1. The chain rule of derivatives can be derived from the basic definition of derivatives, dy = derivative
* dx, true or false
 True (correct)
 False

2. Which of the following is true of the “influence diagram”
 It graphically shows all paths (and variables) through which one variable influences the other

(true)
 The derivative of the influenced (outcome) variable with respect to the influencer (input)

variable must be summed over all outgoing paths from the influencer variable (true)

26

A first closer look at the network

• Showing a tiny 2-input network for illustration
– Actual network would have many more neurons

and inputs

27

A first closer look at the network

• Showing a tiny 2-input network for illustration
– Actual network would have many more neurons and inputs

• Explicitly separating the affine function of inputs from the
activation

28

+

+

+

+

+

A first closer look at the network

• Showing a tiny 2-input network for illustration
– Actual network would have many more neurons and inputs

• Expanded with all weights shown

• Let’s label the other variables too…
29

+

+

+

+

+

ଵ,ଵ
(ଵ)

ଶ,ଵ
(ଵ)

ଷ,ଵ
(ଵ)

ଵ,ଵ
(ଶ)

ଶ,ଵ
(ଶ)

ଷ,ଵ
(ଶ)

ଵ,ଵ
(ଷ)

ଶ,ଵ
(ଷ)

ଷ,ଵ
(ଷ)

ଷ,ଶ
(ଵ)

ଷ,ଶ
(ଶ)

ଶ,ଶ
(ଵ)

ଵ,ଶ
(ଵ)

ଶ,ଶ
(ଶ)

ଵ,ଶ
(ଶ)

Computing the derivative for a single
input

30

+

+

+

+

+

ଵ,ଵ
(ଵ)

ଶ,ଵ
(ଵ)

ଷ,ଵ
(ଵ)

ଵ,ଵ
(ଶ)

ଶ,ଵ
(ଶ)

ଷ,ଵ
(ଶ)

ଵ,ଵ
(ଷ)

ଶ,ଵ
(ଷ)

ଷ,ଵ
(ଷ)

ଷ,ଶ
(ଵ)

ଷ,ଶ
(ଶ)

ଶ,ଶ
(ଵ)

ଵ,ଶ
(ଵ)

ଶ,ଶ
(ଶ)

ଵ,ଶ
(ଶ)

ଵ
(ଵ)

ଵ
(ଶ)

ଶ
(ଵ)

ଶ
(ଶ)

ଵ
(ଷ)

ଵ
(ଵ)

ଶ
(ଵ)

ଵ
(ଶ)

ଶ
(ଶ)

Div

1

1

2

2

3

Computing the derivative for a single
input

31

+

+

+

+

+

ଵ,ଵ
(ଵ)

ଶ,ଵ
(ଵ)

ଷ,ଵ
(ଵ)

ଵ,ଵ
(ଶ)

ଶ,ଵ
(ଶ)

ଷ,ଵ
(ଶ)

ଵ,ଵ
(ଷ)

ଶ,ଵ
(ଷ)

ଷ,ଵ
(ଷ)

ଷ,ଶ
(ଵ)

ଷ,ଶ
(ଶ)

ଶ,ଶ
(ଵ)

ଵ,ଶ
(ଵ)

ଶ,ଶ
(ଶ)

ଵ,ଶ
(ଶ)

ଵ
(ଵ)

ଵ
(ଶ)

ଶ
(ଵ)

ଶ
(ଶ)

ଵ
(ଷ)

ଵ
(ଵ)

ଶ
(ଵ)

ଵ
(ଶ)

ଶ
(ଶ)

Div

1

1

2

2

3

What is: 𝒅𝑫𝒊𝒗(𝒀,𝒅)

𝒅௪,ೕ
(ೖ)

Computing the gradient

• Note: computation of the derivative requires

intermediate and final output values of the network in
response to the input 32

The “forward pass”

We will refer to the process of computing the output from an input as
the forward pass

We will illustrate the forward pass in the following slides

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

1

33

The “forward pass”

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

Assuming
()

() and

() -- assuming the bias is a weight and extending
the output of every layer by a constant 1, to account for the biases

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

Setting
()

 for notational convenience

1

34

The “forward pass”

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

1

35

The “forward pass”

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

(ଵ)

(ଵ)

()

1

36

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

(ଵ)

(ଵ)

()

(ଵ)

ଵ
(ଵ)

1

37

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

(ଵ)

ଵ
(ଵ)

(ଶ)

(ଶ)

(ଵ)

1

(ଵ)

(ଵ)

()

38

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

(ଵ)

ଵ
(ଵ)

(ଶ)

(ଶ)

(ଵ)

(ଶ)

ଶ
(ଶ)

1

(ଵ)

(ଵ)

()

39

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

(ଵ)

ଵ
(ଵ)

(ଶ)

(ଶ)

(ଵ)

(ଶ)

ଶ
(ଶ)

(ଷ)

(ଷ)

(ଶ)

1

(ଵ)

(ଵ)

()

40

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

(ଵ)

ଵ
(ଵ)

(ଶ)

(ଶ)

(ଵ)

(ଶ)

ଶ
(ଶ)

(ଷ)

(ଷ)

(ଶ)

(ଷ)

ଷ
(ଷ)

1

(ଵ)

(ଵ)

()

41

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

(ே)

(ே)

(ேିଵ)

(ேିଵ)

ேିଵ
(ேିଵ) (ே)

ே
(ே)

1

42

Forward Computation

ITERATE FOR k = 1:N for j = 1:layer-width

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

1

43

Forward “Pass”
• Input: dimensional vector
• Set:

– , is the width of the 0th (input) layer

– ;

• For layer
– For

•
()

,
()

(ିଵ)ೖషభ

ୀ

•
()

()

• Output:

–
44

Dk is the size of the kth layer

Computing derivatives

We have computed all these intermediate values in the
forward computation

We must remember them – we will need them to compute
the derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1
ேିଶ

ேିଶ

ேିଶ

ேିଶ

45

Computing derivatives

First, we compute the divergence between the output of the net y = y(N) and the
desired output

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

46

Computing derivatives

We then compute (ಿ) the derivative of the divergence w.r.t. the final output of the
network y(N)

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

47

Computing derivatives

We then compute (ಿ) the derivative of the divergence w.r.t. the final output of the
network y(N)

We then compute ௭(ಿ) the derivative of the divergence w.r.t. the pre-activation affine
combination z(N) using the chain rule

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

48

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

Continuing on, we will compute ௐ(ಿ) the derivative of the divergence with respect
to the weights of the connections to the output layer

ேିଶ

ேିଶ

ேିଶ

ேିଶ

49

Computing derivatives

Continuing on, we will compute ௐ(ಿ) the derivative of the divergence with respect
to the weights of the connections to the output layer

Then continue with the chain rule to compute (ಿషభ) the derivative of the
divergence w.r.t. the output of the N-1th layer

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

50

Computing derivatives

We continue our way backwards in the order shown

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

51

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ

52

We continue our way backwards in the order shown

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

53

We continue our way backwards in the order shown

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

54

We continue our way backwards in the order shown

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

55

We continue our way backwards in the order shown

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

56

We continue our way backwards in the order shown

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

57

Backward Gradient Computation

• Let’s actually see the math..

58

Computing derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

59

Computing derivatives

The derivative w.r.t the actual output of the
final layer of the network is simply the derivative
w.r.t to the output of the network

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

60

Calculus Refresher: Chain rule

61

For any nested function

For

where

where

Computing derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

62

Computing derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

63

Already computed

Computing derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

64

ே
ᇱ

(ே)

Derivative of
activation function

Computing derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

65

ே
ᇱ

(ே)

Derivative of
activation function

Computed in forward
pass

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ேିଶ

ேିଶ

ேିଶ

ேିଶ

66

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

(ே)

(ே)

(ே)

(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

67

(ே)

(ேିଵ)

(ே)

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

(ே)

(ே)

(ே)

(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

68

Just computed

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

(ே)

(ே)

(ே)

(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

69

(ேିଵ)

Because

(ே)

(ே)

(ேିଵ)

(ேିଵ)

(ே)

(ே)

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

(ே)

(ே)

(ே)

(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

70

(ேିଵ)

Because

(ே)

(ே)

(ேିଵ)

(ேିଵ)

(ே)

(ே)

Computed in forward pass

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

(ே)

(ேିଵ)

(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

71

(ேିଵ)

(ே)

(ே)

Computing derivatives

(ே)

(ேିଵ)

(ே)

For the bias term
(ேିଵ)

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

72

Calculus Refresher: Chain rule

73

For any nested function

For

where

where

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

(ேିଵ)

(ே)

(ேିଵ)

(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

74

(ேିଵ)

Computing derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

(ேିଵ)

(ே)

(ேିଵ)

(ே) Already computed

ேିଶ

ேିଶ

ேିଶ

ேିଶ

75

(ேିଵ)

Computing derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

(ேିଵ)

(ே)

(ேିଵ)

(ே)

(ே)

Because

(ே)

(ே)

(ேିଵ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

76

(ேିଵ)

Computing derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

(ேିଵ)

(ே)

(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

77

Computing derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

(ேିଵ)

(ே)

(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

78

Computing derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

(ேିଵ) ேିଵ

ᇱ

(ேିଵ)

(ேିଵ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

79

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

(ேିଵ)

(ேିଶ)

(ேିଵ)

For the bias term
(ேିଶ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

80

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

(ேିଶ)

(ேିଵ)

(ேିଵ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

81

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ேିଶ

y(N-2)

z(N-2)

ேିଶ

ேିଶ

ேିଶ

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

(ேିଶ) ேିଶ

ᇱ

(ேିଶ)

(ேିଶ)

82

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ

ଵ
(ଵ)

(ଶ)

(ଶ)

83

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ

(ଵ) ଵ

ᇱ

(ଵ)

(ଵ)

84

y(0)

1

We continue our way backwards in the order shown

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

ଵ

ଵ

ଵ

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

(ଵ)

()

(ଵ)

85

Gradients: Backward Computation

Div(Y,d)

fN

fN

Initialize: Gradient
w.r.t network output

y(N)z(N)

y(N-1)z(N-1)y(k)z(k)y(k-1)z(k-1)

()

(ାଵ)

(ାଵ)

(ାଵ)

()

(ାଵ)

Div(Y,d)

(ே)

Figure assumes, but does not show
the “1” bias nodes

(ே)

ᇱ

(ே)

(ே) 86

()

ᇱ

()

()

Backward Pass
• Output layer :

– For ே

•
డ௩

డ௬

(ಿ)

డ (,ௗ)

డ௬
[This is the derivative of the divergence]

•
డ௩

డ௭

(ಿ)

డ௩

డ௬

(ಿ) ே

ᇱ

(ே)

•
డ௩

డ௪
ೕ
(ಿ)

(ேିଵ) డ௩

డ௭
ೕ
(ಿ) for ேିଵ

• For layer
– For

•
డ௩

డ௬

(ೖ)

(ାଵ)

డ

డ௭
ೕ
(ೖశభ)

•
డ௩

డ௭

(ೖ)

డ௩

డ௬

(ೖ)

ᇱ

()

•
డ

డ௪
ೕ
(ೖ)

(ିଵ) డ௩

డ௭
ೕ
(ೖ) for ିଵ

87

Backward Pass
• Output layer :

– For ே

•
డ௩

డ௬

(ಿ)

డ௩(,ௗ)

డ௬

•
డ௩

డ௭

(ಿ)

డ௩

డ௬

(ಿ) ே

ᇱ

(ே)

•
డ

డ௪
ೕ
(ಿ)

(ேିଵ) డ௩

డ௭
ೕ
(ಿ) for ேିଵ

• For layer
– For

•
డ௩

డ௬

(ೖ)

(ାଵ)

డ௩

డ௭
ೕ
(ೖశభ)

•
డ௩

డ௭

(ೖ)

డ௩

డ௬

(ೖ)

ᇱ

()

•
డ௩

డ௪
ೕ
(ೖ)

(ିଵ) డ௩

డ௭
ೕ
(ೖ) for ିଵ

88

Called “Backpropagation” because
the derivative of the loss is
propagated “backwards” through
the network

Backward weighted combination
of next layer

Backward equivalent of activation

Very analogous to the forward pass:

Backward Pass
• Output layer (N) :

– For ே

•
(ே) డ௩

డ௬

•
(ே)

(ே)

ே
ᇱ

(ே)

•
డ௩

డ௪
ೕ
(ಿ)

(ேିଵ)

(ே)for ேିଵ

• For layer
– For

•
()

(ାଵ)

(ାଵ)

•
()

()

ᇱ

()

•
డ௩

డ௪
ೕ
(ೖ)

(ିଵ)

()for ିଵ

89

Called “Backpropagation” because
the derivative of the loss is
propagated “backwards” through
the network

Backward weighted combination
of next layer

Backward equivalent of activation

Very analogous to the forward pass:

Using notation డ௩(,ௗ)

డ௬
etc (overdot represents derivative of w.r.t variable)

For comparison: the forward pass
again

• Input: dimensional vector
• Set:

– , is the width of the 0th (input) layer

– ;

• For layer
– For

•
()

,
()

(ିଵ)ேೖ

ୀ

•
()

()

• Output:

–
90

Poll 2

After Slide 82

How does backpropagation relate to training the network (pick one)

 Backpropagation is the process of training the network
 Backpropagation is used to update the model parameters during training
 Backpropagation is used to compute the derivatives of the divergence with respect to model

parameters, to be used in gradient descent. (correct)

91

Poll 2

After Slide 82

How does backpropagation relate to training the network (pick one)

 Backpropagation is the process of training the network
 Backpropagation is used to update the model parameters during training
 Backpropagation is used to compute the derivatives of the divergence with respect to model

parameters, to be used in gradient descent. (correct)

92

Special cases

• Have assumed so far that
1. The computation of the output of one neuron does not directly affect

computation of other neurons in the same (or previous) layers
2. Inputs to neurons only combine through weighted addition
3. Activations are actually differentiable
– All of these conditions are frequently not applicable

• Will not discuss all of these in class, but explained in slides
– Will appear in quiz. Please read the slides

93

Special Case 1. Vector activations

• Vector activations: all outputs are functions of
all inputs

94

z(k)y(k-1) y(k) z(k)y(k-1) y(k)

Special Case 1. Vector activations

95

z(k)y(k-1)

y(k)

Scalar activation: Modifying a
only changes corresponding

Vector activation: Modifying a
potentially changes all,

z(k)y(k-1)

y(k)

“Influence” diagram

96

z(k)y(k-1)
y(k) z(k) y(k)

Scalar activation: Each
influences one

Vector activation: Each
influences all,

y(k-1)

Scalar Activation: Derivative rule

• In the case of scalar activation functions, the
derivative of the error w.r.t to the input to the
unit is a simple product of derivatives

97

z(k)y(k-1) y(k)

Derivatives of vector activation

• For vector activations the derivative of the error w.r.t.
to any input is a sum of partial derivatives

– Regardless of the number of outputs
98

z(k)y(k-1) y(k)

Div
Note: derivatives of scalar activations
are just a special case of vector
activations:
డ௬ೕ

(ೖ)

డ௭
(ೖ)

Example Vector Activation: Softmax

99

z(k)y(k-1) y(k)

()

()

()

Div

Example Vector Activation: Softmax

100

z(k)y(k-1) y(k)

()

()

()

()

()

()

()

Div

Example Vector Activation: Softmax

101

z(k)y(k-1) y(k)

()

()

()

()

()

()

()

()

()

()

()

Div

Example Vector Activation: Softmax

• For future reference

• is the Kronecker delta: 102

z(k)y(k-1) y(k)

()

()

()

()

()

()

()

()

()

()

()

()

()

()

()

Div

Backward Pass for softmax output
layer

• Output layer :
– For ே

•
డ௩

డ௬

(ಿ)

డ௩(,ௗ)

డ௬

•
డ௩

డ௭

(ಿ)

డ௩(,ௗ)

డ௬
ೕ
(ಿ)

(ே)

(ே)

•
డ௩

డ௪
ೕ
(ಿ)

(ேିଵ) డ௩

డ௭
ೕ
(ಿ) for ேିଵ

• For layer
– For

•
డ௩

డ௬

(ೖ)

(ାଵ)

డ௩

డ௭
ೕ
(ೖశభ)

•
డ௩

డ௭

(ೖ)

డ௩

డ௬

(ೖ)

ᇱ

()

•
డ௩

డ௪
ೕ
(ೖ)

(ିଵ) డ௩

డ௭
ೕ
(ೖ) for ିଵ

103

z(N)
y(N)

KL Div Div

so
ft

m
ax

d

Special cases

• Examples of vector activations and other
special cases on slides
– Please look up
– Will appear in quiz!

104

Vector Activations

• In reality the vector combinations can be anything
– E.g. linear combinations, polynomials, logistic (softmax),

etc.
105

z(k)y(k-1) y(k)

Special Case 2: Multiplicative
networks

• Some types of networks have multiplicative combination
– In contrast to the additive combination we have seen so far

• Seen in networks such as LSTMs, GRUs, attention models,
etc.

z(k-1) y(k-1)

o(k)

W(k)

Forward:)1()1()(k
l

k
j

k
i yyo

106

Backpropagation: Multiplicative
Networks

• Some types of networks have multiplicative
combination

z(k-1) y(k-1)

o(k)

W(k)

Forward:
)1()1()(k

l
k
j

k
i yyo

Backward:

)(
)1(

)()1(

)(

)1(k
i

k
lk

i
k
j

k
i

k
j o

Div
y

o

Div

y

o

y

Div

)(
)1(

)1(k
i

k
jk

l o

Div
y

y

Div

()

(ାଵ)

(ାଵ)

107

Multiplicative combination as a case
of vector activations

• A layer of multiplicative combination is a special case of vector activation
108

z(k)y(k-1) y(k)

Multiplicative combination: Can be
viewed as a case of vector activations

• A layer of multiplicative combination is a special case of vector activation
109

z(k)y(k-1) y(k)

(ೖ)

ೕ
(ೖ)

(ೖ)

Y, Div

Gradients: Backward Computation

Div(Y,d)

fN

fN

Div

y(N)z(N)

y(N-1)z(N-1)y(k)z(k)y(k-1)z(k-1)

()

For k = N…1
For i = 1:layer width

()

()

()

()

(ିଵ)

()

()

()

(ିଵ)

()

()

()

()

()

If layer has vector activation Else if activation is scalar

110

Special Case : Non-differentiable
activations

• Activation functions are sometimes not actually differentiable
– E.g. The RELU (Rectified Linear Unit)

• And its variants: leaky RELU, randomized leaky RELU

– E.g. The “max” function

• Must use “subgradients” where available
– Or “secants” 111

+.
.
.
.
.

xଵ

xଶ

xଷ

xே

𝑧
𝑦

𝑤ଵ

𝑤ଶ

𝑤ଷ

𝑤ே

𝑓(𝑧)

xேିଵ

𝑤ேିଵ

𝑤ேାଵ1

𝑧

𝑓(𝑧) = 𝑧

𝑓(𝑧) = 0

z1

y

z2

z3

z4

The subgradient

• A subgradient of a function at a point is any vector such that

்

– Any direction such that moving in that direction increases the function

• Guaranteed to exist only for convex functions
– “bowl” shaped functions
– For non-convex functions, the equivalent concept is a “quasi-secant”

• The subgradient is a direction in which the function is guaranteed to increase
• If the function is differentiable at , the subgradient is the gradient

– The gradient is not always the subgradient though
112

Non-differentiability: RELU

Δ𝑓 𝑧 = 𝛼Δ𝑧

• At 0 a negative perturbation Δ𝑧 < 0 results in no change of 𝑓(𝑧)
– 𝛼= 0

• A positive perturbation Δ𝑧 > 0 results in Δ𝑓 𝑧 = Δ𝑧

– 𝛼 = 1

• Peering very closely, we can imagine that the curve is rotating continuously from slope = 0 to slope
= 1 at 𝑧 = 0

– So any slope between 0 and 1 is valid 113

Subgradients and the RELU

• The subderivative of a RELU is the slope of any line that lies entirely under it
– The subgradient is a generalization of the subderivative
– At the differentiable points on the curve, this is the same as the gradient

• Can use any subgradient at 0
– Typically, will use the equation given

114

Subgradients and the Max

• Vector equivalent of subgradient
– 1 w.r.t. the largest incoming input

• Incremental changes in this input will change the output

– 0 for the rest
• Incremental changes to these inputs will not change the output

115

z1

y

z2

zN

Poll 3

We have y = max(z1, z2, z3), computed at z1 = 1, z2 = 2, z3 = 3. Select all that are true

 dy/dz1 = 1
 dy/dz1 = 0 (correct)
 dy/dz2 = 1
 dy/dz2 = 0 (correct)
 dy/dz3 = 1 (correct)
 dy/dz3 = 0

116

Poll 3

We have y = max(z1, z2, z3), computed at z1 = 1, z2 = 2, z3 = 3. Select all that are true

 dy/dz1 = 1
 dy/dz1 = 0 (correct)
 dy/dz2 = 1
 dy/dz2 = 0 (correct)
 dy/dz3 = 1 (correct)
 dy/dz3 = 0

117

Subgradients and the Max

• Multiple outputs, each selecting the max of a different subset of
inputs
– Will be seen in convolutional networks

• Gradient for any output:
– 1 for the specific component that is maximum in corresponding input

subset
– 0 otherwise 118

ೕ

z1 y1

z2

zN

y2

y3

yM

Backward Pass: Recap
• Output layer (N) :

– For ே

•
డ௩

డ௬

(ಿ)

డ௩(,ௗ)

డ௬

•
డ௩

డ௭

(ಿ)

డ௩

డ௬

(ಿ)

డ௬
(ಿ)

డ௭

(ಿ)

డ௩

డ௬
ೕ
(ಿ)

డ௬ೕ
(ಿ)

డ௭

(ಿ) (vector activation)

•
డ௩

డ௪
ೕ
(ಿ)

(ேିଵ) డ௩

డ௭

(ಿ) for

• For layer
– For

•
డ௩

డ௬

(ೖ)

(ାଵ)

డ

డ௭
ೕ
(ೖశభ)

•
డ௩

డ௭

(ೖ)

డ௩

డ௬

(ೖ)

డ௬
(ೖ)

డ௭

(ೖ)

డ௩

డ௬
ೕ
(ೖ)

డ௬ೕ
(ೖ)

డ௭

(ೖ) (vector activation)

•
డ௩

డ௪
ೕ
(ೖ)

(ିଵ) డ௩

డ௭

(ೖ) for

119

These may be subgradients

Overall Approach
• For each data instance

– Forward pass: Pass instance forward through the net. Store all
intermediate outputs of all computation.

– Backward pass: Sweep backward through the net, iteratively compute
all derivatives w.r.t weights

• Actual loss is the sum of the divergence over all training instances

• Actual gradient is the sum or average of the derivatives computed
for each training instance

–
120

Training by BackProp
• Initialize weights for all layers
• Do: (Gradient descent iterations)

– Initialize ; For all , initialize ௗ௦௦

ௗ௪
,ೕ
(ೖ)

– For all (Iterate over training instances)
• Forward pass: Compute

– Output 𝒀𝒕

– 𝐿𝑜𝑠𝑠 += 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

• Backward pass: For all :

– Compute ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕)

ௗ௪
,ೕ
(ೖ)

–
ௗ௦௦

ௗ௪
,ೕ
(ೖ) +=

ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕)

ௗ௪
,ೕ
(ೖ)

– For all update:

,
()

,
()

,
()

• Until has converged 121

Vector formulation

• For layered networks it is generally simpler to
think of the process in terms of vector
operations
– Simpler arithmetic
– Fast matrix libraries make operations much faster

• We can restate the entire process in vector
terms
– This is what is actually used in any real system

122

Vector formulation

• Arrange the inputs to neurons of the kth layer as a vector
• Arrange the outputs of neurons in the kth layer as a vector
• Arrange the weights to any layer as a matrix

– Similarly with biases 123

ଵଵ
()

ೖషభೖ

()

ೖ

()

𝒌

ଵ
()

ଶ
()

ೖ

()

ଵ
()

ଶ
()

ೖ

()

ଵ
()

ଶ
()

ೖ

()

𝒌

ଵ
()

ଶ
()

ೖ

()

𝒌

ଵ
()

ଶ
()

ೖ

()

ଵଵ
() ଶଵ

() ೖషభଵ
()

ଵଶ
()

ଶଶ
()

ೖషభଶ
()

ଵೖ

()
ଶೖ

()
ೖషభೖ

()

ଵ
(ିଵ)

ଶ
(ିଵ)

ೖ

(ିଵ)

Vector formulation

• The computation of a single layer is easily expressed in matrix
notation as (setting):

124

ଵଵ
() ଶଵ

() ೖషభଵ
()

ଵଶ
()

ଶଶ
()

ೖషభଶ
()

ଵೖ

()
ଶೖ

()
ೖషభೖ

()

𝒌

ଵ
()

ଶ
()

ೖ

()

𝒌

ଵ
()

ଶ
()

ೖ

()

𝒌

ଵ
()

ଶ
()

ೖశభ

()

𝒌 𝒌 𝒌ି𝟏 𝒌 𝒌 𝒌

ଵଵ
()

ೖషభೖ

()

ೖ

()

ଵ
()

ଶ
()

ೖ

()

ଵ
()

ଶ
()

ೖ

()

ଵ
(ିଵ)

ଶ
(ିଵ)

ೖ

(ିଵ)

The forward pass: Evaluating the
network

125

𝟎

The forward pass

126

𝟏 𝟏 𝟎 ଵ

𝟏
ଵ ଵ

127

ଵ ଵ 1

𝟏 𝟏

The forward pass
ଵ ଵ

ଵ ଵ ଵ ଵ

The Complete computation

The forward pass

128

ଶ 2 ଵ ଶ

𝟏 𝟏 𝟐
ଵ ଵ ଶ ଶ

ଵ ଵ ଵ ଵ

The Complete computation

The forward pass

129

𝟏 𝟐
ଵ ଵ ଶ ଶ

𝟐

ଶ ଶ 2

ଶ ଶ ଶ ଵ ଵ ଵ ଶ

The Complete computation

𝟏

The forward pass

130

𝟏
ଵ ଵ ଶ ଶ

𝟐 ேିଵ

N

ே ே

ே N ேିଵ ே

The Complete computation

𝟐𝟏

ே ே ேିଵ ଶ ଶ ଵ ଵ ଵ ଶ ே

The forward pass

131

𝟏
ଵ ଵ

𝟐 ேିଵ

N

ே ே

ே 𝑁

ே ே ேିଵ ଶ ଶ ଵ ଵ ଵ ଶ ே

The Complete computation

𝟐𝟏

Forward pass

Div(Y,d)

Forward pass:

For k = 1 to N:

Initialize

Output
132

The Forward Pass
• Set

• Iterate through layers:
– For layer k = 1 to N:

• Output:

133

The Backward Pass
• Have completed the forward pass
• Before presenting the backward pass, some

more calculus…
– Vector calculus this time

134

Vector Calculus Notes 1: Definitions
• A derivative is a multiplicative factor that multiplies a

perturbation in the input to compute the corresponding
perturbation of the output

• For a scalar function of a vector argument

• If is an vector, is a vector
– The shape of the derivative is the transpose of the shape of

• is called the gradient of w.r.t

135

Vector Calculus Notes 1: Definitions
• For a vector function of a vector argment

• If is an vector, and is an is an
matrix
– Or the dimensions won’t match

• is called the Jacobian of w.r.t

136

Calculus Notes: The Jacobian

137

Using vector notation

Check:

• The derivative of a vector function w.r.t. vector input is called
a Jacobian

• It is the matrix of partial derivatives given below

• For scalar activations (shorthand notation):
– Jacobian is a diagonal matrix
– Diagonal entries are individual derivatives of outputs w.r.t inputs

138

z y

Jacobians can describe the derivatives
of neural activations w.r.t their input

For Vector activations

• Jacobian is a full matrix
– Entries are partial derivatives of individual outputs

w.r.t individual inputs
139

z y

Special case: Affine functions

• Matrix and bias operating on vector to
produce vector

• The Jacobian of w.r.t is simply the matrix
140

Vector Calculus Notes 2: Chain rule
• For nested functions we have the following

chain rule

141

Check

Note the order: The derivative of the outer function comes first

Vector Calculus Notes 2: Chain rule
• Chain rule for Jacobians:
• For vector functions of vector inputs:

142

Check

Note the order: The derivative of the outer function comes first

Vector Calculus Notes 2: Chain rule
• Combining Jacobians and Gradients
• For scalar functions of vector inputs (is vector):

Check

Note the order: The derivative of the outer function comes first

Vector Calculus Notes 2: Chain rule
• For nested functions we have the following

chain rule

144
Note the order: The derivative of the outer function comes first

Vector Calculus Notes 2: Chain rule
• For nested functions we have the following

chain rule

145
Note the order: The derivative of the outer function comes first

More calculus: Special Case

• Scalar functions of Affine functions

146

Derivatives w.r.t
parameters

• Note: the derivative shapes are the transpose
of the shapes of and

More calculus: Special Case

• Scalar functions of Affine functions

147

• Writing the transpose

Special Case: Application to a
network

• Scalar functions of Affine functions

148

The divergence is a scalar function of

Applying the above rule

Special Case: Application to a
network

• Scalar functions of Affine functions

149

Poll 4

We are given the function 𝑌 = 𝐹(𝐺(𝐻(𝑋))), where 𝑌 and 𝑋 are vectors, and 𝐺 and 𝐻 also compute
vector outputs.

Select the correct formula for the derivative of 𝑌 w.r.t. 𝑋. We use the notation ∇𝑋(𝑌) to represent the
derivative of 𝑌 w.r.t 𝑋.

 ∇𝑋(𝐻) ∇𝐻(𝐺) ∇𝐺(𝐹)
 ∇𝐺 (𝐹)∇𝐻(𝐺) ∇𝑋(𝐻) (correct)
 Both are correct

150

Poll 4

We are given the function 𝑌 = 𝐹(𝐺(𝐻(𝑋))), where 𝑌 and 𝑋 are vectors, and 𝐺 and 𝐻 also compute
vector outputs.

Select the correct formula for the derivative of 𝑌 w.r.t. 𝑋. We use the notation ∇𝑋(𝑌) to represent the
derivative of 𝑌 w.r.t 𝑋.

 ∇𝑋(𝐻) ∇𝐻(𝐺) ∇𝐺(𝐹)
 ∇𝐺 (𝐹)∇𝐻(𝐺) ∇𝑋(𝐻) (correct)
 Both are correct

151

The backward pass

• The network is a nested function

ே ே ேିଵ ଶ ଶ ଵ ଵ ଵ ଶ ே

ଵ ଵ ଶ ଶ

ே ே

ே ே ேିଵ ଶ ଶ ଵ ଵ ଵ ଶ ே

• The divergence for any is also a nested function

152

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

In the following slides we will also be using the notation 𝐳 to represent the derivative
of any w.r.t any

153

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

First compute the derivative of the divergence w.r.t. .
The actual derivative depends on the divergence function.

N.B: The gradient is the transpose of the derivative 154

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿ

ಿ ಿ

Already computed New term
155

The divergence is a nested function:

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿ

ಿ

Already computed New term
156

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ே

ಿషభ ಿ ಿషభ

Already computed New term
157

The divergence is a nested function:
ே ே ேିଵ ே 𝐲ಿషభ ே ே

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభಿషభ ಿ

ே

Already computed New term
158

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ
ಿషభ ಿ

ಿ ಿ

ಿ ಿ

ே

159

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ே

ேିଵ

ಿషభ ಿషభ ಿషభ

Already computed New term
160

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ಿషభ ಿషభ ಿషభ

ே

ேିଵ

The Jacobian will be a diagonal
matrix for scalar activations

161

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషమ

ಿషమ ಿషభ ಿషమ

ே

ேିଵேିଵ

162

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషమ

ಿషమ ಿషభ

ே

ேିଵேିଵ

163

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషమ

ಿషమ ಿషభ

ே

ಿషభ ಿషభ

ಿషభ ಿషభ

ேିଵேିଵ

164

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

భ భ భ

ே

ேିଵேିଵ

165

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ே

ேିଵேିଵ

భ భ

భ భ

In some problems we will also want to compute
the derivative w.r.t. the input

ଵ

166

The Backward Pass
• Set ,
• Initialize: Compute

• For layer k = N downto 1:
– Compute

ೖ

• Will require intermediate values computed in the forward pass

– Backward recursion step:

ೖ ೖ ೖ

ೖషభ ೖ

– Gradient computation:

ೖ ೖ

ೖ ೖ

167

The Backward Pass
• Set ,
• Initialize: Compute

• For layer k = N downto 1:
– Compute

ೖ

• Will require intermediate values computed in the forward pass

– Backward recursion step:

ೖ ೖ ೖ

ೖషభ ೖ

– Gradient computation:

ೖ ೖ

ೖ ೖ

168

Note analogy to forward pass

For comparison: The Forward Pass
• Set

• For layer k = 1 to N :
– Forward recursion step:

• Output:

169

Neural network training algorithm
• Initialize all weights and biases ଵ ଵ ଶ ଶ ே ே

• Do:
–

– For all , initialize 𝐖ೖ
, 𝐛ೖ

– For all # Loop through training instances
• Forward pass : Compute

– Output 𝒀(𝑿𝒕)

– Divergence 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– 𝐿𝑜𝑠𝑠 += 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

• Backward pass: For all 𝑘 compute:
– 𝛻𝐲ೖ

𝐷𝑖𝑣 = 𝛻𝐳ೖାଵ𝐷𝑖𝑣 𝐖ାଵ

– 𝛻𝐳ೖ
𝐷𝑖𝑣 = 𝛻𝐲ೖ

𝐷𝑖𝑣 𝐽𝐲ೖ
𝐳

– 𝛻𝐖ೖ
𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕) = 𝐲ିଵ𝛻𝐳ೖ

𝐷𝑖𝑣; 𝛻𝐛ೖ
𝑫𝒊𝒗 𝒀𝒕, 𝒅𝒕 = 𝛻𝐳ೖ

𝐷𝑖𝑣

– 𝛻𝐖ೖ
𝐿𝑜𝑠𝑠 += 𝛻𝐖ೖ

𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕); 𝛻𝐛ೖ
𝐿𝑜𝑠𝑠 += 𝛻𝐛ೖ

𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– For all update:

𝐖 = 𝐖 −
ఎ

்
𝛻𝐖ೖ

𝐿𝑜𝑠𝑠
்

; 𝐛 = 𝐛 −
ఎ

்
𝛻𝐖ೖ

𝐿𝑜𝑠𝑠
்

• Until has converged
170

Setting up for digit recognition

• Simple Problem: Recognizing “2” or “not 2”
• Single output with sigmoid activation

– 𝑌 ∈ (0,1)

– 𝑑 𝑖𝑠 𝑒𝑖𝑡ℎ𝑒𝑟 0 𝑜𝑟 1

• Use KL divergence
• Backpropagation to compute derivatives

– To apply in gradient descent to learn network parameters 171

(, 0)
(, 1)
(, 0)

(, 1)
(, 0)
(, 1)

Training data

Sigmoid output
neuron

Recognizing the digit

• More complex problem: Recognizing digit
• Network with 10 (or 11) outputs

– First ten outputs correspond to the ten digits
• Optional 11th is for none of the above

• Softmax output layer:
– Ideal output: One of the outputs goes to 1, the others go to 0

• Backpropagation with KL divergence
– To compute derivatives for gradient descent updates to learn network 172

(, 5)
(, 2)
(, 0)

(, 2)
(, 4)
(, 2)

Training data

Y1 Y2 Y3 Y4 Y0

Story so far

• Neural networks must be trained to minimize the average
divergence between the output of the network and the desired
output over a set of training instances, with respect to network
parameters.

• Minimization is performed using gradient descent

• Gradients (derivatives) of the divergence (for any individual
instance) w.r.t. network parameters can be computed using
backpropagation
– Which requires a “forward” pass of inference followed by a

“backward” pass of gradient computation

• The computed gradients can be incorporated into gradient descent
173

Issues

• Convergence: How well does it learn
– And how can we improve it

• How well will it generalize (outside training
data)

• What does the output really mean?
• Etc..

174

Next up

• Convergence and generalization

175

