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Training neural nets through Empirical 
Risk Minimization: Problem Setup

• Given a training set of input-output pairs 

• The divergence on the ith instance is 
–

• The loss (empirical risk)

• Minimize w.r.t using gradient descent
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Notation

• The input layer is the 0th layer

• We will represent the output of the i-th perceptron of the kth layer as 
()

– Input to network: 
()



– Output of network:   
(ே)

• We will represent the weight of the connection between the i-th unit of 
the k-1th layer and the jth unit of the k-th layer as 

()

– The bias to the jth unit of the k-th layer is 
()
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Recap: Gradient Descent Algorithm

• Initialize: 
–

–

• do 
–  
–

• while 
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To minimize any function Loss(W) w.r.t W



Recap: Gradient Descent Algorithm

• In order to minimize w.r.t. 
• Initialize: 

–

–

• do
– For every component 

•


–

• while 
11-755/18-797 5

Explicitly stating it by component



Training Neural Nets through Gradient 
Descent

• Gradient descent algorithm:

• Initialize all weights and biases 
– Using the extended notation: the bias is also a weight

• Do:
– For every layer for all update:

• ,
()

,
() ௗ௦௦

ௗ௪
,ೕ
(ೖ)

• Until has converged
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Total training Loss:

Assuming the bias is also
represented as a weight



Training Neural Nets through Gradient 
Descent

• Gradient descent algorithm:

• Initialize all weights 

• Do:
– For every layer for all update:

• ,
()

,
() ௗ௦௦

ௗ௪
,ೕ
(ೖ)

• Until has converged
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Total training Loss:

Assuming the bias is also
represented as a weight



The derivative

• Computing the derivative
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Total derivative:

Total training Loss:



Training by gradient descent

• Initialize all weights 

• Do:

– For all ,  initialize ௗ௦௦

ௗ௪
,ೕ
(ೖ)

– For all 
• For every layer for all :

– Compute  ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕) 
ௗ௪

,ೕ
(ೖ)

–
ௗ௦

ௗ௪
,ೕ
(ೖ) +=

ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕) 
ௗ௪

,ೕ
(ೖ)

– For every layer for all :

,
()

,
()

,
()

• Until has converged
9



The derivative

• So we must first figure out how to compute the 
derivative of divergences of individual training 
inputs
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Total derivative:

Total training Loss:



Calculus Refresher: Basic rules of 
calculus
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For any differentiable function

with derivative 
ௗ௬

ௗ௫

the following must hold for sufficiently small 



Calculus Refresher: Basic rules of 
calculus
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For any differentiable function

with derivative 
ௗ௬

ௗ௫

the following must hold for sufficiently small 

Introducing the
“influence” diagram:
x influences y



Calculus Refresher: Basic rules of 
calculus
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For any differentiable function

with derivative 
ௗ௬

ௗ௫

the following must hold for sufficiently small 

Introducing the
“influence” diagram:
x influences y

The derivative graph:
The edge carries the
derivative.

Node and edge weights
multiply



Calculus Refresher: Basic rules of calculus
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For any differentiable function
ଵ ଶ ெ

with partial derivatives 
డ௬

డ௫భ

డ௬

డ௫మ

డ௬

డ௫ಾ

the following must hold for sufficiently small ଵ ଶ ெ

What is the influence diagram relating ଵ ଶ ெ and ? 



Calculus Refresher: Basic rules of calculus
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For any differentiable function
ଵ ଶ ெ

with partial derivatives 
డ௬

డ௫భ

డ௬

డ௫మ

డ௬

డ௫ಾ

the following must hold for sufficiently small ଵ ଶ ெ

The derivative diagram?



Calculus Refresher: Basic rules of calculus
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For any differentiable function
ଵ ଶ ெ

with partial derivatives 
డ௬

డ௫భ

డ௬

డ௫మ

డ௬

డ௫ಾ

the following must hold for sufficiently small ଵ ଶ ெ
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Calculus Refresher: Chain rule
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For any nested function



Calculus Refresher: Chain rule
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For any nested function



Distributed Chain Rule: Influence 
Diagram
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Shorthand: 



Distributed Chain Rule: Influence 
Diagram

• affects through each of 
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Distributed Chain Rule: Influence 
Diagram
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Calculus Refresher: Chain rule 
summary
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For
where 



Calculus Refresher: Chain rule 
summary
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For any nested function

For

where 

where 



Our problem for today

• How to compute for a single data 

instance
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Poll 1

1. The chain rule of derivatives can be derived from the basic definition of derivatives,   dy =  derivative 
* dx,  true or false 
 True  (correct) 
 False 

 

2. Which of the following is true of the “influence diagram” 
 It graphically shows all paths (and variables) through which one variable influences the other 

(true) 
 The derivative of the influenced (outcome) variable with respect to the influencer (input) 

variable must be summed over all outgoing paths from the influencer variable (true) 
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Poll 1

1. The chain rule of derivatives can be derived from the basic definition of derivatives,   dy =  derivative 
* dx,  true or false 
 True  (correct) 
 False 

 

2. Which of the following is true of the “influence diagram” 
 It graphically shows all paths (and variables) through which one variable influences the other 

(true) 
 The derivative of the influenced (outcome) variable with respect to the influencer (input) 

variable must be summed over all outgoing paths from the influencer variable (true) 
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A first closer look at the network

• Showing a tiny 2-input network for illustration
– Actual network would have many more neurons 

and inputs
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A first closer look at the network

• Showing a tiny 2-input network for illustration
– Actual network would have many more neurons and inputs

• Explicitly separating the affine function of inputs from the 
activation
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A first closer look at the network

• Showing a tiny 2-input network for illustration
– Actual network would have many more neurons and inputs

• Expanded with all weights shown

• Let’s label the other variables too…
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Computing the derivative for a single 
input
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Computing the derivative for a single 
input

31

+

+

+

+

+

ଵ,ଵ
(ଵ)

ଶ,ଵ
(ଵ)

ଷ,ଵ
(ଵ)

ଵ,ଵ
(ଶ)

ଶ,ଵ
(ଶ)

ଷ,ଵ
(ଶ)

ଵ,ଵ
(ଷ)

ଶ,ଵ
(ଷ)

ଷ,ଵ
(ଷ)

ଷ,ଶ
(ଵ)

ଷ,ଶ
(ଶ)

ଶ,ଶ
(ଵ)

ଵ,ଶ
(ଵ)

ଶ,ଶ
(ଶ)

ଵ,ଶ
(ଶ)

ଵ
(ଵ)

ଵ
(ଶ)

ଶ
(ଵ)

ଶ
(ଶ)

ଵ
(ଷ)

ଵ
(ଵ)

ଶ
(ଵ)

ଵ
(ଶ)

ଶ
(ଶ)

Div

1

1

2

2

3

What is: 𝒅𝑫𝒊𝒗(𝒀,𝒅)

𝒅௪,ೕ
(ೖ)



Computing the gradient

• Note: computation of the derivative requires 

intermediate and final output values of the network in 
response to the input 32



The “forward pass”

We will refer to the process of computing the output from an input as
the forward pass

We will illustrate the forward pass in the following slides
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The “forward pass”

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

Assuming  
()


() and 

() -- assuming the bias is a weight and extending
the output of every layer by a constant 1, to account for the biases
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The “forward pass”
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The “forward pass”

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ


(ଵ)


(ଵ)


()



1

36



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ


(ଵ)


(ଵ)


()




(ଵ)

ଵ 
(ଵ)

1

37



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ


(ଵ)

ଵ 
(ଵ)


(ଶ)


(ଶ)


(ଵ)



1


(ଵ)


(ଵ)


()



38



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ


(ଵ)

ଵ 
(ଵ)


(ଶ)


(ଶ)


(ଵ)




(ଶ)

ଶ 
(ଶ)

1


(ଵ)


(ଵ)


()



39



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ


(ଵ)

ଵ 
(ଵ)


(ଶ)


(ଶ)


(ଵ)




(ଶ)

ଶ 
(ଶ)


(ଷ)


(ଷ)


(ଶ)



1


(ଵ)


(ଵ)


()



40



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ


(ଵ)

ଵ 
(ଵ)


(ଶ)


(ଶ)


(ଵ)




(ଶ)

ଶ 
(ଶ)


(ଷ)


(ଷ)


(ଶ)



(ଷ)

ଷ 
(ଷ)

1


(ଵ)


(ଵ)


()



41



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ


(ே)


(ே)


(ேିଵ)



(ேିଵ)

ேିଵ 
(ேିଵ) (ே)

ே
(ே)

1

42



Forward Computation

ITERATE FOR  k =  1:N for j = 1:layer-width
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Forward “Pass”
• Input: dimensional vector 
• Set:

– ,  is the width of the 0th (input) layer

– ;       

• For layer 
– For 

• 
()

,
()


(ିଵ)ೖషభ

ୀ

• 
()

 
()

• Output:

–
44

Dk is the size of the kth layer



Computing derivatives

We have computed all these intermediate values in the 
forward computation

We must remember them – we will need them to compute 
the derivatives
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Computing derivatives

First, we compute the divergence between the output of the net y = y(N) and the
desired output 
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Computing derivatives

We then compute (ಿ) the derivative of the divergence w.r.t. the final output of the
network y(N)
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Computing derivatives

We then compute (ಿ) the derivative of the divergence w.r.t. the final output of the
network y(N)

We then compute ௭(ಿ) the derivative of the divergence w.r.t. the pre-activation affine 
combination z(N) using the chain rule
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fN

fN
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Computing derivatives

Continuing on, we will compute ௐ(ಿ) the derivative of the divergence with respect
to the weights of the connections to the output layer 
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Computing derivatives

Continuing on, we will compute ௐ(ಿ) the derivative of the divergence with respect
to the weights of the connections to the output layer 

Then continue with the chain rule to compute (ಿషభ) the derivative of the 
divergence w.r.t. the output of the N-1th layer
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Computing derivatives

We continue our way backwards in the order shown
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We continue our way backwards in the order shown
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We continue our way backwards in the order shown
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We continue our way backwards in the order shown
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We continue our way backwards in the order shown
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We continue our way backwards in the order shown
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We continue our way backwards in the order shown
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Backward Gradient Computation

• Let’s actually see the math..
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Computing derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ
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Computing derivatives

The derivative w.r.t the actual output of the 
final layer of the network is simply the derivative 
w.r.t to the output of the network

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ
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Calculus Refresher: Chain rule

61

For any nested function

For

where 

where 



Computing derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ
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Computing derivatives

fN
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ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ
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Already computed



Computing derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ
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ே
ᇱ


(ே)

Derivative of 
activation function



Computing derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ
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ே
ᇱ


(ே)

Derivative of 
activation function

Computed in forward
pass



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ேିଶ

ேିଶ

ேିଶ

ேିଶ
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fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives


(ே)


(ே)


(ே)


(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ
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(ே)


(ேିଵ)


(ே)



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives


(ே)


(ே)


(ே)


(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ
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Just computed



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives


(ே)


(ே)


(ே)


(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ
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(ேିଵ)

Because


(ே)


(ே)


(ேିଵ)


(ேିଵ)


(ே)


(ே)



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives


(ே)


(ே)


(ே)


(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ
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(ேିଵ)

Because


(ே)


(ே)


(ேିଵ)


(ேିଵ)


(ே)


(ே)

Computed in forward pass
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ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives


(ே) 

(ேିଵ)


(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ
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(ேିଵ)


(ே)


(ே)



Computing derivatives


(ே) 

(ேିଵ)


(ே)

For the bias term 
(ேିଵ)
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ேିଵ
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ଵ

y(1)z(1)
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ଵ

ଵ

ଵ

1
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1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ
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Calculus Refresher: Chain rule
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For any nested function

For

where 

where 



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives


(ேିଵ)


(ே)


(ேିଵ)

 
(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ
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(ேିଵ)



Computing derivatives

fN

fN

ேିଵ
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y(N-1)z(N-1)

ଵ

y(1)z(1)
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ଵ

ଵ

1
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1

ேିଵ
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ேିଵ

1
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(ேିଵ)

 
(ே) Already computed

ேିଶ

ேିଶ

ேିଶ

ேିଶ
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(ேିଵ)



Computing derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)


(ேିଵ)


(ே)


(ேିଵ)

 
(ே)


(ே)

Because


(ே)


(ே)


(ேିଵ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ
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(ேିଵ)



Computing derivatives

fN
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ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)


(ேିଵ) 

(ே)

 
(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ
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Computing derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
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1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)


(ேିଵ) 

(ே)
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ேିଶ

ேିଶ

ேିଶ
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Computing derivatives

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)
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1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown


(ேିଵ) ேିଵ

ᇱ

(ேିଵ)


(ேିଵ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ
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ேିଵ
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ଵ

y(1)z(1)
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ଵ

ଵ

1
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ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown


(ேିଵ) 

(ேିଶ)


(ேିଵ)

For the bias term 
(ேିଶ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ
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1

Div(Y,d)

We continue our way backwards in the order shown


(ேିଶ) 

(ேିଵ)
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ேିଶ
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ேିଵ
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Div(Y,d)

We continue our way backwards in the order shown


(ேିଶ) ேିଶ

ᇱ

(ேିଶ)


(ேିଶ)
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fN
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ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1
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We continue our way backwards in the order shown
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ଵ
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We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ


(ଵ) ଵ

ᇱ

(ଵ)


(ଵ)
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y(0)

1

We continue our way backwards in the order shown

fN

fN

ேିଵ
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y(N-1)z(N-1)

ଵ

y(1)z(1)

ଵ

ଵ

ଵ
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1

ேିଵ
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Gradients: Backward Computation

Div(Y,d)

fN

fN

Initialize: Gradient 
w.r.t  network output

y(N)z(N)

y(N-1)z(N-1)y(k)z(k)y(k-1)z(k-1)


() 

(ାଵ)

 
(ାଵ)


(ାଵ) 

()


(ାଵ)

Div(Y,d)


(ே)



Figure assumes, but does not show
the “1” bias nodes


(ே) 

ᇱ

(ே)


(ே) 86
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Backward Pass
• Output layer :

– For ே

•
డ௩

డ௬

(ಿ)

డ (,ௗ)

డ௬
[This is the derivative of the divergence]

•
డ௩

డ௭

(ಿ)

డ௩

డ௬

(ಿ) ே

ᇱ

(ே)

•
డ௩

డ௪
ೕ
(ಿ) 

(ேିଵ) డ௩

డ௭
ೕ
(ಿ)    for ேିଵ

• For layer 
– For 

•
డ௩

డ௬

(ೖ) 

(ାଵ)


డ

డ௭
ೕ
(ೖశభ)

•
డ௩

డ௭

(ೖ)

డ௩

డ௬

(ೖ) 

ᇱ

()

•
డ

డ௪
ೕ
(ೖ) 

(ିଵ) డ௩

డ௭
ೕ
(ೖ)    for ିଵ
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Backward Pass
• Output layer :

– For ே

•
డ௩

డ௬

(ಿ)

డ௩(,ௗ)

డ௬

•
డ௩

డ௭

(ಿ)

డ௩

డ௬

(ಿ) ே

ᇱ

(ே)

•
డ

డ௪
ೕ
(ಿ) 

(ேିଵ) డ௩

డ௭
ೕ
(ಿ)    for ேିଵ

• For layer 
– For 

•
డ௩

డ௬

(ೖ) 

(ାଵ)


డ௩

డ௭
ೕ
(ೖశభ)

•
డ௩

డ௭

(ೖ)

డ௩

డ௬

(ೖ) 

ᇱ

()

•
డ௩

డ௪
ೕ
(ೖ) 

(ିଵ) డ௩

డ௭
ೕ
(ೖ)    for ିଵ
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Called “Backpropagation” because
the derivative of the loss is
propagated “backwards” through
the network

Backward weighted combination 
of next layer

Backward equivalent of activation

Very analogous to the forward pass:



Backward Pass
• Output layer (N) :

– For ே

• 
(ே) డ௩

డ௬

• 
(ே)


(ே)

ே
ᇱ


(ே)

•
డ௩

డ௪
ೕ
(ಿ) 

(ேିଵ)

(ே)for ேିଵ

• For layer 
– For 

• 
()


(ାଵ)

 
(ାଵ)

• 
()


()


ᇱ


()

•
డ௩

డ௪
ೕ
(ೖ) 

(ିଵ)

()for ିଵ
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Called “Backpropagation” because
the derivative of the loss is
propagated “backwards” through
the network

Backward weighted combination 
of next layer

Backward equivalent of activation

Very analogous to the forward pass:

Using notation డ௩(,ௗ)

డ௬
etc (overdot represents derivative of w.r.t variable)



For comparison: the forward pass 
again

• Input: dimensional vector 
• Set:

– ,  is the width of the 0th (input) layer

– ;       

• For layer 
– For 

• 
()

,
()


(ିଵ)ேೖ

ୀ

• 
()

 
()

• Output:

–
90



Poll 2

After Slide 82 

How does backpropagation relate to training the network (pick one) 

 Backpropagation is the process of training the network 
 Backpropagation is used to update the model parameters during training 
 Backpropagation is used to compute the derivatives of the divergence with respect to model 

parameters, to be used in gradient descent. (correct) 
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Poll 2

After Slide 82 

How does backpropagation relate to training the network (pick one) 

 Backpropagation is the process of training the network 
 Backpropagation is used to update the model parameters during training 
 Backpropagation is used to compute the derivatives of the divergence with respect to model 

parameters, to be used in gradient descent. (correct) 
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Special cases

• Have assumed so far that
1. The computation of the output of one neuron does not directly affect 

computation of other neurons in the same (or previous) layers
2. Inputs to neurons only combine through weighted addition
3. Activations are actually differentiable
– All of these conditions are frequently not applicable

• Will not discuss all of these in class, but explained in slides
– Will appear in quiz.  Please read the slides
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Special Case 1. Vector activations

• Vector activations: all outputs are functions of 
all inputs

94

z(k)y(k-1) y(k) z(k)y(k-1) y(k)



Special Case 1. Vector activations

95

z(k)y(k-1)

y(k)

Scalar activation: Modifying a 
only changes corresponding 

Vector activation: Modifying a
potentially changes all, 

z(k)y(k-1)

y(k)



“Influence” diagram

96

z(k)y(k-1)
y(k) z(k) y(k)

Scalar activation: Each  
influences one 

Vector activation: Each 
influences all, 

y(k-1)



Scalar Activation: Derivative rule

• In the case of scalar activation functions, the 
derivative of the error w.r.t to the input to the 
unit is a simple product of derivatives

97

z(k)y(k-1) y(k)



Derivatives of vector activation

• For vector activations the derivative of the error w.r.t. 
to any input is a sum of partial derivatives

– Regardless of the number of outputs 
98

z(k)y(k-1) y(k)

Div
Note: derivatives of scalar activations
are just a special case of vector 
activations: 
డ௬ೕ

(ೖ)

డ௭
(ೖ)



Example Vector Activation: Softmax

99

z(k)y(k-1) y(k)


() 

()


()



Div



Example Vector Activation: Softmax

100

z(k)y(k-1) y(k)


() 

()


()




()


()


()


()

Div



Example Vector Activation: Softmax

101

z(k)y(k-1) y(k)
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()
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()
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Example Vector Activation: Softmax

• For future reference

• is the Kronecker delta: 102

z(k)y(k-1) y(k)
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()


() 

()
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Backward Pass for softmax output 
layer

• Output layer :
– For ே

•
డ௩

డ௬

(ಿ)

డ௩(,ௗ)

డ௬

•
డ௩

డ௭

(ಿ)

డ௩(,ௗ)

డ௬
ೕ
(ಿ) 

(ே)
 

(ே)


•
డ௩

డ௪
ೕ
(ಿ) 

(ேିଵ) డ௩

డ௭
ೕ
(ಿ)    for ேିଵ

• For layer 
– For 

•
డ௩

డ௬

(ೖ) 

(ାଵ)


డ௩

డ௭
ೕ
(ೖశభ)

•
డ௩

డ௭

(ೖ)

డ௩

డ௬

(ೖ) 

ᇱ

()

•
డ௩

డ௪
ೕ
(ೖ) 

(ିଵ) డ௩

డ௭
ೕ
(ೖ)    for ିଵ
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Special cases

• Examples of vector activations and other 
special cases on slides
– Please look up
– Will appear in quiz!
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Vector Activations

• In reality the vector combinations can be anything
– E.g. linear combinations, polynomials, logistic (softmax), 

etc. 
105

z(k)y(k-1) y(k)



Special Case 2: Multiplicative 
networks

• Some types of networks have multiplicative combination
– In contrast to the additive combination we have seen so far 

• Seen in networks such as LSTMs, GRUs, attention models, 
etc.

z(k-1) y(k-1)

o(k)

W(k)

Forward: )1()1()(  k
l

k
j

k
i yyo
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Backpropagation: Multiplicative 
Networks

• Some types of networks have multiplicative 
combination

z(k-1) y(k-1)

o(k)

W(k)

Forward: 
)1()1()(  k

l
k
j

k
i yyo

Backward: 

)(
)1(

)()1(

)(

)1( k
i

k
lk

i
k
j

k
i

k
j o

Div
y

o

Div

y

o

y

Div













 

 )(
)1(

)1( k
i

k
jk

l o

Div
y

y

Div






 




() 

(ାଵ)

 
(ାଵ)
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Multiplicative combination as a case 
of vector activations

• A layer of multiplicative combination is a special case of vector activation
108

z(k)y(k-1) y(k)



Multiplicative combination: Can be 
viewed as a case of vector activations

• A layer of multiplicative combination is a special case of vector activation
109

z(k)y(k-1) y(k)


(ೖ)

ೕ
(ೖ)


(ೖ)

Y, Div



Gradients: Backward Computation

Div(Y,d)

fN

fN

Div

y(N)z(N)

y(N-1)z(N-1)y(k)z(k)y(k-1)z(k-1)


()

For k = N…1
For i = 1:layer width


()


()


()


()




(ିଵ) 

()

 
()


() 

(ିଵ)


()


()


()


()


()

If layer has vector activation Else if activation is scalar
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Special Case : Non-differentiable 
activations

• Activation functions are sometimes not actually differentiable
– E.g. The RELU (Rectified Linear Unit)

• And its variants: leaky RELU, randomized leaky RELU

– E.g.  The “max” function

• Must use “subgradients” where available
– Or “secants” 111

+.
.
.
.
.

xଵ

xଶ

xଷ

xே

𝑧
𝑦

𝑤ଵ

𝑤ଶ

𝑤ଷ

𝑤ே

𝑓(𝑧)

xேିଵ

𝑤ேିଵ

𝑤ேାଵ1

𝑧

𝑓(𝑧) = 𝑧

𝑓(𝑧) = 0

z1

y




z2

z3

z4



The subgradient

• A subgradient of a function at a point  is any vector such that


்



– Any direction such that moving in that direction increases the function

• Guaranteed to exist only for convex functions
– “bowl” shaped functions
– For non-convex functions, the equivalent concept is a “quasi-secant”

• The subgradient is a direction in which the function is guaranteed to increase
• If the function is differentiable at , the subgradient is the gradient

– The gradient is not always the subgradient though
112



Non-differentiability: RELU

Δ𝑓 𝑧 =  𝛼Δ𝑧

• At 0 a negative perturbation Δ𝑧 <  0 results in no change of 𝑓(𝑧)
– 𝛼= 0

• A positive perturbation Δ𝑧 >  0 results in Δ𝑓 𝑧 =  Δ𝑧

– 𝛼 =  1

• Peering very closely, we can imagine that the curve is rotating continuously from slope = 0 to slope 
= 1 at 𝑧 = 0

– So any slope between 0 and 1 is valid 113



Subgradients and the RELU

• The subderivative of a RELU is the slope of any line that lies entirely under it
– The subgradient is a generalization of the subderivative
– At the differentiable points on the curve, this is the same as the gradient

• Can use any subgradient at 0
– Typically, will use the equation given

114



Subgradients and the Max

• Vector equivalent of subgradient
– 1 w.r.t. the largest incoming input

• Incremental changes in this input will change the output

– 0 for the rest
• Incremental changes to these inputs will not change the output

115

 

z1

y




z2

zN



Poll 3

We have y = max(z1, z2, z3),  computed at z1 = 1, z2 = 2, z3 = 3. Select all that are true 

 dy/dz1 = 1  
 dy/dz1 = 0  (correct) 
 dy/dz2 = 1 
 dy/dz2 = 0  (correct) 
 dy/dz3 = 1  (correct) 
 dy/dz3 = 0 
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Poll 3

We have y = max(z1, z2, z3),  computed at z1 = 1, z2 = 2, z3 = 3. Select all that are true 

 dy/dz1 = 1  
 dy/dz1 = 0  (correct) 
 dy/dz2 = 1 
 dy/dz2 = 0  (correct) 
 dy/dz3 = 1  (correct) 
 dy/dz3 = 0 
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Subgradients and the Max

• Multiple outputs, each selecting the max of a different subset of 
inputs
– Will be seen in convolutional networks

• Gradient for any output: 
– 1 for the specific component that is maximum in corresponding input 

subset
– 0 otherwise 118

ೕ

 

z1 y1

z2

zN

y2

y3

yM



Backward Pass: Recap
• Output layer (N) :

– For ே

•
డ௩

డ௬

(ಿ)

డ௩(,ௗ)

డ௬

•
డ௩

డ௭

(ಿ)

డ௩

డ௬

(ಿ)

డ௬
(ಿ)

డ௭

(ಿ)

డ௩

డ௬
ೕ
(ಿ)

డ௬ೕ
(ಿ)

డ௭

(ಿ) (vector activation)

•
డ௩

డ௪
ೕ
(ಿ) 

(ேିଵ) డ௩

డ௭

(ಿ)    for 

• For layer 
– For 

•
డ௩

డ௬

(ೖ) 

(ାଵ)


డ

డ௭
ೕ
(ೖశభ)

•
డ௩

డ௭

(ೖ)

డ௩

డ௬

(ೖ)

డ௬
(ೖ)

డ௭

(ೖ)

డ௩

డ௬
ೕ
(ೖ)

డ௬ೕ
(ೖ)

డ௭

(ೖ) (vector activation)

•
డ௩

డ௪
ೕ
(ೖ) 

(ିଵ) డ௩

డ௭

(ೖ)    for 

119
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Overall Approach
• For each data instance

– Forward pass:  Pass instance forward through the net. Store all 
intermediate outputs of all computation.

– Backward pass: Sweep backward through the net, iteratively compute 
all derivatives w.r.t weights

• Actual loss is the sum of the divergence over all training instances

• Actual gradient is the sum or average of the derivatives computed 
for each training instance

–
120



Training by  BackProp
• Initialize weights for all layers 
• Do:  (Gradient descent iterations)

– Initialize ;  For all ,  initialize ௗ௦௦

ௗ௪
,ೕ
(ೖ)

– For all (Iterate over training instances)
• Forward pass: Compute 

– Output 𝒀𝒕

– 𝐿𝑜𝑠𝑠 += 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

• Backward pass: For all :

– Compute  ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕)

ௗ௪
,ೕ
(ೖ)

–
ௗ௦௦

ௗ௪
,ೕ
(ೖ) +=

ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕)

ௗ௪
,ೕ
(ೖ)

– For all update:

,
()

,
()

,
()

• Until has converged 121



Vector formulation

• For layered networks it is generally simpler to 
think of the process in terms of vector 
operations
– Simpler arithmetic
– Fast matrix libraries make operations much faster

• We can restate the entire process in vector 
terms
– This is what is actually used in any real system

122



Vector formulation

• Arrange the inputs to neurons of the kth layer as a vector 
• Arrange the outputs of neurons in the kth layer as a vector 
• Arrange the weights to any layer as a matrix 

– Similarly with biases 123

ଵଵ
()

ೖషభೖ

()

ೖ

()

𝒌

ଵ
()

ଶ
()

ೖ

()

ଵ
()

ଶ
()

ೖ

()

ଵ
()

ଶ
()

ೖ

()

𝒌

ଵ
()

ଶ
()

ೖ

()

𝒌

ଵ
()

ଶ
()

ೖ

()



ଵଵ
() ଶଵ

() ೖషభଵ
()

ଵଶ
()

ଶଶ
()

ೖషభଶ
()

ଵೖ

()
ଶೖ

()
ೖషభೖ

()

ଵ
(ିଵ)

ଶ
(ିଵ)

ೖ

(ିଵ)



Vector formulation

• The computation of a single layer is easily expressed in matrix 
notation as  (setting ):
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ଵଵ
() ଶଵ

() ೖషభଵ
()

ଵଶ
()

ଶଶ
()

ೖషభଶ
()

ଵೖ

()
ଶೖ

()
ೖషభೖ

()

𝒌

ଵ
()

ଶ
()

ೖ

()

𝒌

ଵ
()

ଶ
()

ೖ

()

𝒌

ଵ
()

ଶ
()

ೖశభ

()

𝒌 𝒌 𝒌ି𝟏 𝒌 𝒌  𝒌

ଵଵ
()

ೖషభೖ

()

ೖ

()

ଵ
()

ଶ
()

ೖ

()

ଵ
()

ଶ
()

ೖ

()

ଵ
(ିଵ)

ଶ
(ିଵ)

ೖ

(ିଵ)



The forward pass: Evaluating the 
network

125
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The forward pass
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𝟏 𝟏 𝟎 ଵ

𝟏
ଵ ଵ
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ଵ ଵ 1

𝟏 𝟏

The forward pass
ଵ ଵ

ଵ ଵ ଵ ଵ

The Complete computation



The forward pass

128

ଶ 2 ଵ ଶ

𝟏 𝟏 𝟐
ଵ ଵ ଶ ଶ

ଵ ଵ ଵ ଵ

The Complete computation



The forward pass
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𝟏 𝟐
ଵ ଵ ଶ ଶ

𝟐

ଶ ଶ 2

ଶ ଶ ଶ ଵ ଵ ଵ ଶ

The Complete computation

𝟏



The forward pass
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𝟏
ଵ ଵ ଶ ଶ

𝟐 ேିଵ

N

ே ே

ே N ேିଵ ே

The Complete computation

𝟐𝟏

ே ே ேିଵ ଶ ଶ ଵ ଵ ଵ ଶ ே



The forward pass
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𝟏
ଵ ଵ

𝟐 ேିଵ

N

ே ே

ே 𝑁

ே ே ேିଵ ଶ ଶ ଵ ଵ ଵ ଶ ே

The Complete computation

𝟐𝟏



Forward pass

Div(Y,d)

Forward pass:

For k = 1 to N:

Initialize

Output
132



The Forward Pass
• Set 

• Iterate through layers:
– For layer k = 1 to N:

• Output:

133



The Backward Pass
• Have completed the forward pass
• Before presenting the backward pass, some 

more calculus…
– Vector calculus this time

134



Vector Calculus Notes 1: Definitions
• A derivative is a multiplicative factor that multiplies a 

perturbation in the input to compute the corresponding 
perturbation of the output

• For a scalar function of a vector argument

• If is an vector, is a vector
– The shape of the derivative is the transpose of the shape of 

• is called the gradient of w.r.t 

135



Vector Calculus Notes 1: Definitions
• For a vector function of a vector argment

• If is an vector, and is an is an 
matrix
– Or the dimensions won’t match

• is called the Jacobian of w.r.t 

136



Calculus Notes: The Jacobian

137

Using vector notation

Check:  

• The derivative of a vector function w.r.t. vector input is called 
a Jacobian

• It is the matrix of partial derivatives given below



• For scalar activations (shorthand notation):
– Jacobian is a diagonal matrix
– Diagonal entries are individual derivatives of outputs w.r.t inputs

138

z y

Jacobians can describe the derivatives 
of neural activations w.r.t their input



For Vector activations

• Jacobian is a full matrix
– Entries are partial derivatives of individual outputs 

w.r.t individual inputs
139

z y



Special case: Affine functions

• Matrix and bias operating on vector to 
produce vector 

• The Jacobian of w.r.t is simply the matrix 
140



Vector Calculus Notes 2: Chain rule
• For nested functions we have the following 

chain rule

141

Check

Note the order: The derivative of the outer function comes first



Vector Calculus Notes 2: Chain rule
• Chain rule for Jacobians:
• For vector functions of vector inputs:

142

Check

Note the order: The derivative of the outer function comes first



Vector Calculus Notes 2: Chain rule
• Combining Jacobians and Gradients
• For scalar functions of vector inputs ( is vector):

Check

Note the order: The derivative of the outer function comes first



Vector Calculus Notes 2: Chain rule
• For nested functions we have the following 

chain rule

144
Note the order: The derivative of the outer function comes first



Vector Calculus Notes 2: Chain rule
• For nested functions we have the following 

chain rule

145
Note the order: The derivative of the outer function comes first



More calculus: Special Case

• Scalar functions of Affine functions

146

Derivatives w.r.t
parameters

• Note: the derivative shapes are the transpose 
of the shapes of  and 



More calculus: Special Case

• Scalar functions of Affine functions

147

• Writing the transpose



Special Case: Application to a 
network

• Scalar functions of Affine functions

148

The divergence is a scalar function of 

Applying the above rule



Special Case: Application to a 
network

• Scalar functions of Affine functions

149



Poll 4

We are given the function  𝑌 =   𝐹(𝐺( 𝐻( 𝑋))), where 𝑌 and 𝑋 are vectors, and 𝐺 and 𝐻 also compute 
vector outputs. 

Select the correct formula for the derivative of 𝑌 w.r.t. 𝑋.  We use the notation ∇𝑋(𝑌) to represent the 
derivative of 𝑌 w.r.t 𝑋. 

 ∇𝑋(𝐻) ∇𝐻(𝐺) ∇𝐺(𝐹) 
 ∇𝐺 (𝐹)∇𝐻(𝐺) ∇𝑋(𝐻) (correct) 
 Both are correct 
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Poll 4

We are given the function  𝑌 =   𝐹(𝐺( 𝐻( 𝑋))), where 𝑌 and 𝑋 are vectors, and 𝐺 and 𝐻 also compute 
vector outputs. 

Select the correct formula for the derivative of 𝑌 w.r.t. 𝑋.  We use the notation ∇𝑋(𝑌) to represent the 
derivative of 𝑌 w.r.t 𝑋. 

 ∇𝑋(𝐻) ∇𝐻(𝐺) ∇𝐺(𝐹) 
 ∇𝐺 (𝐹)∇𝐻(𝐺) ∇𝑋(𝐻) (correct) 
 Both are correct 
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The backward pass

• The network is a nested function

ே ே ேିଵ ଶ ଶ ଵ ଵ ଵ ଶ ே

ଵ ଵ ଶ ଶ

ே ே

ே ே ேିଵ ଶ ଶ ଵ ଵ ଵ ଶ ே

• The divergence for any is also a nested function
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The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

In the following slides we will also be using the notation 𝐳 to represent the derivative 
of any w.r.t any 
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The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

First compute the derivative of the divergence w.r.t. .  
The actual derivative depends on the divergence function.

N.B: The gradient is the transpose of the derivative 154



The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿ

ಿ ಿ

Already computed New term
155

The divergence is a nested function: 



The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿ

ಿ

Already computed New term
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The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ே

ಿషభ ಿ ಿషభ

Already computed New term
157

The divergence is a nested function: 
ே ே ேିଵ ே 𝐲ಿషభ ே ே



The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభಿషభ ಿ

ே

Already computed New term
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The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ
ಿషభ ಿ

ಿ ಿ

ಿ ಿ

ே
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The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ே

ேିଵ

ಿషభ ಿషభ ಿషభ

Already computed New term
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The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ಿషభ ಿషభ ಿషభ

ே

ேିଵ

The Jacobian will be a diagonal 
matrix for scalar activations
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The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషమ

ಿషమ ಿషభ ಿషమ

ே

ேିଵேିଵ
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The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషమ

ಿషమ ಿషభ

ே

ேିଵேିଵ
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The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషమ

ಿషమ ಿషభ

ே

ಿషభ ಿషభ

ಿషభ ಿషభ

ேିଵேିଵ

164



The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

భ భ భ

ே

ேିଵேିଵ
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The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ே

ேିଵேିଵ

భ భ

భ భ

In some problems we will also want to compute
the derivative w.r.t. the input

ଵ

166



The Backward Pass
• Set , 
• Initialize:  Compute 

• For layer k = N downto 1:
– Compute 

ೖ

• Will require intermediate values computed in the forward pass

– Backward recursion step:

ೖ ೖ ೖ

ೖషభ ೖ

– Gradient computation:

ೖ ೖ

ೖ ೖ

167



The Backward Pass
• Set , 
• Initialize:  Compute 

• For layer k = N downto 1:
– Compute 

ೖ

• Will require intermediate values computed in the forward pass

– Backward recursion step:

ೖ ೖ ೖ

ೖషభ ೖ

– Gradient computation:

ೖ ೖ

ೖ ೖ

168

Note analogy to forward pass



For comparison: The Forward Pass
• Set 

• For layer k = 1 to N :
– Forward recursion step:

• Output:

169



Neural network training algorithm
• Initialize all weights and biases ଵ ଵ ଶ ଶ ே ே

• Do:
–

– For all ,  initialize 𝐖ೖ
, 𝐛ೖ

– For all # Loop through training instances
• Forward pass : Compute 

– Output 𝒀(𝑿𝒕)

– Divergence 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– 𝐿𝑜𝑠𝑠 += 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

• Backward pass: For all 𝑘 compute:
– 𝛻𝐲ೖ

𝐷𝑖𝑣 = 𝛻𝐳ೖାଵ𝐷𝑖𝑣 𝐖ାଵ

– 𝛻𝐳ೖ
𝐷𝑖𝑣 = 𝛻𝐲ೖ

𝐷𝑖𝑣 𝐽𝐲ೖ
𝐳

– 𝛻𝐖ೖ
𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕) = 𝐲ିଵ𝛻𝐳ೖ

𝐷𝑖𝑣;  𝛻𝐛ೖ
𝑫𝒊𝒗 𝒀𝒕, 𝒅𝒕 = 𝛻𝐳ೖ

𝐷𝑖𝑣

– 𝛻𝐖ೖ
𝐿𝑜𝑠𝑠 += 𝛻𝐖ೖ

𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕);   𝛻𝐛ೖ
𝐿𝑜𝑠𝑠 += 𝛻𝐛ೖ

𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– For all update:

𝐖 = 𝐖 −
ఎ

்
𝛻𝐖ೖ

𝐿𝑜𝑠𝑠
்

;        𝐛 = 𝐛 −
ఎ

்
𝛻𝐖ೖ

𝐿𝑜𝑠𝑠
்

• Until has converged
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Setting up for digit recognition

• Simple Problem: Recognizing “2” or “not 2”
• Single output with sigmoid activation 

– 𝑌 ∈ (0,1)

– 𝑑 𝑖𝑠 𝑒𝑖𝑡ℎ𝑒𝑟 0 𝑜𝑟 1

• Use KL divergence
• Backpropagation to compute derivatives 

– To apply in gradient descent to learn network parameters 171

(   , 0)
(   , 1)
(   , 0)

(   , 1)
(   , 0)
(   , 1)

Training data

Sigmoid output
neuron



Recognizing the digit

• More complex problem: Recognizing digit
• Network with 10 (or 11) outputs

– First ten outputs correspond to the ten digits
• Optional 11th is for none of the above

• Softmax output layer:
– Ideal output: One of the outputs goes to 1, the others go to 0

• Backpropagation with KL divergence 
– To compute derivatives for gradient descent updates to learn network 172

(   , 5)
(   , 2)
(   , 0)

(   , 2)
(   , 4)
(   , 2)

Training data

Y1 Y2 Y3 Y4 Y0



Story so far

• Neural networks must be trained to minimize the average 
divergence between the output of the network and the desired 
output over a set of training instances, with respect to network 
parameters.

• Minimization is performed using gradient descent

• Gradients (derivatives) of the divergence (for any individual 
instance) w.r.t. network parameters can be computed using 
backpropagation
– Which requires a “forward” pass of inference followed by a 

“backward” pass of gradient computation

• The computed gradients can be incorporated into gradient descent
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Issues

• Convergence: How well does it learn
– And how can we improve it

• How well will it generalize (outside training 
data)

• What does the output really mean?
• Etc..
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Next up

• Convergence and generalization

175


