HW2P2
Bootcamp

Logistics

*Early Submission March 4th, 11:59 PM EST

* Make sure to do the early Kaggle submission & the Canvas MCQ.
*You need at least a 10% in classification, and 7.5% accuracy in verification

*The on-time submission deadline is March 17", 11:59 PM EST.

*HW2P2 is significantly harder than HW1P2. Models will be harder to
develop, train, and converge. Please start early!

*Models must be written yourself and trained from scratch.

Problem Statement

*Face Classification
*Given an image, figure out which person it is.

*Face Verification

*Given a set of images, figure out if they are the same person or
not.

Face Classification

£ SE— £
Feature E CIassflflcatlon T v
—> Extraction - Linear OB 52
g v = 2
Model 5 Layer g ;S
$ z

Face Verification

Feature

Extraction |:>

Model

Feature Embedding

1

A similarity
Similarity metric |:> score

!

Feature

Extraction :>

Model

Feature Embedding

Face Verification

Unknown
image

Feature
Extraction

Model

Take
l argmax
A similarity

score from
-1to 1

Feature Embedding

Cosine Similarity

for each known
image

Feature
Extraction
Model

Feature Embedding

CLASS torch.nn.CosineSimilarity(din=1, eps=1e-08) [SOURCE]

Returns cosine similarity between I; and o, computed along dim.

Ty -T2

similarity = :
max(|| 1|z - [|22]2,€)

Workflow

*First train a strong classification model for the classification task.

*Then, for the verification task, use the model trained on
classification.
* take the penultimate features as feature embeddings of each image.

*You should additionally train verification-specific losses such
as ArcFace, Triplet Loss to improve performance.

Building Blocks

OO

Choice of Training the
Model model

Input Image +
Transformation
S

Building Blocks

Training the
model

Input Image +
Transformations

1

Color
Jitter

Original image

Random Perspective

Original image

Random Vertical Flip

Original image

Transformation Guide

URL:

https://pytorch.org/vision/stable/auto examples/plot transforms.html#sphx-glr-auto-exa
mples-plot-transforms-py

Common Issue:

TypeError: Input tensor should be a torch tensor. Got <class
'PIL.Image.Image'>.
—> Please check the sequencing of your transforms. Read the documentation and verify

the kind of input required.

https://pytorch.org/vision/stable/auto_examples/plot_transforms.html#sphx-glr-auto-examples-plot-transforms-py
https://pytorch.org/vision/stable/auto_examples/plot_transforms.html#sphx-glr-auto-examples-plot-transforms-py

Building Blocks

Choice of Training the

ModelI model

Architectures

*At this point, you should have basic familiarity with convolutions
as taught in lecture.

*Now, how do we take convolutions and assemble them into a

strong architecture?
 Layers? Channel size? Stride? Kernel Size? Etc.

*We’ll cover three architectures:
* MobileNetV2 — A fast, parameter-efficient model.
*ResNet — The “go-to” for CNNs.
* ConvNeXt — The state-of-the-art model.

General Architecture Flow

*CNN architectures are divided into stages, which are divided

into blocks.

*Each “stage” consists of (almost) equivalent “blocks”
*Each “block” consists of a few CNN layers, BN, and RelUs.

*To understand an architecture, we mostly need to understand its
blocks.

*All that changes for blocks in different stages is the base # of channels

General Architecture Flow

*However, you do need to piece these blocks together into a final
model.

*The general flow is like this:
*Stem
*Stage 1
*Stage 2
*Stage n
* Classification Layer

General Architecture Flow

*The stem usually downsamples the input by 4x.

*Some stages do downsample. If they do, generally, the
first convolution in the stage downsample by 2x.

*When you downsample by 2x, you usually increase channel

dimension by 2x.
*So, later stages have smaller spatial resolution, higher # of channels

MobileNetV?2

*The goal of MobileNetV2 is to be parameter efficient.

*They do so by making extensive use of depth-wise convolutions and
point-wise convolutions

A Normal
Convo'

3

image 4: A normal convoiution with 8x8x1 output

*Considering just a single output channel

A Normal Convolution (Another Diagram)

*Considering a single output channel

A Normal
Convolut

8

Image 5: A normal convolution with 8x8x256 output

*Considering all output channels

Depth-wise Convolutions

*Shorthand for “Depth-wise separable convolutions”

*“Depth”-wise separable, because considering channels as
“depth”, perform convolutions on them independently

Depth-wise Convolutions (Another

Diagram)

x 128

Point-wise Convolutions

*“Point”-wise convolutions because each pixel is considered
independently

*Considering just a single output channel:

Image 7: Pointwise convolution, transforms an image of 3 channels to an image of 1 channel

Point-wise Convolutions

*“Point”-wise convolutions because each pixel is considered
independently

*Considering all output channels:

8

Image 8: Pointwise convolution with 256 kernels, outputting an image with 256 channels

Summary

*A normal convolution mixes information from both different channels
and different spatial locations (pixels)

*A depth-wise convolution only mixes information over spatial

locations
* Different channels do not interact.

*A point-wise convolution only mixes information over

different channels
* Different spatial locations do not interact

MobileNetV?2

*Again, to understand an architecture, we mostly need to
understand its blocks.

*All that changes for blocks in different stages is the base # of channels

MobileNetV2

*The core block of MobileNetV2 has three
steps:
* Feature Mixing
*Spatial Mixing
*Bottleneci~~ Z5=--~'"

lu6, Dwise

Fig. 6: Visualization of the intermediate feature maps in the inverted residual layer (source)

MobileNetV2: Feature Mixing

, Dwise

Fig. 6: Visualization of the intermediate feature maps in the inverted residual layer (source)

*A point-wise convolution that increases the channel dimension by an
“expansion ratio”

MobileNetV2: Spatial Mixing

lu6, Dwise

Fig. 6: Visualization of the intermediate feature maps in the inverted residual layer (source)

*A depth-wise convolution that communicates information over
different spatial locations.

MobileNetV2: Bottlenecking Channels

\
.3

=7
]
]
i
I
I
]
It
I
]
]
'
J‘ -

Fig. 6: Visualization of the intermediate feature maps in the inverted residual layer (source)

*Point-wise convolution to reduce channel dimension by the same
expansion ratio.

ResNet

*Again, remember that to understand a paper, we just really need to
understand its blocks.

*ResNet proposes 2 blocks: BasicBlock & BottleneckBlock

*The key point is residual connection

* Actually, ResNet is older than MobileNetV2, so MobileNetV2 has this
already x

weight layer

F(x) &
F(x)+x @

Figure 2. Residual learning: a building block.

ResNet: BasicBlock

64-d

*It’s just a regular 3x3 convolution (then BN, RelLU), another 3x3
convolution (then BN).

*Then, a skip connection adding input and output, then ReLU.

ResNet: BottleneckBlock

256-d

| 1x1, 64
l relu

[3x3, 64 |
l relu

| 1x1, 256

*A bit more involved.

*A 256-channel input goes through a point-wise convolution,
reducing channels to 64.

*Then, a 3x3 regular convolution maintains channels at 64.
*Then, a point-wise convolution expands channels back to 256.
*Finally, the residual connection.

ResNet: Overall

Archit

Stage 1
Stage 2

Stage 3

Stage 4
Classification Layer

ayer name nulpm size 18-layer [34-layer 50-layer { 101-layer 152-layer
convl II"le’ 7x7, 64, stride 2
3 %3 max pool, stride 2
1x1, 64 11,64 11,64
cony2 3 565 x3 3x3 ¢ V
oM | SN0 :”'2’:] x2 "*"'((: x3 3%3.64 | x3 3x3.64 | x3 3x3.64 | x3
A =2 1%1,256 1x1,256 | 1x1,256 |
. 1x1,128 1x1,128 1x1,128]
1x3, 12 3x3, 128 | Sk ’ e
comdx | 28x28 || 3% :;:] 2 ['1 T [| 3x3028 [xa | | 30028 s | | 3x3,028 |8
A i 1x1,512 121,512 11,512 |
5 1x1,256 11,256 1x1,256]
3x3.25 3x3, 25 j
convd X | 14x14 AR] x2 [o ,52 j 6 3%3.256 | x6 3x3.256 | x23 3x3.256 | x36
? shtkr 11,1024 1x1, 1024 | 1x1,1024 |
1%1.512 1x1,512 1x1,512
1%3,512 3x3, 512
convs x Tx7 '1_{ 5]‘«'2 []_yz ;:,’] <3 3x3,512 %3 _'h_\.ﬁlZ %3 3x3,512 | x3
S hdea pid ke 1x1,2048 <1.2048 1x1,2048
1 l ! i o R gwmhgﬂnjl I(K)(Lq!g sulun.nx o -
FLOPs 18107 [3.6x10" 38x10" 76x107 11.3x 10"

Figure 2. Sizes of outputs and convolutional kerneis for ResNet 34

34-layer residual

image

ConvNeXt

*This is a very new paper, a state-of-the-art architecture.
*However, its intuitions are very similar to MobileNetV2.

*Again, remember that to understand a paper, we just really need to
understand its blocks.

eJust a single block type for ConvNeXt

*Read the paper for details on stages/channel sizes, etc.
* We recommend ConvNeXt-T size which has less than 35M parameters.

ConvNeXt: Block

ResNet Block ConvNeXt Block

4l256-d ﬂ%-d
[1x1, 64] [d7x7, 96]
BN, RelLU LN
A\ 4 Y
[3x3, 64] [1x1, 384]

BN, RelLU GELU
Y Y

[1x1, 256] [1x1, 96]

BN

4
D\

>{ >
2
v RelU

4
D
.

* A 7x7 depth-wise convolution.
* A point-wise convolution increasing # of channels

* A point-wise convolution decreasing # of
channels

* Residual Connection

ConvNeXt vs MobileNetV2

ConvNeXt MobileNetV2
*A 7x7 depth-wise *A point-wise
convolution. convolution increasing #
*A point-wise convolution of channels
increasing # of channels *A 3x3 depth-wise convolution.
*A point-wise convolution *A point-wise
decreasing # of channels convolution decreasing

*Residual Connection # of channels

*Residual Connection

ConvNeXt vs MobileNetV2

ConvNeXt MobileNetV2
*A 7x7 depth-wise *A point-wise

Spatia
. ! My ; . . .
convolution. N convolution increasing #

*A point-wise convolution of channels

increasing # of channels *A 3x3 depth-wise convolution.
*A point-wise convolution *A point-wise

decreasing # of channels convolution decreasing

*Residual Connection # of channels

*Residual Connection

ConvNeXt vs MobileNetV2

ConvNeXt MobileNetV2
*A 7x7 depth-wise « “Apoint-wise
: o . :
convolution. ‘0@“\ convolution increasing #
: : . <&

*A point-wise convolution of channels

increasing # of channels *A 3x3 depth-wise convolution.
*A point-wise convolution *A point-wise

decreasing # of channels convolution decreasing

*Residual Connection # of channels

*Residual Connection

ConvNeXt vs MobileNetV2

ConvNeXt MobileNetV2
*A 7x7 depth-wise *A point-wise

convolution. convolution increasing #
*A point-wise convolution of channels

increasing # of channels *A 3x3 depth-wise convolution.
*A point-wise convolution *A point-wise

decreasing # of channels convolution decreasing
*Residual Connection Extremely # of channels

Similar! *Residual Connection

ConvNeXt vs MobileNetV2: Differences

*So what changed? Some things did change.
*The depth-wise convolution in ConvNeXt is larger kernel size (7x7).

ConvNeXt vs MobileNetV2: Differences

*So what changed? Some things did change.
*The depth-wise convolution in ConvNeXt is larger kernel size (7x7).

*The order of spatial mixing & feature mixing are flipped.
*In ConvNeXt, depth-wise convolution operates on lower # of channels.
*In MobileNetV2, operates on higher # of channels.

*Channel Expansion Ratio in ConvNeXt is 4, MobileNetV?2 is 6.

ConvNeXt vs MobileNetV2: Differences
*So what changed? Some things did change.

*The depth-wise convolution in ConvNeXt is larger kernel size (7x7).

*The order of spatial mixing & feature mixing are flipped.

*In ConvNeXt, depth-wise convolution operates on lower # of channels.
*In MobileNetV2, operates on higher # of channels.

*Channel Expansion Ratio in ConvNeXt is 4, MobileNetV2 is 6.

*ConvNeXt uses LayerNorm, MobileNetV2 uses BatchNorm.
*Note: You will need to normalize the data if you use LN.

*ConvNeXt recommends training via AdamW, MobileNetV2
recommends SGD

ConvNeXt vs MobileNetV2: Differences

ResNet Block ConvNeXt Block

4l256-d ﬂ%
[1x1, 64] [d7x7, 96]
U
[3x3, 64] [1x1, 384]
sssssss
\ 4 Y
[1x1, 256] [1x1, 96]
BN
Y N
))
P >
VReL L

*Note that ConvNeXt has fewer

BN/RelLU
*GELU is just more advanced RelLU

ResNet vs ConvNeXt

output size e ResNet-50 e ConvNeXt-T
Tx7, 64, stride 2 .
stem | 5656 Y58 i pool, Side 4x4, 96, stride 4
[1x1,64] d7x7, 96
res2 | 56x56 3x3,64 | x3 1x1,384| x 3
1%, 256_ 1x1, 96
[1x1, 128] [d7x7, 192]
res3 28%x28 3x3,128]| x4 1x1,768 | x3
[1x1, 512 | 1x1,192 |
1x1,256 [d7x7, 384
res4 14x14 3x3,256 | x6 1x1,1536| x 9
1x1, 1024 | 1x1,384 |
1x1, 512 d7x7, 768
res5 Tx7 3x3,512 | x3 1x1,3072| x 3
1x1, 2048 1x1, 768
FLOPs 4.1 x 10° 4.5 x 10°
params. 25.6 x 10° 28.6 x 10°

Building Blocks

Training the
model

I

The easy bit
first....

Monitoring Training vs Validation Acc

*The standard intuition of “overfitting” is — if the training & validation
gap is too large, you should stop training as it’s overfitting.

*However, in modern DL, this intuition is not as relevant.
*XELoss != Accuracy

* Model can keep improving after training accuracy hits 100%.

*There is recent research that finds that on some problems, training accuracy

hits 100% at epoch 10 while validation accuracy is <50%. Then, on epoch
1000,

validation hits 100%.

*Of course, we can’t train for that long, but train until validation
stops improving.

*Or just set a standard LR schedule/setup like “CosineAnnealingLR for 50 epochs”
and just let it run. o what | prefer to do.

How to tackle overfitting?

*There are a lot of different tricks to improving your CNN model.
*From the recent ConvNeXt paper:

ConvNeXt-T/S/B/L

(pre-)training config Imachfzt-lK

b 5 2242
optimizer AdamW
base learning rate 4e-3
weight decay 0.05
optimizer momentum 81, 82=0.9,0.999
batch size 4096
training epochs 300
learning rate schedule cosine decay
warmup epochs 20
warmup schedule linear
layer-wise Ir decay [6, 10] None
randaugment [12] 9, 0.5)
label smoothing [65] 0.1
mixup [85] 0.8
cutmix [84] 1.0
stochastic depth [34] 0.1/0.4/0.5/0.5
layer scale [69] le-6
gradient clip None
exp. mov. avg. (EMA) [48] 0.9999

How to tackle overfitting?

*There are a lot of different trick to
improving your CNN model.

*From the recent ConvNeXt paper
*What we recommend trying first:

* Label Smoothing (huge boost)

* Stochastic Depth

* DropBlock (paper)

* Dropout before final classification layer

*Then you can try the others

*Check out “Bag of Tricks for Image
Classification with Convolutional Neural
Networks”

* https://arxiv.org/abs/1812.01187

(pre-)training config

ConvNeXt-T/S/B/L
ImageNet-1K

2242
optimizer AdamW
base learning rate 4e-3
weight decay 0.05
optimizer momentum 81,32=0.9,0.999
batch size 4096
training epochs 300
learning rate schedule cosine decay
warmup epochs 20
warmup schedule linear
layer-wise Ir decay [6, 10] None
randaugment [12] 9,0.5)
label smoothing [65] 0.1
mixup [85] 0.8
cutmix [84] 1.0
stochastic depth [34] 0.1/0.4/0.5/0.5
layer scale [69] le-6
gradient clip None
exp. mov. avg. (EMA) [48] 0.9999

Let’s get real now....

Loss Functions

Face Verification + Face Recognition tasks (VGG Face?2)

Types of Loss functions

Non Contrastive loss functions Contrastive-Losses

Types of Loss functions

Non Contrastive loss functions Contrastive-Losses

How to train models with such loss functions ?

Approach 1 - Joint Loss Optimization

—_— Embeddings aal Cross Entropy
1

.

-_— Embeddings gl Contrastive Loss

Approach 2 - Sequential (Fine-tuning)

g Embeddings F o055 Entropy

a—

Step 1

Face Recognition

Face Verification

— i
. mmmmndl Embeddings pammmd Contrastive Loss

Step 2

Types of Contrastive Losses

1. Centre Loss

2. Triplet Loss

3. Sphere Face (Angular Softmax)
4. CosFace Loss

5. ArcFace

Centre Loss fe= %22: |2i — ey, 12

. Increases the disparity between classes using softmax

Increases inter-class distance by reducing intra-class Euclidean distance
by assigning centers to each class.

. Calculating the centre for each class, is difficult

N

Triplet Loss Loss = [If¢ = f7ll3 = 155 = 713 + o

=1

+

. Involves sampling 3 images, an anchor, a positive (same class as anchor)

and a negative (different class from anchor).
. Use a p-norm distance function to increase the difference between anchor

and negative whilst minimizing distance between anchor and positive.

. Sampling hard positives and hard negatives is key and difficult

Negative B
B

T — iz
health fault 1 fault 2 domain 1 domain 2 domain 3

Triplet Loss

anchor C N N
Shared| [weights
positive C NN

Shared| [weights

CNN

negative

Embeddings

Negative f \

A"Chff____,.. LEARNING - _——®
*—_ — Negative

Positive Positive

Sphere Face B~ X wica [)

. exp {||X,|| cos(m - 9,,,_,)} - Z#m exp {||x,|| cos (6;) }

» Makes use of an angular margin, imposed by
. The learned features construct a discriminative angular distance
equivalent to the geodesic distance on a hypersphere manifold

. @ :- denotes the type of decision boundary learned, which leads to
different margins for different classes

e % 12 N \ 5
| \
‘m 5 . 1 [10 pwarad Angular |
|Bisector N b - |Angular . . .\:‘;' - Bisector \
(. LR . | Bisector \
o 40 4 . 06 \
| H, 2.0 0 08 |
W, | » -.&'{"ﬂ,..:z. W ‘ 6 0s \ W
- /w 23wt | - N s o
| 2 2 Q:‘q'.;:-] 4 “ 03 Wi \
_— ."t"’"" L 02 M i
| Projection o —— = 2 Original | Projection
bl) bl onto Sphere 0 sgmz ‘;olgﬂ:m Space 1 \/ onto Sphere
pac 2 phere { o 0

(a) Original Softmax Loss (b) Original Softmax Loss (c) Modified Softmax Loss (d) Modified Softmax Loss (e) A-Softmax Loss (f) A-Softmax Loss

in

Angular Marg

M «

Sphere Face

angular margin: 0.66

[Negative Pairs

0
5
0

min angle (neg. pairs): 1.07

I angular margin: 0.53

max angle (pos. pairs): 0.54

|

15
0
5
0

angular margin: -0.12

Positive Pairs

[Negative Pairs
max angle (pos. pairs): 0.94

min angle (neg. pairs): 0.82

angular margin: -1.41

min angle (neg. pairs): 0.30

Angle
A-Softmax (m=4)

35

25

Angle
A-Softmax (m=3)

1

0.5

Angle

A-Softmax (m=2)

.Angle
A-Softmax (m=1)

CosFace

i X exp {5 + (cos (0y,4) — m)}
Lllll(' = X7 Z In
N i—1 exp {s - (cos (0y,.i) — m)} - Zﬁém exp {5 . ((‘0.\‘((9],,-)}

e Similar to Sphere Face
. Forms the decision margin in cosine space rather than angular
space.

cos(B8,)A A6, cos(B,)A
LA (e G C =
Al N9 ! K} P n/m - <o
cos(6,) elcos(6) [o < | .M |cos(B)
1 T _ A G
margin<0 margin=0 margin>=0 61 margin>0

Softmax NSL A-Softmax LMCL

o N exp {.s' - cos(0, i + m)}
ArCFace L= _T; n exp {5 . COS (9!/,‘1' +m } £ Z;#u exp { ((0\(9;.:')}

. Builds on the concepts of the sphere face and cos face.

Replaced the multiplicative angular margin in CosFace, with an
additive margin ‘m’

e S S S T T I

\
|
T I el =
) N s el
x; cos(fy,, + m)f— Z &
'-———’: Feature Softmax - —log
Hu. Fm | Re-scale s Z, el
|
11;.\”1 o PR — A_dd_m:e_An_"il.Lhi"_giEPf"_.k_y ________ " S * CC).\'0_, Probability Ground Truth Cross-entropy

Logit One Hot Vector Loss

Normalized Welghu

ArcFace

. The additive factor of ‘m’ has found to lead to better convergence
as compared to its multiplicative counterpart in Sphere Face.

Other Interesting

Paper:

ResNeXt (2016)

* https://arxiv.org/pdf/1611.05431.pdf

* Generally a strict improvement to ResNet, but slower. It’s like 3 lines of code changed.
SENet (2017)

» https://arxiv.org/pdf/1709.01507.pdf

* Channel-wise attention in CNNs. It’s like 20 lines of code.
EfficientNet (2019)

* https://arxiv.org/pdf/1905.11946.pdf

* Optimized model scaling. Probably can hard code this with some effort.
RegNet (2020)

» https://arxiv.org/pdf/2003.13678.pdf

* ResNet with optimized layer sizes. It's probably... 10 lines changed?
ResNeSt (2020)

» https://arxiv.org/pdf/2004.08955.pdf

* ResNeXt on steroids + attention. | (we?) will be really impressed ©
NFNet (2021 3 SG*A—) Former SOTA

» https://arxiv.org/pdf/2102.0617 1v1.pdf

* Quite doable actually

