HW3P2 Bootcamp

Utterance to Phoneme Mapping using Sequence Models
Fall 2022

Eshani Agrawal | Vedant Bhasin
Logistics

• Early submission is due **March 26th, 11:59PM ET**
 • Kaggle submission a with Lev. Dist <= 20
 • Canvas MCQ

• On time submission deadline: **April 7th, 11:59PM ET**

• Constraints: No attention
Problem at hand

Input Utterance MFCC

MODEL

['B', 'IH', 'K', 'SH', 'A']

Sequence of Phonemes
Data and Task

• Features: Same as HW1P2 (27D)
• Labels: Order synchronous but not time synchronous
• Should output sequence of phonemes
• Loss: CTCLoss
• Metric: mean Levenshtein distance
 • Can import (given in starter notebook)
 • Sequence of Phonemes -> String and then calculate distance (Use CMUdict and ARPABet)
Batch of Variable Length Inputs: Padding

• HW1, HW2: Equal length inputs
• HW3: Variable Length sequences
• Steps:
 • Padding
 • Packing
Batch of Variable Length Inputs: Padding

• Padding

Need to store unpadded lengths as well. Have the variables \textit{lengths}_x, \textit{lengths}_y in the starter notebook

(Padded to equal lengths)

\((B, *, 27) \rightarrow (B, T, 27)\)

Problematic Example (When padding on whole dataset)

Inefficient with space

Ref: 11785 Fall 21 Bootcamp
Batch of Variable Length Inputs: Packing

Figure 2: List of tensors we want to pack

Figure 3: First we sort the list in a descending order based on number of timesteps in each
Batch of Variable Length Inputs: Packing

Figure 2: List of tensors we want to pack

Figure 3: First we sort the list in a descending order based on number of timesteps in each

Figure 4: Final Packed 2d Tensor
Packed Sequence

- **Pad_sequence()**
 - Pads to equal length for batching

- **pack_padded_sequence()**
 - Packs batch of padded sequences
 - Requires sequences + sequence lengths

- **X = pad_packed_sequence()**
 - Unpacks back to a batch of padded sequences
 - Outputs sequences + sequence lengths

- **Collate Function**
 - Dataloader argument
 - Helpful when altering data for batch

Figure 4: Final Packed 2d Tensor
Parts of a Sequence Model

Embedding Layer → Sequence Model → Classification Layer
Encoder - Decoder set up

Not exactly a decoder in this HW as decoding happens outside the model.
Encoder

- Typically used to generate high-level representations of given input data.
- There are no labels used to train encoders.
- Are trained jointly with decoders.
- Can be any network, CNN, RNN or Linear.
Decoder

- It is a network that takes in the feature representation from the Encoder and tries to generate the closest match to the expected output.
- Loss function is applied on the output of the Decoder.
- Can also be trained without encoders, encoders are basically to amplify the results of the decoder
Embedding Layer

• Optional but recommended
• Used to increase/decrease the dimensionality of the input
Embedding Layer

• Optional but recommended
• Used to increase/decrease the dimensionality of the input
• Eg. In NLP, 10k vocabulary represented as 1 hot vectors with 10k dim

Shape 10,000 x 1

<table>
<thead>
<tr>
<th>'deep'</th>
<th>'neural'</th>
<th>'net'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Shape emb_dim x 1

Real valued vectors

0.2	0.3	0.2
1	0.5	1.2
...
0.7	0.4	0.6
Embedding Layer

• Optional but recommended
• Used to increase/decrease the dimensionality of the input
• Our task:
 • Input dim = 27
 • Expand to emb_dim > 27 for feature extraction

Ref: HW1P2 Write-up
Embedding Layer: Conv1d Layers

- Consider the below as an input having 3 features at each time instant
Embedding Layer: Conv1d Layers

- We can use Convolution which increases the channels of the input as we go deeper.
Embedding Layer: Conv1d Layers

• We can use Convolution to which increases the channels of the input as we go deeper.

 • No. Filters = 5
 • Kernel= 3; Padding= 1; Stride= 1
 • Kernel= 5; Padding= 2; Stride= 1
 (Or anything similar)
Embedding Layer: Conv1d Layers

• We can use Convolution to which increases the channels of the input as we go deeper.

• No. Filters = 5
• Kernel= 3; Padding= 1; Stride= 1
• Kernel= 5; Padding= 2; Stride= 1
 (Or anything similar)

3D

5D
Embedding Layer: Conv1d Layers

• Our input is of shape (B, T, 27) (after padding). How can we change it to (B, T, 64) ?

• Think about what you did in downsampling blocks for HW2P2:
 ○ increase the number of channels
 ○ decrease spatial dimensions

Assuming `batch_first = True` (You may also have it as (T, B, 27))
Embedding Layer: Conv1d Layers

Objective:
change input from (B, T, 27) to (B, T, 64)

- Transpose/Permute:
 - PyTorch conv1d expects tensors of shape (N, C, L)
 i.e. (batch size, in channels, length)
 - Permuting the input aligns the feature dim with C:
 (B, T, 27) → (B, 27, T)

- Apply convolution (B, 27, T) → (B, 64, T)
- Transpose/Permute: (B, 64, T) → (B, T, 64)
- Pack and pass to sequence model

Assuming batch_first = True
(You may also have it as (T, B, 27)
Embedding Layer: Conv1d Layers

If stride > 1, we effectively reduce the time steps
Embedding Layer: Conv1d Layers

• Stride > 1 reduces computation for LSTM and training is faster.
• However, too much reduction in time steps will lead to loss of information (we don’t recommend downsampling more than 4x)
Embedding Layer: Conv1d Layers

• Stride > 1 reduces computation for LSTM and training is faster.
• However, too much reduction in time steps will lead to loss of information (we don’t recommend downsampling more than 4x)

• Note: Stride > 1 alters number of time steps. You need to change lengths_x accordingly
 • Use convolution formula \((X – K + 2P)\div S\) (or)
 • Clamp lengths to length of embedding (torch function)
Embedding Layer: Conv1d Layers

• You can try convolution layers based on residual blocks
• Hint: Remember HW2P2!

Sequence Model

Encoder

Embedding Layer

Sequence Model

Classification Layer

Decoder*

Sequence Model

Classification Layer
Sequence Model

• Can use RNN, GRU, LSTM (recommended) from *torch.nn*

[Image of sequence models with RNN, GRU, LSTM connections]

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Sequence Model

• Important parameters/hyper parameters in `nn.LSTM()`
 ▪ `input_size` (27 or `embedding_size`)
 ▪ `hidden_dim`
 ▪ `num_layers`
 ▪ `dropout`
 ▪ `bidirectional`
 ▪ Note: when `bidirection = True`, LSTM outputs a shape of `hidden_dim` in the forward direction and `hidden_dim` in the backward direction (in total, 2*`hidden_dim`)
pBLSTM

- **pyramidal Bi-directional LSTM.** Described in the [Listen-Attend-Spell paper](https://example.com/listen-attend-spell).
- The pBLSTM is a variant of Bi-LSTMs that downsamples sequences by a factor of 2 by concatenating adjacent pairs of inputs before running a conventional Bi-LSTM on the reduced-length sequence.
- This can be implemented using reshape.
Pyramidal Bi-LSTM (pBLSTM)

- Downsampling + Bi-LSTM

Notice the dimension is 2*hidden since the LSTM is bidirectional.
pBLSTM - pseudocode

<table>
<thead>
<tr>
<th>Listing 1 pBLSTM</th>
</tr>
</thead>
<tbody>
<tr>
<td># X = (batchsize, length, dim) is a minibatch of input sequences, possibly from a previous layer</td>
</tr>
<tr>
<td># Assuming dataloader ensures that all input sequences in the batch are the same length</td>
</tr>
<tr>
<td>function O = pBLSTM(X, LSTMwidth, Params)</td>
</tr>
<tr>
<td># Reshape inputs to have half the length, but twice the dimensionality</td>
</tr>
<tr>
<td>X_downsampled = reshape(X,B,L/2,2*D)</td>
</tr>
<tr>
<td>output = BiLSTM(X_downsampled, LSTMwidth, Params)</td>
</tr>
<tr>
<td>return output</td>
</tr>
<tr>
<td>end</td>
</tr>
</tbody>
</table>
Classification Layer

Encoder

Embedding Layer

Sequence Model

Decoder*

Classification Layer
Classification Layer

• Same as HW1P2 - just an MLP
• Output from the sequence model goes to the classification layer
• Variations
 • Deeper
 • Wider
 • Different activations
 • Dropout
Hyperparameters and Regularization

• Cepstral Normalization:

\[X \rightarrow (X - \text{mean}) / \text{std} \]

• Different weight initialization (for Conv and Linear layers)

• Weight decay with optimizer
Hyperparameters and Regularization

• Scheduler is very important
 • ReduceLRonPlateau (Most of our ablation)
 • Lev distance might start to oscillate at lower values
 • Cosine Annealing
 • Try with higher number of epochs
Hyperparameters and Regularization

- Dropout is key
 - Can use dropout in all the 3 layers: Embedding, Sequence model and classification
 - You can also start with a small dropout rate and increase after the model gets trained

- Locked Dropout for LSTM layer
 - Locked Dropout can be used to apply the same dropout mask to every time step
 - You can refer to PyTorch NLP’s implementation of locked dropout [here](#)
 - Pay attention to whether modules adhere to batch first format or not
Hyperparameters and Regularization

• Addition of Noise (*only during training*)
 • Gaussian Noise
 • Gumbel Noise

• Need not add to all samples. Implement your module `AddNoise(nn.module)` in such a way that it adds noise to random inputs

[Graph showing normal and gumbel distributions](https://en.wikipedia.org/wiki/Normal_distribution)
[Graph showing gumbel distributions](https://en.wikipedia.org/wiki/Gumbel_distribution)
Hyperparameters and Regularization

• Torch Audio Transforms [docs]
 • Time Masking
 • Frequency Masking
Hyperparameters and Regularization

• Beam width
 • Higher beam width may give better results (advisable to keep test beam width below 50 for computation purposes)
 • Sometimes $bw = 1$ (greedy search) also gives good results
 • Tip: Don’t use a high beam width while validating in each epoch (time per epoch will be higher)
Final Tips

• Make sure to split work within your study groups
All the best!