
Deep Learning
Transformers and Graph Neural Networks

11-785, Spring 2023

Abuzar Khan

1

Part 1
Transformers

2

Recall

1. Queries, Keys, and Values

Recall

1. Queries, Keys, and Values

2. Self Attention

a. Energy Function

– scoring function

b. Attention Function

Recall

1. Queries, Keys, and Values

2. Self Attention

a. Energy Function

b. Attention Function

3. RNNs are slow and sequential

a. Attention-based models can

be parallelized!

Why Transformers

● We want representations that are “dynamic” to context

“I like this movie” vs. “I do not like this movie”

like should have different representations in both cases

● Vanilla RNNs are Slow and have terrible memory

● LSTMs and GRUs fix the memory problem, but are still slow and sequential

● CNNs can be parallelized but the kernels are static.

● We want parallelizability, good memory, and dynamic computation

Q,K,V in Attention

Query: This is what pays the attention

Values: These are paid attention to

Keys: These help queries figure out how much attention to pay to each of the values

Attention Weights: How much attention to pay.

This is a great example

How do I adapt to
my context?

This is
me!

This is
me!

This is
me!

This is
me!

This is
me!

Q,K,V in Attention

This is a great example

How do I adapt to
my context?

This is
me!

This is
me!

This is
me!

This is
me!

This is
me!

Q,K,V in Attention
othis

Contextualized Representation

Goal

Maybe a weighted sum?

This is a great example

Attention Weights

⍺1,1 ⍺1,2 ⍺1,3 ⍺1,4 ⍺1,5

Q,K,V in Attention
othis

Black Box calculator

I need a set of
weights for that

This is a great example

This is a great example

This

Calculate how important each token is to ‘This’
I.e. How much ‘attention’ to pay [0-1]

Q,K,V in Attention

This is a great example

This is a great example

This Energy Function

Attention Weights

⍺1,1 ⍺1,2 ⍺1,3 ⍺1,4 ⍺1,5

SOFTMAX

Q,K,V in Attention

This is a great example

This is a great example

⍺1,1 ⍺1,2 ⍺1,3 ⍺1,4 ⍺1,5

x

∑

x xxx

othis

Q,K,V in Attention

Yay!

Q,K,V in Attention

This is a great example

How do I adapt to
my context?

This is
me!

This is
me!

This is
me!

This is
me!

This is
me!

Query

Keys

This is a great example

This is a great example

This

Query

Keys

Attention Weights

⍺1,1 ⍺1,2 ⍺1,3 ⍺1,4 ⍺1,5

SOFTMAX

Q,K,V in Attention

Energy Function

This is a great example

This is a great example

⍺1,1 ⍺1,2 ⍺1,3 ⍺1,4 ⍺1,5

x

∑

x xxx

othis

Contextualized Representation

Values

⍺1Attention Weights

☉

Q,K,V in Attention

This is a great example

Input Representations

h1 h2 h3 h4 h5

Self Attention

This is a great example

h1 h2 h3 h4 h5

WQ WK WV

q1 k1 v1

Projection: gives q,k,v of dimensions dq, dk, dv
(often the same)

qi = WQTxi

ki = WKTxi

vi = WVTxi

Self Attention

This is a great example

h1 h2 h3 h4 h5

WQ WK WV

q1 k1 v1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉ ☉

e1,1 e1,2

☉

e1,3

☉

e1,4

☉

e1,5

⍺m,n = How important is token n to token m’s contextual meaning?

SOFTMAX

⍺1,1 ⍺1,2 ⍺1,3 ⍺1,4 ⍺1,5

This is a great example

h1 h2 h3 h4 h5

WQ WK WV

q1 k1 v1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉ ☉

⍺1,1 ⍺1,2

☉

⍺1,3

☉

⍺1,4

☉

⍺1,5

SOFTMAX

Multiply each ⍺1,i with vi

This is a great example

h1 h2 h3 h4 h5

WQ WK WV

q1 k1 v1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉ ☉

⍺1,1 ⍺1,2

☉

⍺1,3

☉

⍺1,4

☉

⍺1,5

xxxxx

SOFTMAX

∑

This is a great example

WQ WK WV

q1 k1 v1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉ ☉

⍺1,1 ⍺1,2

☉

⍺1,3

☉

⍺1,4

☉

⍺1,5

xxxxx

Sum all those multiples up

h1 h2 h3 h4 h5

SOFTMAX

This is a great example

xxxxx

WQ WK WV

q1 k1 v1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉ ☉

⍺1,1 ⍺1,2

☉

⍺1,3

☉

⍺1,4

☉

⍺1,5

∑

Extract o1

o1

h1 h2 h3 h4 h5

SOFTMAX

This

WQ WK WV

q1 k1 v1

☉

is a great example

⍺1,1

x

o1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉

⍺1,2

☉

⍺1,3

☉

⍺1,4

☉

⍺1,5

xxxx

∑

Extract o1

h1 h2 h3 h4 h5

Scaled Dot-product Attention:

1. ⍺i,• = softmax(dot(qi, k1…5)/√dk)

2. oi = dot(⍺i, v1…5)

This

WQ WK WV

q1 k1 v1

☉

is a great example

⍺1,1

x

o1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉

⍺1,2

☉

⍺1,3

☉

⍺1,4

☉

⍺1,5

xxxx

∑

Extract h1

h1 h2 h3 h4 h5

Scaled Dot-product Attention:

1. ⍺i,• = softmax(dot(qi, k1…5)/√dk)

2. oi = dot(⍺i, v1…5)

This

WQ WK WV

q1 k1 v1

☉

is a great example

⍺1,1

x

o1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉

⍺1,2

☉

⍺1,3

☉

⍺1,4

☉

⍺1,5

xxxx

∑

Extract h1

h1 h2 h3 h4 h5

Scaled Dot-product Attention:

1. ⍺i,• = softmax(dot(qi, k1…5)/√dk)

2. oi = dot(⍺i, v1…5)

This

WQ WK WV

q1 k1 v1

☉

is a great example

⍺1,1

x

o1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉

⍺1,2

☉

⍺1,3

☉

⍺1,4

☉

⍺1,5

xxxx

∑

Extract h1

h1 h2 h3 h4 h5

Scaled Dot-product Attention:

1. ⍺i,• = softmax(dot(qi, k1…5)/√dk)

2. oi = dot(⍺i, v1…5)

This

WQ WK WV

q1 k1 v1

☉

is a great example

⍺1,1

x

o1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉

⍺1,2

☉

⍺1,3

☉

⍺1,4

☉

⍺1,5

xxxx

∑

Extract h1

h1 h2 h3 h4 h5

Scaled Dot-product Attention:

1. ⍺i,• = softmax(dot(qi, k1…5)/√dk)

2. oi = dot(⍺i, v1…5)

This

WQ WK WV

q1 k1 v1

☉

is a great example

⍺1,1

x

o1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉

⍺1,2

☉

⍺1,3

☉

⍺1,4

☉

⍺1,5

xxxx

∑

Extract o1

h1 h2 h3 h4 h5

Scaled Dot-product Attention:

1. ⍺i,• = softmax(dot(qi, k1…5)/√dk)

2. hi = dot(⍺i, v1…5)
PAR

ALLE
LIZA

BLE
!!

● q,k,v1 = [1, 2, 3, 4]

q,k,v2 = [4, 5, 9, 1]

q,k,v3 = [6, 2, 1, 4]

● e1 = q1k1T / √4 = 15.0

e2 = q1k2T / √4 = 22.5

e3 = q1k3T / √4 = 14.5

● ⍺1 = softmax(e) = [0.00055, 0.99911, 0.00033]

● o1 = ⍺1TV = [3.99, 4.99, 8.99, 1.00]

V is the 3x4 matrix of all values

Example

This is a great example

WQ WK WV

q1 k1 v1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉

⍺1

⍺1 of shape
(1,5)

Implied softmax

h1 h2 h3 h4 h5

Self Attention

This is a great example

WQ WK WV

q1 k1 v1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉

⍺1

⍺1 of shape
(1,5)

☉

V: of shape
(5,dv)

h1 h2 h3 h4 h5

*Implied softmaxSelf Attention

This is a great example

WQ WK WV

q1 k1 v1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉

⍺1

☉

o1
h of shape
(1,dv)

h1 h2 h3 h4 h5

*Implied softmaxSelf Attention

Weighted sum of everything in the sequence

This is a great example

WQ WK WV

q1 k1 v1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉

⍺2

☉

o2

h1 h2 h3 h4 h5

*Implied softmaxSelf Attention

This is a great example

WQ WK WV

q1 k1 v1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉

⍺3

☉

o3

h1 h2 h3 h4 h5

*Implied softmaxSelf Attention

This is a great example

WQ WK WV

q1 k1 v1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉

⍺4

☉

o4

h1 h2 h3 h4 h5

*Implied softmaxSelf Attention

This is a great example

WQ WK WV

q1 k1 v1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉

⍺5

☉

o5

h1 h2 h3 h4 h5

*Implied softmaxSelf Attention

This is a great example

WQ WK WV

q1 k1 v1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉

⍺5

☉

o5

☉

⍺4

☉

o4

☉

⍺3

☉

o3

☉

⍺2

☉

o2

☉

⍺1

☉

o1

h1 h2 h3 h4 h5

*Implied softmaxSelf Attention

This is a great example

WQ WK WV

q1 k1 v1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉

⍺5

☉

o5

☉

⍺4

☉

o4

☉

⍺3

☉

o3

☉

⍺2

☉

o2

☉

⍺1

☉

o1

h1 h2 h3 h4 h5

Self Attention Module

*Implied softmax

This is a great example

WQ WK WV

q1 k1 v1

WQ WK WV

q2 k2 v2

WQ WK WV

q3 k3 v3

WQ WK WV

q4 k4 v4

WQ WK WV

q5 k5 v5

☉

⍺5

☉

o5

☉

⍺4

☉

o4

☉

⍺3

☉

o3

☉

⍺2

☉

o2

☉

⍺1

☉

o1

h1 h2 h3 h4 h5

Self Attention Module

*Implied softmax

PAR
ALLE

LIZA
BLE

!!

A = softmax(QKT /√dk) |
𝑁 ×

𝑁 → Tokens x weights

O = AV

Using full matrices (Batching shapes in extra slides)

o1 o2 o3 o4 o5

h1 h2 h3 h4 h5

Self Attention Module

Single Head Self Attention

Which of the following are true about self attention? (Select all that apply)

a. To calculate attention weights for input h_i, you would use key k_i, and all queries

b. To calculate attention weights for input h_i, you would use query q_i, and all keys

c. The energy function is scaled to bring attention weights in the range of [0,1]

d. The energy function is scaled to allow for numerical stability

Poll 1 (@1125)

Poll 1 (@1125)

Which of the following are true about self attention? (Select all that apply)

a. To calculate attention weights for input h_i, you would use key k_i, and all queries

b. To calculate attention weights for input h_i, you would use query q_i, and all keys

c. The energy function is scaled to bring attention weights in the range of [0,1]

d. The energy function is scaled to allow for numerical stability

h1 h2 h3 h4 h5

h11 h12 h13 h14 h15h21 h22 h23 h24 h25
hk1 hk2 hk3 hk4 hk5

What if we split the input into ‘k’ sub-inputs?

h1 h2 h3 h4 h5

Self Attention ModuleSelf Attention Module

h11 h12 h13 h14 h15h21 h22 h23 h24 h25
hk1 hk2 hk3 hk4 hk5

What if we split the input into ‘k’ sub-inputs?

kth Self Attention Module

Then pass each sub-input into a Self-Attention Module?

h1 h2 h3 h4 h5

Self Attention ModuleSelf Attention Module

h11 h12 h13 h14 h15h21 h22 h23 h24 h25
hk1 hk2 hk3 hk4 hk5

Woat if we split the input into ‘k’ sub-inputs?

kth Self Attention Module

o11 o12 o13 o14 o15o21 o22 o23 o24 o25
ok1 ok2 ok3 ok4 ok5

o1 o2 o3 o4 o5

And combine
the outputs?

h1 h2 h3 h4 h5

Self Attention ModuleSelf Attention Module

h11 h12 h13 h14 h15h21 h22 h23 h24 h25
hk1 hk2 hk3 hk4 hk5

What if we split the input into ‘k’ sub-inputs?

kth Self Attention Module

o11 o12 o13 o14 o15o21 o22 o23 o24 o25
ok1 ok2 ok3 ok4 ok5

o1 o2 o3 o4 o5

Multi-head Attention

Multi Head Self Attention

● Split input into k parts

● Pass the jth part of each input into the jth attention head

● Concatenate each of the k outputs

Why go through the trouble?

● Each head could find a different kind of relation between the tokens
○ Subject-verb, subject-object, verb-modifier, dependency, etc.

Attention is all you need

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Breaking down the transformer

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information
processing systems 30 (2017).

Encoder Self
Attention

Breaking down the transformer

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Masked Attention

Decoders can be parallelized during
training (only)

Feed the whole output sequence
(outputs) in at once

Need to ensure model doesn’t cheat

Alter the attention weights to be 0
(set input to softmax to -inf) for all
times t’ > t

Ensure autoregressive property

Decoder Self
Attention

Breaking down the transformer

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Cross Attention

During decoding, the query comes
from the outputs, keys and values
come from the encoder.

Decoder input “pays” attention to
the encoder outputs.

Breaking down the transformer

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Feed Forward Layers Feed Forward layers allow for high
dimensional computations

Simply there to allow the model to
capture more information

Breaking down the transformer

Residual
Connections

Add & Norm:

out = LayerNorm(x + Sublayer(x)),

Sublayer(x) is whatever layer is below the Add & Norm

Breaking down the transformer

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

WO

+

o5

WO

+

o4

WO

+

o3

WO

+

z1 z2 z3 z4 z5

h1 h2 h3 h4 h5

Multi Headed Attention Module

WO

+

o1

Transformers are residual
machines

“How much do I SHIFT my
meaning given my context?”

o2

Residual Connection

Positional Encoding

Transformers have no inherent
notion of order in a sequence.

This notion has to be externally
enforced.

Positional Encodings are added to
transformer inputs to add
information about order.

Breaking down the transformer

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Positional encodings as discussed
in the last lecture.

Recall

WO

+

o5

WO

+

o4

WO

+

o3

WO

+

z1 z2 z3 z4 z5

h1 h2 h3 h4 h5

Multi Headed Attention Module

WO

+

o1 o2Positional Encoding

WO

+

o5

WO

+

o4

WO

+

o3

WO

+

z1 z2 z3 z4 z5

h1 h2 h3 h4 h5

Multi Headed Attention Module

WO

+

o1 o2

p1 = [1 0 0 0 0]
p2 = [0 1 0 0 0]
…
p5 = [0 0 0 0 1]

Positional Encoding
simplified

WO

+

o5

WO

+

o4

WO

+

o3

WO

+

z1 z2 z3 z4 z5

h1 h2 h3 h4 h5

Multi Headed Attention Module

WO

+

o1 o2

p1 = [1 0 0 0 0]
p2 = [0 1 0 0 0]
…
p5 = [0 0 0 0 1]

Positional Encoding
simplified

WO

+

o5

WO

+

o4

WO

+

o3

WO

+

z1 z2 z3 z4 z5

Multi Headed Attention Module

WO

+

o1 o2

p1 = [1 0 0 0 0]
p2 = [0 1 0 0 0]
…
p5 = [0 0 0 0 1]

h1 p1 h2 p2 h3 p3 h4 p4 h5 p5

Positional Encoding
simplified

Which of the following are true about transformers?

a. The attention module tries to calculate the “shift” in meaning of a token given all other tokens in the batch

b. Transformers can always be run in parallel

c. Transformer decoders can only be parallelized during training

d. Positional encodings help parallelize the transformer encoder

e. Queries, keys, and values are obtained by splitting the input into 3 equal segments

f. Multiheaded attention helps transformers find different kinds of relations between the tokens

g. During decoding, decoder outputs function as queries and keys while the values come from the encoder

Poll 2 (@1126)

Which of the following are true about transformers?

a. The attention module tries to calculate the “shift” in meaning of a token given all other tokens in the batch

b. Transformers can always be run in parallel

c. Transformer decoders can only be parallelized during training

d. Positional encodings help parallelize the transformer encoder

e. Queries, keys, and values are obtained by splitting the input into 3 equal segments

f. Multiheaded attention helps transformers find different kinds of relations between the tokens

g. During decoding, decoder outputs function as queries and keys while the values come from the encoder

Poll 2 (@1126)

● Roles of Queries, Keys, and Values

Q pay attention to V according to computation with K
“Computation” is the attention function.

● Self versus Cross attention

● Transformers are Residual Machines

● Positional Encodings: Transformers have no notion of order - this needs to

be explicitly inserted.

Summary (1)

● Transformers’ biggest advantage lies in parallelizability and ‘omni-

directionality’

● There are still cases where models from the RNN family might perform better

than Transformers.

Summary (2)

Extra Slides

● MLP

e(q,k) = W2T(tanh(W1T[q;k]))

● Bilinear

e(q,k) = (qT)(W)(k)

● Scaled-Dot Product

e(q,k) = (q)(kT) / (s) # s = scaling factor (√dk)

Few types of energy functions

Graham Neubig, CS 11-711

The attention function takes in:

q : (B, T, dq)

k : (B, T, dk)

v : (B, T, dv)

Energy / attention scores:

e : (B, T, T) # Score between each pair of tokens if e = qkT/s

Output vector:

o : (B, T, dv) # calculated as softmax(e)Tv

Batching and shapes

Part 2
Graph Neural Networks

70

Sequence data: text/speech Grid data: image

71

Recurrent Neural Networks

Convolution Neural Networks

Revisiting some kinds of data

Sequence data: text/speech Grid data: image

72

Recurrent Neural Networks

Convolution Neural Networks

Unstructured Data:
Molecules, Social Networks, 3D meshes

???

Revisiting some kinds of data

Graphs: Definition

A E F

B

C

D

A graph is defined as a tuple G = (V, E),
• where V is a set of nodes / vertices,
• and E is a set of edges connecting a pair or vertices.

Undirected GraphExample:

G = (V,E)

V = {A,B,C,D,E,F}

E = {(A,B),(B,C),(C,D),(B,D),(C,D),(D,E),(D,F),(E,F)}

73

Invariance

● Say we have a mapping (our function / model) 𝑓: 𝑋 → 𝑌

● And another mapping (a transformation) 𝑔: 𝑋 → 𝑋

● If (and only if) 𝑓 𝑥 = 𝑓 𝑔 𝑥 ∀ 𝑥 ∈ 𝑋 , we can claim that 𝒇 is invariant to 𝒈.

● Poll 3

Poll number 𝑓 𝑔 𝑿 𝑓 invariant to 𝑔?

@1127 argmax softmax ℝ!

@1128 Euclidean distance
between two points

Translation
(of the origin)

(ℝ!, ℝ!)

@1129 Angle between two
vectors

Translation
(of the origin)

(ℝ!, ℝ!)

Invariance

● Say we have a mapping (our function / model) 𝑓: 𝑋 → 𝑌

● And another mapping (a transformation) 𝑔: 𝑋 → 𝑋

● If (and only if) 𝑓 𝑥 = 𝑓 𝑔 𝑥 ∀ 𝑥 ∈ 𝑋 , we can claim that 𝒇 is invariant to 𝒈.

● Poll 3

Poll number 𝑓 𝑔 𝑿 𝑓 invariant to 𝑔?

@1127 argmax softmax ℝ! YES

@1128 Euclidean distance
between two points

Translation
(of the origin)

(ℝ!, ℝ!) YES

@1129 Angle between two
vectors

Translation
(of the origin)

(ℝ!, ℝ!) NO

Revisiting invariances we have discussed so far

● CNNs are (kind of) translation invariant.

● CNNs are NOT rotation invariant (by default).

● Transformers are order invariant (without positional encodings).

∼

≠

Permutation Invariance

● Original input: [-0.5, 0.3, 0.8] x(1)

● Possible permutations: [0.3, -0.5, 0.8] x(2), [0.8, 0.3, -0.5] x(3), …
● 𝑓: ℝ! → ℝ (an MLP)

● Is 𝑓 𝑥 " = 𝑓 𝑥 # = 𝑓 𝑥 ! ?
● Permutation invariance requires the output of all 6! permutations of the input to

result in the same answer.

NO! → 𝒇 is not permutation invariant!

Problem Setup: ionic liquid for CO2 capturing

Ionic liquid molecules

Carbon dioxide (CO2)

Data

We want to use deep learning model to predict
the solubility of ionic liquid based on these
molecule data!

78

Ionic Liquid Solubility (label)

0.56

… 0.119

𝑓:𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒 → ℝ

Problem Setup: ionic liquid for CO2 capturing

Dataset

We want to use deep learning model to predict
the solubility of ionic liquid based on these
molecule data!

79

Ionic Liquid Solubility (label)

0.56

… 0.119

𝑓:𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒 → ℝ

Two questions:

1. Can we use MLP or CNN to solve this problem?

2. What are the desired properties of the model we

would like to use?

Problem Setup: ionic liquid for CO2 capturing

Dataset

We want to use deep learning model to predict
the solubility of ionic liquid based on these
molecule data!

80

𝑓:𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒 → ℝ

Two questions:

1. Can we use MLP or CNN to solve this problem?

2. What are the desired properties of the model we

would like to use?

Short answer: Not really.

Ionic Liquid Solubility (label)

0.56

… 0.119

Ionic liquid molecules Image data: image for molecule structure

81

Possible Solution 1: Using CNNs for feature extraction

• The outputs don’t

match!

• CNNs are not rotation

invariant (we know this)

82

Possible Solution 2: Using MLPs for feature extraction

But… What do we pass as input?

83

Feature engineering for graph-data
Matrix representation of a graph, G = (V, E)

A E F

B

C

D

Undirected Graph
A

B

C

D

E

F

A B C D E F
A

B

C

D

E

F

Node information Matrix (N×F)

1. Node information 2. Connectivity information

Adjacency Matrix (N×N)

We can now define a model 𝑓: ℝ!, ℝ" → ℝ#, where V is captured by the node
information matrix (ℝ!), E is captured by the adjacency matrix (ℝ"), and d is the desired
output dimension.

A E F

B

C

D

A
B
C

D
E

F

A B C D E F

Graph do not have canonical order of the nodes!

A
B
C

D
E

F

F C A

E

D

B

A
B
C

D
E

F

A B C D E F
A
B
C

D
E

F

Order plan 1

Order plan 2

84

Feature engineering for graph-data

A E F

B

C

D

A
B
C

D
E

F

A B C D E F

Graphs don’t have a canonical order of the nodes!

A
B
C

D
E

F

F C A

E

D

B

A
B
C

D
E

F

A B C D E F
A
B
C

D
E

F

Order plan 1

Order plan 2

85

Feature engineering for graph-data

• Graph representation for order plan 1 and order plan 2 are same.

• That is, we can construct a same graph according to node matrix
and adjacent matrix from order plan 1 and order plan 2, even if we
permute the order in two matrices.

• For a graph with m nodes, there are m! order plans.

• Since all order plans are the same graph, we would want all outputs
𝑓 𝑉" , 𝐸" (of the ith order plan) to be the same.

• We want permutation invariance.

86

Possible Solution 2: Using MLPs for feature extraction

What happens if we use a different order plan?
Changing the order plan will change the sequence order and thus produce a different result!

So, an MLP with graph-features also fails here.
We need a different way to process these inputs to work with the graph-properties that exist in
the data.

Story so far

• Graph can be represented by using a feature matrix and an adjacency matrix.

• Graph representations don’t have a canonical order of nodes.

• Permutation invariance is a desired property of the model we use for graph
processing.

87

A single layer of GNN: Graph Convolution
Key idea: Node’s neighborhood defines its features

“Birds of a feather” assumption

• Node embedding can be defined by local network neighborhoods.

CNN: Pixel convolution CNN: Pixel convolution
(as a graph)

GNN: Graph convolution

• Learn a node feature by propagating and aggregating neighbor information.
88

A single layer of GNN: Graph Convolution

Generate node embedding based on local network neighborhoods

A E F

B

C

D

Target node

89

A E F

B

C

D

A single layer of GNN: Graph Convolution
Generate node embedding based on local network neighborhoods

A E F

B

C

D

B

A

C

D

Generating features from nodes 1 hop away
A,C, and D

90

Processing information from neighbors

Now embedding for node B has
information from A,C, and D.

A single layer of GNN: Graph Convolution

A E F

B

C

D

B

A

C

D

Generating features from nodes 1 hop away
A,C, and D

91

Processing information from neighbors

Now embedding for node B has
information from A,C,D, and B

itself.
B

But we don’t want to forget
information about B either.

Self loop

Generate node embedding based on local network neighborhoods

A E F

B

C

D

E
F

B
C

D

B

A

A

B

B

C

D
B

C

D

B

C
D

Embedding for node B (at layer 2) has information from its first and
second hop neighbors.

92

Two layers of GNN: Graph Convolution
Generate node embedding based on local network neighborhoods

Including features from nodes 2 hops away
A,B,C,D,E, and F

L = 2

L = 1

L = 1

L = 1

L = 1

L = 0

L = 0

L = 0

L = 0

L = 0

L = 0

L = 0

L = 0

L = 0

L = 0

L=0 represents
input node
features.

A

A E F

B

C

D

What happens during the processing (the grey box)?

93

A single layer of GNN: Graph Convolution
Generate node embedding based on local network neighborhoods

B

A

C

D

?

B

A E F

B

C

D

What happens during the processing (the grey box)?

94

A single layer of GNN: Graph Convolution
Generate node embedding based on local network neighborhoods

B

A

C

D

2

B

1

Two step process:

1. Aggregate information
(sum, mean, etc.)

2. Apply activated linear
transformation,
Neural Networks.
𝜎(𝑊𝑥 + 𝐵)

95

A single layer of GNN: Graph Convolution – Forward pass
The Math for the 𝑙𝑡ℎ layer

ℎ"
($%&) = 𝜎 𝑊 $ %

(∈* "

ℎ(
$

𝑁 𝑣 + 𝐵 $ ℎ"
$, ∀𝑙 ∈ [0, 1…𝐿 − 1]

B

A

C

D

2

B

1

96

A single layer of GNN: Graph Convolution – Forward pass
The Math for the 𝑙𝑡ℎ layer

ℎ"
($%&) = 𝜎 𝑊 $ %

(∈* "

ℎ(
$

𝑁 𝑣 + 𝐵 $ ℎ"
$, ∀𝑙 ∈ [0, 1…𝐿 − 1]

Non-linear
activation

Learnable
parameter

Learnable
parameter

Accumulation of
features from

neighbors at previous
layer

Self loop

97

A single layer of GNN: Graph Convolution – Forward pass
The Math for the 𝑙𝑡ℎ layer

ℎ"
($%&) = 𝜎 𝑊 $ %

(∈* "

ℎ(
$

𝑁 𝑣 + 𝐵 $ ℎ"
$, ∀𝑙 ∈ [0, 1…𝐿 − 1]

ℎ"
(+) = 𝑥"

Initial node
embeddings

A
B
C

D
E

F

98

A single layer of GNN: Graph Convolution – Forward pass
The Matrix form for the 𝑙𝑡ℎ layer

ℎ"
($%&) = 𝜎 𝑊 $ %

(∈* "

ℎ(
$

𝑁 𝑣
+ 𝐵 $ ℎ"

$, ∀𝑙 ∈ [0, 1…𝐿 − 1]
(𝟏×𝑭)

(𝟏×𝑭)
(𝟏×𝑭)

A
B
C

D
E

F

We stack multiple ℎ#
(%)(1×𝐹)

vectors together into one
𝐻(%)(𝑁×𝐹)matrix.

(𝑵×𝑭)

𝑯(𝒍)

99

A single layer of GNN: Graph Convolution – Forward pass
The Matrix form for the 𝑙𝑡ℎ layer

ℎ"
($%&) = 𝜎 𝑊 $ %

(∈* "

ℎ(
$

𝑁 𝑣
+ 𝐵 $ ℎ"

$, ∀𝑙 ∈ [0, 1…𝐿 − 1]
(𝟏×𝑭)

(𝟏×𝑭)
(𝟏×𝑭)

A
B
C

D
E

F

(𝑵×𝑭)

𝑯(𝒍)

(𝑵×𝑵)

𝑨

1
|𝑁(𝑣)| ⋯ 0

⋮ ⋱ ⋮

0 ⋯
1

|𝑁(𝑣)|

𝑫$𝟏

(𝑵×𝑵)

× ×

100

A single layer of GNN: Graph Convolution – Forward pass
The Matrix form for the 𝑙𝑡ℎ layer

ℎ"
($%&) = 𝜎 𝑊 $ %

(∈* "

ℎ(
$

𝑁 𝑣
+ 𝐵 $ ℎ"

$, ∀𝑙 ∈ [0, 1…𝐿 − 1]
(𝟏×𝑭)

(𝟏×𝑭)
(𝟏×𝑭)

A
B
C

D
E

F

(𝑵×𝑭)

𝑯(𝒍)

(𝑵×𝑵)

𝑨

1
|𝑁(𝑣)| ⋯ 0

⋮ ⋱ ⋮

0 ⋯
1

|𝑁(𝑣)|

𝑫$𝟏

(𝑵×𝑵)

× ×
𝑤"" ⋯ 𝑤"$
⋮ ⋱ ⋮
𝑤$" ⋯ 𝑤$$

×

(𝑭×𝑭)

𝑾(𝒍)𝑻

101

A single layer of GNN: Graph Convolution – Forward pass
Food for thought

A
B
C

D
E

F

(𝑵×𝑭)

𝑯(𝒍)

(𝑵×𝑵)

𝑨

1
|𝑁(𝑣)| ⋯ 0

⋮ ⋱ ⋮

0 ⋯
1

|𝑁(𝑣)|

𝑫$𝟏

(𝑵×𝑵)

× × ×

(𝑵×𝑵)

𝑾(𝒍)𝑻

𝑤33 ⋯ 𝑤34
⋮ ⋱ ⋮

𝑤43 ⋯ 𝑤44

Why not multiply like this, with an 𝑁×𝑁 weight matrix?

102

A single layer of GNN: Graph Convolution – Forward pass
The Matrix form for the 𝑙𝑡ℎ layer

ℎ"
($%&) = 𝜎 𝑊 $ %

(∈* "

ℎ(
$

𝑁 𝑣
+ 𝐵 $ ℎ"

$, ∀𝑙 ∈ [0, 1…𝐿 − 1]
(𝟏×𝑭)

(𝟏×𝑭)
(𝟏×𝑭)

A
B
C

D
E

F

(𝑵×𝑭)

𝑯(𝒍)

(𝑵×𝑵)

? ×
𝐵"" ⋯ 𝐵"$
⋮ ⋱ ⋮
𝐵$" ⋯ 𝐵$$

×

(𝑭×𝑭)

𝑩(𝒍)𝑻

103

A single layer of GNN: Graph Convolution – Forward pass
The Matrix form for the 𝑙𝑡ℎ layer

ℎ"
($%&) = 𝜎 𝑊 $ %

(∈* "

ℎ(
$

𝑁 𝑣
+ 𝐵 $ ℎ"

$, ∀𝑙 ∈ [0, 1…𝐿 − 1]
(𝟏×𝑭)

(𝟏×𝑭)
(𝟏×𝑭)

A
B
C

D
E

F

(𝑵×𝑭)

𝑯(𝒍)

(𝑵×𝑵)

𝑨′ (Identity)

×
𝐵"" ⋯ 𝐵"$
⋮ ⋱ ⋮
𝐵$" ⋯ 𝐵$$

×

(𝑭×𝑭)

𝑩(𝒍)𝑻

104

A single layer of GNN: Graph Convolution – Forward pass
The Matrix form for the 𝑙𝑡ℎ layer

ℎ"
($%&) = 𝜎 𝑊 $ %

(∈* "

ℎ(
$

𝑁 𝑣
+ 𝐵 $ ℎ"

$, ∀𝑙 ∈ [0, 1…𝐿 − 1]

𝑯(𝒍%𝟏) = 𝝈 𝑫.𝟏𝑨𝑯(𝒍)𝑾𝑻 + 𝑨0𝑯(𝒍)𝑩𝑻 , ∀𝑙 ∈ [0, 1…𝐿 − 1]

𝑯(𝒍%𝟏) = 𝝈 <𝑫(.𝟎.𝟓) <𝑨 <𝑫(.𝟎.𝟓)𝑾′𝑻 , ∀𝑙 ∈ [0, 1…𝐿 − 1] Forward equation

for GCN

Which of the following are true statements? (Select all that apply)

a. LSTMs and GRUs are permutation invariant since they will eventually process every element of the

sequence, and hence reach the same output for any permutation.

b. In GNNs to incorporate information from nodes that are k-hops away, we would need a model that has at

most k-layers.

c. In GNNs to incorporate information from nodes that are k-hops away, we would need a model that has at

least k-layers.

d. Since transformers are not permutation invariant, you cannot use the self-attention mechanism in GNNs.

Poll 4 (Not on piazza)

Which of the following are true statements? (Select all that apply)

a. LSTMs and GRUs are permutation invariant since they will eventually process every element of the

sequence, and hence reach the same output for any permutation.

b. In GNNs to incorporate information from nodes that are k-hops away, we would need a model that has at

most k-layers.

c. In GNNs to incorporate information from nodes that are k-hops away, we would need a model that has at

least k-layers.

d. Since transformers are not permutation invariant, you cannot use the self-attention mechanism in GNNs.

Poll 4

Reference
• Kipf, T.N. and Welling, M., 2016. Semi-supervised classification with graph convolutional networks. arXiv

preprint arXiv:1609.02907.
• Stanford CS 224 W

107

