Neural Networks
Learning the network: Part 3

11-785, Spring 2023
Lecture 5
Training neural nets through Empirical Risk Minimization: Problem Setup

• Given a training set of input-output pairs
 \((X_1, d_1), (X_2, d_2), ..., (X_T, d_T)\)

• The divergence on the \(i^{th}\) instance is \(\text{div}(Y_i, d_i)\)

 \(- Y_i = f(X_i; W)\)

• The loss (empirical risk)
 \[
 \text{Loss}(W) = \frac{1}{T} \sum_i \text{div}(Y_i, d_i)
 \]

• Minimize \textbf{Loss} w.r.t \(\{w_{ij}^{(k)}, b_j^{(k)}\}\) using gradient descent
Notation

- The input layer is the 0th layer
- We will represent the output of the i-th perceptron of the kth layer as $y_i^{(k)}$
 - \textbf{Input to network:} $y_i^{(0)} = x_i$
 - \textbf{Output of network:} $y_i = y_i^{(N)}$
- We will represent the weight of the connection between the i-th unit of the k-1th layer and the jth unit of the kth layer as $w_{ij}^{(k)}$
 - The bias to the jth unit of the kth layer is $b_j^{(k)}$
Recap: Gradient Descent Algorithm

• Initialize:
 – \(W^0 \)
 – \(k = 0 \)

• do
 – \(W^{k+1} = W^k - \eta^k \nabla \text{Loss}(W^k) \)
 – \(k = k + 1 \)

• while \(|\text{Loss}(W^k) - \text{Loss}(W^{k-1})| > \varepsilon \)
Recap: Gradient Descent Algorithm

• In order to minimize $L(\mathcal{W})$ w.r.t. \mathcal{W}
• Initialize:
 - \mathcal{W}^0
 - $k = 0$

• do
 - For every component i
 • $\mathcal{W}_i^{k+1} = \mathcal{W}_i^k - \eta^k \frac{\partial L}{\partial \mathcal{W}_i}$
 - $k = k + 1$
• while $|L(\mathcal{W}^k) - L(\mathcal{W}^{k-1})| > \varepsilon$
Training Neural Nets through Gradient Descent

Total training Loss:

\[
Loss = \frac{1}{T} \sum_t \text{Div}(Y_t, d_t)
\]

- Gradient descent algorithm:

 - Initialize all weights and biases \(\{w_{ij}^{(k)}\} \)
 - Using the extended notation: the bias is also a weight

- Do:
 - For every layer \(k \) for all \(i, j \), update:
 - \(w_{ij}^{(k)} = w_{ij}^{(k)} - \eta \frac{dLoss}{dw_{ij}^{(k)}} \)

- Until \(Loss \) has converged
Training Neural Nets through Gradient Descent

Total training Loss:

\[Loss = \frac{1}{T} \sum_{t} \text{Div}(Y_t, d_t) \]

• Gradient descent algorithm:

• Initialize all weights \(\{ w_{ij}^{(k)} \} \)

• Do:
 – For every layer \(k \) for all \(i, j \), update:
 • \(w_{i,j}^{(k)} = w_{i,j}^{(k)} - \eta \frac{d\text{Loss}}{dw_{i,j}^{(k)}} \)

• Until \(Err \) has converged

Assuming the bias is also represented as a weight
The derivative

Total training Loss:

$$\text{Loss} = \frac{1}{T} \sum_t \text{Div}(Y_t, d_t)$$

• Computing the derivative

Total derivative:

$$\frac{d\text{Loss}}{dw_{i,j}^{(k)}} = \frac{1}{T} \sum_t \frac{d\text{Div}(Y_t, d_t)}{dw_{i,j}^{(k)}}$$
The derivative

Total training Loss:

\[\text{Loss} = \frac{1}{T} \sum_t \text{Div}(Y_t, d_t) \]

Total derivative:

\[
\frac{d\text{Loss}}{d\omega_{i,j}^{(k)}} = \frac{1}{T} \sum_t \frac{d\text{Div}(Y_t, d_t)}{d\omega_{i,j}^{(k)}}
\]

- So we must first figure out how to compute the derivative of divergences of individual training inputs
Calculus Refresher: Basic rules of calculus

For any differentiable function

\[y = f(x) \]

with derivative

\[\frac{dy}{dx} \]

the following must hold for sufficiently small \(\Delta x \)

\[\Delta y \approx \frac{dy}{dx} \Delta x \]
Calculus Refresher: Basic rules of calculus

For any differentiable function
\[y = f(x) \]
with derivative
\[\frac{dy}{dx} \]
the following must hold for sufficiently small \(\Delta x \)
\[\Delta y \approx \frac{dy}{dx} \Delta x \]

Introducing the “influence” diagram:
\(x \) influences \(y \)
For any differentiable function $y = f(x)$ with derivative $\frac{dy}{dx}$, the following must hold for sufficiently small Δx: $\Delta y \approx \frac{dy}{dx} \Delta x$
Calculus Refresher: Basic rules of calculus

For any differentiable function

\[y = f(x_1, x_2, \ldots, x_M) \]

What is the influence diagram relating \(x_1, x_2, \ldots, x_M \) and \(y \)?
For any differentiable function

\[y = f(x_1, x_2, ..., x_M) \]

The derivative diagram?
Calculus Refresher: Basic rules of calculus

For any differentiable function
\[y = f(x_1, x_2, \ldots, x_M) \]
with partial derivatives
\[\frac{\partial y}{\partial x_1}, \frac{\partial y}{\partial x_2}, \ldots, \frac{\partial y}{\partial x_M} \]
Calculus Refresher: Basic rules of calculus

For any differentiable function

\[y = f(x_1, x_2, \ldots, x_M) \]

with partial derivatives

\[\frac{\partial y}{\partial x_1}, \frac{\partial y}{\partial x_2}, \ldots, \frac{\partial y}{\partial x_M} \]

the following must hold for sufficiently small \(\Delta x_1, \Delta x_2, \ldots, \Delta x_M \)

\[\Delta y \approx \frac{\partial y}{\partial x_1} \Delta x_1 + \frac{\partial y}{\partial x_2} \Delta x_2 + \cdots + \frac{\partial y}{\partial x_M} \Delta x_M \]
Calculus Refresher: Chain rule

For any nested function \(y = f(g(x)) \)
Calculus Refresher: Chain rule

For any nested function $y = f(g(x))$

\[
\frac{dy}{dx} = \frac{dy}{dg(x)} \frac{dg(x)}{dx}
\]

\[
\Delta y = \frac{dy}{dg(x)} \frac{dg(x)}{dx} \Delta x
\]
Distributed Chain Rule: Influence Diagram

\[y = f(g_1(x), g_1(x), ..., g_M(x)) \]

Shorthand: \[z_i = g_i(x) \]
Distributed Chain Rule: Influence Diagram

\[y = f(g_1(x), g_1(x), ..., g_M(x)) \]

- \(x \) affects \(y \) through each of \(g_1 \ldots g_M \)

\[z_i = g_i(x) \]
Distributed Chain Rule: Influence Diagram

\[y = f(g_1(x), g_1(x), \ldots, g_M(x)) \]
Calculus Refresher: Chain rule summary

For $y = f(z_1, z_2, ..., z_M)$

where $z_i = g_i(x)$

$$\Delta y = \sum_i \frac{\partial y}{\partial z_i} \Delta z_i$$

$$\Delta z_i = \frac{dz_i}{dx} \Delta x$$

$$\frac{dy}{dx} = \frac{\partial y}{\partial z_1} \frac{dz_1}{dx} + \frac{\partial y}{\partial z_2} \frac{dz_2}{dx} + \cdots + \frac{\partial y}{\partial z_M} \frac{dz_M}{dx}$$
Calculus Refresher: Chain rule summary

For any nested function \(l = f(y) \) where \(y = g(z) \)

\[
\frac{dl}{dz} = \frac{dl}{dy} \frac{dy}{dz}
\]

For \(l = f(z_1, z_2, \ldots, z_M) \)

where \(z_i = g_i(x) \)

\[
\frac{dl}{dx} = \frac{\partial l}{\partial z_1} \frac{dz_1}{dx} + \frac{\partial l}{\partial z_2} \frac{dz_2}{dx} + \ldots + \frac{\partial l}{\partial z_M} \frac{dz_M}{dx}
\]
Our problem for today

• How to compute \(\frac{d \text{Div}(Y,d)}{dw_{i,j}^{(k)}} \) for a single data instance
1. The chain rule of derivatives can be derived from the basic definition of derivatives, \(dy = \text{derivative} \times dx \), true or false
 - True (correct)
 - False

2. Which of the following is true of the “influence diagram”
 - It graphically shows all paths (and variables) through which one variable influences the other
 - The derivative of the influenced (outcome) variable with respect to the influencer (input) variable must be summed over all outgoing paths from the influencer variable
1. The chain rule of derivatives can be derived from the basic definition of derivatives, $\frac{dy}{dx} = \text{derivative} \ast dx$, true or false
 - True (correct)
 - False

2. Which of the following is true of the “influence diagram”
 - It graphically shows all paths (and variables) through which one variable influences the other (true)
 - The derivative of the influenced (outcome) variable with respect to the influencer (input) variable must be summed over all outgoing paths from the influencer variable (true)
A first closer look at the network

- Showing a tiny 2-input network for illustration
 - Actual network would have many more neurons and inputs
A first closer look at the network

• Showing a tiny 2-input network for illustration
 – Actual network would have many more neurons and inputs
• Explicitly separating the affine function of inputs from the activation
A first closer look at the network

- Showing a tiny 2-input network for illustration
 - Actual network would have many more neurons and inputs
- Expanded with all weights shown
- Let’s label the other variables too...
Computing the derivative for a single input

\[\text{Div} \]
Computing the derivative for a single input

What is: \(\frac{d \text{Div}(Y,d)}{dw_{i,j}^{(k)}} \)
Computing the gradient

- Note: computation of the derivative $\frac{d\text{Div}(Y,d)}{dw_{i,j}^{(k)}}$ requires intermediate and final output values of the network in response to the input.
The “forward pass”

We will refer to the process of computing the output from an input as the forward pass.

We will illustrate the forward pass in the following slides.

\[y^{(0)} = x \]
The “forward pass”

\[y^{(0)} = x \]

\[f_1 \quad f_2 \quad f_3 \]

\[z^{(1)} \quad y^{(1)} \quad z^{(2)} \quad y^{(2)} \quad z^{(3)} \quad y^{(3)} \]

\[f_{N-1} \quad f_N \]

\[z^{(N-1)} \quad y^{(N-1)} \]

\[z^{(N)} \quad y^{(N)} \]

Setting \(y_i^{(0)} = x_i \) for notational convenience

Assuming \(w_{0j}^{(k)} = b_j^{(k)} \) and \(y_0^{(k)} = 1 \) -- assuming the bias is a weight and extending the output of every layer by a constant 1, to account for the biases
The “forward pass”

\[y^{(0)} = x \]

\[
\begin{align*}
z^{(1)} &= \sum_i w_{i1} y^{(0)} \\
\end{align*}
\]
The "forward pass"

\[y^{(0)} = x \]

\[z^{(1)} = \sum_i w_{ij}^{(1)} y_i^{(0)} \]
\[y^{(0)} = x \]

\[z^{(1)} = \sum_i w_{ij}^{(1)} y_i^{(0)} \]

\[y_j^{(1)} = f_1 \left(z_j^{(1)} \right) \]

\[y^{(1)} = f_1 \left(z^{(1)} \right) \]

\[y^{(2)} = f_2 \left(z^{(2)} \right) \]

\[y^{(3)} = f_3 \left(z^{(3)} \right) \]

\[z^{(N)} \]

\[y^{(N)} \]

\[f_1 \]

\[f_2 \]

\[f_3 \]

\[f_{N-1} \]

\[f_N \]
$y^{(0)} = x$

$z^{(1)} = \sum_i w_{ij}^{(1)} y_i^{(0)}$

$y_j^{(1)} = f_1(z_j^{(1)})$

$z^{(2)} = \sum_i w_{ij}^{(2)} y_i^{(1)}$

$y_j^{(2)} = f_2(z_j^{(2)})$

$z^{(N-1)} = \sum_i w_{ij}^{(N-1)} y_i^{(N-2)}$

$y_j^{(N-1)} = f_{N-1}(z_j^{(N-1)})$

$z^{(N)} = \sum_i w_{ij}^{(N)} y_i^{(N-1)}$

$y_j^{(N)} = f_N(z_j^{(N)})$

$y^{(N)}$
\[y^{(0)} = x \]

\[z^{(1)} \]

\[f_1 \quad f_2 \quad f_3 \quad f_{N-1} \quad f_N \]

\[y^{(1)} \]

\[z^{(2)} \]

\[y^{(2)} \]

\[z^{(3)} \]

\[y^{(3)} \]

\[z^{(N-1)} \]

\[y^{(N-1)} \]

\[z^{(N)} \]

\[y^{(N)} \]

\[z_j^{(1)} = \sum_i w_{ij}^{(1)} y_i^{(0)} \]

\[y_j^{(1)} = f_1 \left(z_j^{(1)} \right) \]

\[z_j^{(2)} = \sum_i w_{ij}^{(2)} y_i^{(1)} \]

\[y_j^{(2)} = f_2 \left(z_j^{(2)} \right) \]
$y^{(0)} = x$

$z^{(1)} \to f_1 \to f_2 \to f_3 \to y^{(3)}$

$z^{(2)} \to f_1 \to f_2 \to f_3 \to y^{(2)}$

$y^{(2)} = f_1(z^{(1)})$

$z^{(3)} \to f_1 \to f_2 \to f_3 \to y^{(3)}$

$z^{(3)} = \sum_i w_{ij}^{(3)} y_i^{(2)}$

$y^{(3)} = f_2(z^{(2)})$

$z^{(N-1)} \to f_{N-1} \to f_N \to y^{(N)}$

$z^{(N)} = \sum_i w_{ij}^{(N)} y_i^{(N-1)}$

$y^{(N)} = f_N(z^{(N)})$

$y_j^{(1)} = \sum_i w_{ij}^{(1)} y_i^{(0)}$

$y_j^{(2)} = \sum_i w_{ij}^{(2)} y_i^{(1)}$

$y_j^{(3)} = \sum_i w_{ij}^{(3)} y_i^{(2)}$
$y^{(0)} = \mathbf{x}$

\[
\begin{align*}
 z_j^{(1)} &= \sum_i w_{ij}^{(1)} y_i^{(0)} \\
 y_j^{(1)} &= f_1 (z_j^{(1)}) \\
 z_j^{(2)} &= \sum_i w_{ij}^{(2)} y_i^{(1)} \\
 y_j^{(2)} &= f_2 (z_j^{(2)}) \\
 z_j^{(3)} &= \sum_i w_{ij}^{(3)} y_i^{(2)} \\
 y_j^{(3)} &= f_3 (z_j^{(3)}) \\
 \vdots
\end{align*}
\]
\(y^{(0)} = x \)

\[
y_j^{(N-1)} = f_{N-1} \left(z_j^{(N-1)} \right)
\]

\[
z_j^{(N)} = \sum_i w_{ij}^{(N)} y_i^{(N-1)}
\]

\[
y^{(N)} = f_N \left(z^{(N)} \right)
\]
Forward Computation

\[y^{(0)} = x \]

\[y^{(k)} = x \]

\[y^{(N)} = f_N \]

\[z^{(N)} = y^{(N)} \]

ITERATE FOR \(k = 1:N \)

\[z^{(k)} = \sum_i w_{ij} y^{(k-1)} \]

\[y^{(k)} = f_k(z^{(k)}) \]
Forward “Pass”

- **Input:** D dimensional vector $\mathbf{x} = [x_j, \ j = 1 \ldots D]$

- **Set:**
 - $D_0 = D$, is the width of the 0^{th} (input) layer
 - $y_j^{(0)} = x_j, \ j = 1 \ldots D$; $y_0^{(k=1\ldots N)} = x_0 = 1$

- **For layer $k = 1 \ldots N$**
 - For $j = 1 \ldots D_k$ (D_k is the size of the kth layer)
 - $z_j^{(k)} = \sum_{i=0}^{D_{k-1}} w_{i,j}^{(k)} y_i^{(k-1)}$
 - $y_j^{(k)} = f_k(z_j^{(k)})$

- **Output:**
 - $Y = y_j^{(N)}, j = 1 \ldots D_N$
Computing derivatives

We have computed all these intermediate values in the forward computation.

We must remember them - we will need them to compute the derivatives.
Computing derivatives

First, we compute the divergence between the output of the net $y = y^{(N)}$ and the desired output d
We then compute $\nabla_{y^{(N)}} \text{div}(.)$ the derivative of the divergence w.r.t. the final output of the network $y^{(N)}$.

\[y^{(0)} = x \]

\[
\begin{align*}
y^{(1)} & \rightarrow f_1 \\
y^{(N-2)} & \rightarrow f_{N-2} \\
y^{(N-1)} & \rightarrow f_{N-1} \\
y^{(N)} & \rightarrow f_N \\
\end{align*}
\]
We then compute $\nabla_{Y^{(N)}} \text{div}(\cdot)$ the derivative of the divergence w.r.t. the final output of the network $y^{(N)}$.

We then compute $\nabla_{Z^{(N)}} \text{div}(\cdot)$ the derivative of the divergence w.r.t. the pre-activation affine combination $z^{(N)}$ using the chain rule.
Computing derivatives

Continuing on, we will compute $\nabla_{W^{(N)}} \text{div}(.)$ the derivative of the divergence with respect to the weights of the connections to the output layer.
Computing derivatives

Continuing on, we will compute $\nabla_{W(N)} \text{div}(.)$ the derivative of the divergence with respect to the weights of the connections to the output layer.

Then continue with the chain rule to compute $\nabla_{Y(N-1)} \text{div}(.)$ the derivative of the divergence w.r.t. the output of the N-1th layer.
Computing derivatives

We continue our way backwards in the order shown

$$\nabla_{z^{(N-1)}} \text{div}(.)$$
We continue our way backwards in the order shown

\[\nabla_{W^{(N-1)}} \text{div}(.) \]
We continue our way backwards in the order shown

$$\nabla_{Y^{(N-2)}} \text{div}(.)$$
We continue our way backwards in the order shown

\[\nabla_{Z^{(N-2)}} \text{div}(.) \]
We continue our way backwards in the order shown

$$\nabla_{Y(1)} \text{div}(.)$$
We continue our way backwards in the order shown

\[\nabla_{Z(1)} \text{div}(\cdot) \]
We continue our way backwards in the order shown

$$\nabla_{W^{(1)}} div(.)$$
Backward Gradient Computation

• Let’s actually see the math..
Computing derivatives

\[y^{(0)} = x \]

\[f_1 \]

\[f_{N-2} \]

\[f_{N-1} \]

\[f_N \]

\[y^{(1)} \]

\[z^{(1)} \]

\[y^{(N-2)} \]

\[z^{(N-2)} \]

\[z^{(N-1)} \]

\[y^{(N-1)} \]

\[z^{(N)} \]

\[y^{(N)} \]

\[\text{Div}(Y,d) \]

\[\text{div()} \]

\[d \]
Computing derivatives

The derivative w.r.t the actual output of the final layer of the network is simply the derivative w.r.t to the output of the network.

\[
\frac{\partial \text{div}(Y, d)}{\partial y_i^{(N)}} = \frac{\partial \text{div}(Y, d)}{\partial y_i}
\]
Calculus Refresher: Chain rule

For any nested function \(l = f(y) \) where \(y = g(z) \)

\[
\frac{dl}{dz} = \frac{dl}{dy} \frac{dy}{dz}
\]
Computing derivatives

\[y^{(0)} = x \]

\[z^{(1)} \rightarrow f_1 \rightarrow \ldots \rightarrow f_1 \rightarrow z^{(1)} \]

\[y^{(N-1)} \rightarrow z^{(N-1)} \rightarrow y^{(N-2)} \rightarrow z^{(N-2)} \rightarrow f_{N-2} \rightarrow f_{N-1} \rightarrow y^{(N)} \rightarrow y^{(N)} \]

\[\frac{\partial \text{Div}}{\partial z_i^{(N)}} = \frac{\partial y_i^{(N)}}{\partial z_i^{(N)}} \frac{\partial \text{Div}}{\partial y_i^{(N)}} \]

Div(Y, d)
Computing derivatives

\[y^{(0)} = x \]

\[\begin{align*}
 y^{(1)} & = z^{(1)} \\
 y^{(2)} & = z^{(2)} \\
 & \quad \vdots \\
 y^{(N)} & = z^{(N)} \\
\end{align*} \]

\[\frac{\partial \text{Div}}{\partial z_i^{(N)}} = \frac{\partial y_i^{(N)}}{\partial z_i^{(N)}} \frac{\partial \text{Div}}{\partial y_i^{(N)}} \]

Already computed
Computing derivatives

\[y^{(0)} = x \]

\[z^{(1)} \]

\[y^{(1)} \]

\[f_1 \]

\[f_1 \]

\[f_1 \]

\[1 \]

\[f_{N-2} \]

\[f_{N-2} \]

\[f_{N-2} \]

\[1 \]

\[f_{N-1} \]

\[f_{N-1} \]

\[f_{N-1} \]

\[1 \]

\[f_N \]

\[f_N \]

\[f_N \]

\[1 \]

\[\text{Derivative of activation function} \]

\[\frac{\partial \text{Div}}{\partial z_i^{(N)}} = \frac{\partial y_i^{(N)}}{\partial z_i^{(N)}} \frac{\partial \text{Div}}{\partial y_i^{(N)}} \]

\[\text{Div}(Y,d) \]
Computing derivatives

\[y^{(0)} = x \]

Derivative of activation function Computed in forward pass

\[\frac{\partial \text{Div}}{\partial z_i^{(N)}} = \frac{\partial y_i^{(N)}}{\partial z_i^{(N)}} \frac{\partial \text{Div}}{\partial y_i^{(N)}} \]
Computing derivatives

\[y^{(0)} = x \]

\[f_1 \quad f_1 \quad f_1 \quad f_1 \]

\[z^{(1)} \quad y^{(1)} \quad y^{(1)} \quad y^{(1)} \]

\[f_{N-2} \quad f_{N-2} \quad f_{N-2} \quad f_{N-2} \]

\[f_{N-1} \quad f_{N-1} \quad f_{N-1} \quad f_{N-1} \]

\[y^{(N-2)} \quad y^{(N-1)} \quad y^{(N-1)} \quad y^{(N)} \]

\[z^{(N-2)} \quad z^{(N-1)} \quad z^{(N)} \quad z^{(N)} \]

\[1 \quad 1 \quad 1 \quad 1 \]

\[\text{Div}(Y,d) \]

\[\frac{\partial \text{Div}}{\partial z_i^{(N)}} = f'_N \left(z_i^{(N)} \right) \frac{\partial \text{Div}}{\partial y_i^{(N)}} \]
Computing derivatives

\(y^{(0)} = x \)

\[\frac{\partial Div}{\partial w_{ij}}^{(N)} = \frac{\partial z_j^{(N)}}{\partial w_{ij}} \frac{\partial Div}{\partial z_j^{(N)}} \]

Div(Y, d)
Computing derivatives

\[y^{(0)} = x \]

\[\begin{align*}
 f_1 & \rightarrow f_1 \\
 f_1 & \rightarrow f_1 \\
 1 & \rightarrow 1
\end{align*} \]

Div(Y, d)

\[\frac{\partial \text{Div}}{\partial w_{ij}^{(N)}} = \frac{\partial z_j^{(N)}}{\partial w_{ij}^{(N)}} \frac{\partial \text{Div}}{\partial z_j^{(N)}} \]

Just computed
Computing derivatives

\[y^{(0)} = x \]

Because
\[z_j^{(N)} = w_{ij}^{(N)} y_i^{(N-1)} + \text{other terms} \]
Computing derivatives

\[y^{(0)} = x \]

\[y^{(1)} \]

\[z^{(1)} \]

\[f_1 \]

\[f_1 \]

\[f_1 \]

\[1 \]

\[Div(Y, d) \]

\[\partial Div \frac{\partial z_j^{(N)}}{\partial w_{ij}^{(N)}} = \frac{\partial y_i^{(N-1)}}{\partial z_j^{(N)}} \partial Div \]

Because

\[z_j^{(N)} = w_{ij}^{(N)} y_i^{(N-1)} + \text{other terms} \]

Computed in forward pass
Computing derivatives

\[y^{(0)} = x \]

\[\frac{\partial \text{Div}}{\partial w_{ij}^{(N)}} = y_i^{(N-1)} \frac{\partial \text{Div}}{\partial z_j^{(N)}} \]
Computing derivatives

\[y^{(0)} = x \]

For the bias term \(y^{(N-1)}_0 = 1 \)

\[\frac{\partial \text{Div}}{\partial w_{ij}^{(N)}} = y_i^{(N-1)} \frac{\partial \text{Div}}{\partial z_j^{(N)}} \]
Calculus Refresher: Chain rule

For $l = f(z_1, z_2, \ldots, z_M)$

where $z_i = g_i(x)$

\[
\frac{dl}{dx} = \frac{\partial l}{\partial z_1} \frac{dz_1}{dx} + \frac{\partial l}{\partial z_2} \frac{dz_2}{dx} + \cdots + \frac{\partial l}{\partial z_M} \frac{dz_M}{dx}
\]
Computing derivatives

\[y^{(0)} = x \]

\[z^{(1)} \quad y^{(1)} \]

\[f_1 \quad f_1 \quad f_1 \]

\[f_{N-2} \quad f_{N-2} \quad f_{N-1} \]

\[f_{N-2} \quad f_{N-1} \]

\[1 \quad 1 \]

\[\frac{\partial \text{Div}}{\partial y_i^{(N-1)}} = \sum_j \frac{\partial z_j^{(N)}}{\partial y_i^{(N-1)}} \frac{\partial \text{Div}}{\partial z_j^{(N)}} \]
Computing derivatives

\[y^{(0)} = x \]

\[z^{(1)} \quad y^{(1)} \]

\[f_1 \]

\[f_1 \]

\[f_1 \]

\[f_1 \]

\[f_{N-2} \]

\[f_{N-2} \]

\[f_{N-2} \]

\[f_{N-2} \]

\[f_{N-1} \]

\[f_{N} \]

\[f_{N} \]

\[div() \]

\[d \]

\[Div(Y, d) \]

\[\frac{\partial \text{Div}}{\partial y^{(N-1)}_i} = \sum_j \frac{\partial z^{(N)}_j}{\partial y^{(N-1)}_i} \frac{\partial \text{Div}}{\partial z^{(N)}_j} \]

Already computed
Computing derivatives

\[y^{(0)} = x \]

\[y^{(N)} = \text{Div}(Y,d) \]

Because

\[z_j^{(N)} = w_{ij}^{(N)} y_i^{(N-1)} + \text{other terms} \]
Computing derivatives

\[y^{(0)} = x \]

\[z^{(1)} \quad y^{(1)} \]

\[f_1 \quad f_1 \quad f_1 \quad 1 \]

\[f_{N-2} \quad f_{N-2} \quad f_{N-1} \quad 1 \]

\[f_{N-2} \quad f_{N-1} \quad z^{(N)} \quad y^{(N)} \]

\[\frac{\partial \text{Div}}{\partial y_i^{(N-1)}} = \sum_j w_{ij}^{(N)} \frac{\partial \text{Div}}{\partial z_j^{(N)}} \]
Computing derivatives

\[y^{(0)} = x \]

\[\begin{align*}
 & y^{(1)} = z^{(1)} \\
 & y^{(2)} = z^{(N-2)} \\
 & y^{(N-1)} = z^{(N-1)} \\
 & y^{(N)} = z^{(N)}
\end{align*} \]

\[\text{Div}(Y,d) \]

\[\frac{\partial \text{Div}}{\partial y_i^{(N-1)}} = \sum_j w_{ij}^{(N)} \frac{\partial \text{Div}}{\partial z_j^{(N)}} \]
Computing derivatives

We continue our way backwards in the order shown

\[
\frac{\partial \text{Div}}{\partial z_i^{(N-1)}} = f'_{N-1} \left(z_i^{(N-1)} \right) \frac{\partial \text{Div}}{\partial y_i^{(N-1)}}
\]
\[y^{(0)} = x \]

We continue our way backwards in the order shown:

\[
\frac{\partial Div}{\partial w_{ij}^{(N-1)}} = y_i^{(N-2)} \frac{\partial Div}{\partial z_j^{(N-1)}}
\]

For the bias term \(y_0^{(N-2)} = 1 \)
We continue our way backwards in the order shown.

\[
\frac{\partial \text{Div}}{\partial y^{(N-2)}} = \sum_j w_{ij}^{(N-1)} \frac{\partial \text{Div}}{\partial z_j^{(N-1)}}
\]
We continue our way backwards in the order shown

\[
\frac{\partial \text{Div}}{\partial z_i^{(N-2)}} = f'_N \left(z_i^{(N-2)} \right) \frac{\partial \text{Div}}{\partial y_i^{(N-2)} drunk.
\]
We continue our way backwards in the order shown

\[
\frac{\partial \text{Div}}{\partial y_1^{(1)}} = \sum_j w_{ij}^{(2)} \frac{\partial \text{Div}}{\partial z_j^{(2)}}
\]
We continue our way backwards in the order shown.

\[
\frac{\partial \text{Div}}{\partial z_i^{(1)}} = f_i'(z_i^{(1)}) \frac{\partial \text{Div}}{\partial y_i^{(1)}}
\]
We continue our way backwards in the order shown.

\[
\frac{\partial \text{Div}}{\partial w_{ij}^{(1)}} = y_i^{(0)} \frac{\partial \text{Div}}{\partial z_j^{(1)}}
\]

\(y^{(0)} = x\)
Initialize: Gradient w.r.t network output

\[
\frac{\partial \text{Div}}{\partial y_i^{(N)}} = \frac{\partial \text{Div}(Y, d)}{\partial y_i} \\
\frac{\partial \text{Div}}{\partial z_i^{(N)}} = f'_k(z_i^{(N)}) \frac{\partial \text{Div}}{\partial y_i^{(N)}},
\]

For \(k = N - 1 \ldots 0 \)

For \(i = 1: \text{layer width} \)

\[
\frac{\partial \text{Div}}{\partial y_i^{(k)}} = \sum_j w_{ij}^{(k+1)} \frac{\partial \text{Div}}{\partial z_j^{(k+1)}} \\
\frac{\partial \text{Div}}{\partial z_i^{(k)}} = f'_k(z_i^{(k)}) \frac{\partial \text{Div}}{\partial y_i^{(k)}}
\]

\[
\forall j \quad \frac{\partial \text{Div}}{\partial w_{ij}^{(k+1)}} = y_i^{(k)} \frac{\partial \text{Div}}{\partial z_j^{(k+1)}}
\]
Backward Pass

- Output layer \((N)\):
 - For \(i = 1 \ldots D_N\)
 - \[
 \frac{\partial \text{Div}}{\partial y_i^{(N)}} = \frac{\partial D \text{iv}(Y,d)}{\partial y_i} \quad \text{[This is the derivative of the divergence]}
 \]
 - \[
 \frac{\partial \text{Div}}{\partial z_i^{(N)}} = \frac{\partial \text{Div}}{\partial y_i^{(N)}} f'_N \left(z_i^{(N)} \right)
 \]
 - \[
 \frac{\partial \text{Div}}{\partial w_{ij}^{(N)}} = y_i^{(N-1)} \frac{\partial \text{Div}}{\partial z_j^{(N)}} \quad \text{for } j = 0 \ldots D_{N-1}
 \]

- For layer \(k = N - 1 \ldots 1 \) down to \(1\)
 - For \(i = 1 \ldots D_k\)
 - \[
 \frac{\partial \text{Div}}{\partial y_i^{(k)}} = \sum_j w_{ij}^{(k+1)} \frac{\partial \text{Div}}{\partial z_j^{(k+1)}}
 \]
 - \[
 \frac{\partial \text{Div}}{\partial z_i^{(k)}} = \frac{\partial \text{Div}}{\partial y_i^{(k)}} f'_k \left(z_i^{(k)} \right)
 \]
 - \[
 \frac{\partial \text{Div}}{\partial w_{ij}^{(k)}} = y_i^{(k-1)} \frac{\partial \text{Div}}{\partial z_j^{(k)}} \quad \text{for } j = 0 \ldots D_{k-1}
 \]
Backward Pass

- Output layer \((N)\):
 - For \(i = 1 \ldots D_N\)

 \[
 \frac{\partial D_{\text{iv}}}{\partial y_{(N)}^i} = \frac{\partial D_{\text{iv}}(Y_d)}{\partial y_i}
 \]

 \[
 \frac{\partial D_{\text{iv}}}{\partial z_{(N)}^i} = \frac{\partial D_{\text{iv}}(Y_d)}{\partial y_i} f_N'(z_i^{(N)})
 \]

 \[
 \frac{\partial D_{\text{iv}}}{\partial w_{ij}^{(N)}} = y_{(N-1)}^i \frac{\partial D_{\text{iv}}}{\partial z_{(N)}^j} \quad \text{for } j = 0 \ldots D_{N-1}
 \]

- For layer \(k = N - 1 \text{ down to } 1\)
 - For \(i = 1 \ldots D_k\)

 \[
 \frac{\partial D_{\text{iv}}}{\partial y_{(k)}^i} = \sum_j w_{ij}^{(k+1)} \frac{\partial D_{\text{iv}}}{\partial z_{(k+1)}^j}
 \]

 \[
 \frac{\partial D_{\text{iv}}}{\partial z_{(k)}^i} = \frac{\partial D_{\text{iv}}}{\partial y_{(k)}^i} f_k'(z_i^{(k)})
 \]

 \[
 \frac{\partial D_{\text{iv}}}{\partial w_{ij}^{(k)}} = y_{(k-1)}^i \frac{\partial D_{\text{iv}}}{\partial z_{j}^{(k)}} \quad \text{for } j = 0 \ldots D_{k-1}
 \]

Called “Backpropagation” because the derivative of the loss is propagated “backwards” through the network.

Very analogous to the forward pass:

- Backward weighted combination of next layer
- Backward equivalent of activation
Using notation \(\dot{y} = \frac{\partial Div(Y,d)}{\partial y} \) etc (overdot represents derivative of Div w.r.t variable)

• Output layer (N):
 – For \(i = 1 \ldots D_N \)
 • \(\dot{y}_i^{(N)} = \frac{\partial Div}{\partial y_i} \)
 • \(\dot{z}_i^{(N)} = \dot{y}_i^{(N)} f_N' \left(z_i^{(N)} \right) \)
 • \(\frac{\partial Div}{\partial w_{ji}^{(N)}} = y_j^{(N-1)} \dot{z}_i^{(N)} \) for \(j = 0 \ldots D_{N-1} \)

• For layer \(k = N - 1 \) down to 1
 – For \(i = 1 \ldots D_k \)
 • \(\dot{y}_i^{(k)} = \sum_j w_{ij}^{(k+1)} \dot{z}_j^{(k+1)} \)
 • \(\dot{z}_i^{(k)} = \dot{y}_i^{(k)} f_k' \left(z_i^{(k)} \right) \)
 • \(\frac{\partial Div}{\partial w_{ji}^{(k)}} = y_j^{(k-1)} \dot{z}_i^{(k)} \) for \(j = 0 \ldots D_{k-1} \)

Called “Backpropagation” because the derivative of the loss is propagated “backwards” through the network

Very analogous to the forward pass:

Backward weighted combination of next layer

Backward equivalent of activation
For comparison: the forward pass again

- **Input**: D dimensional vector $\mathbf{x} = [x_j, j = 1 \ldots D]$

- **Set**:
 - $D_0 = D$, is the width of the 0^{th} (input) layer
 - $y_j^{(0)} = x_j, j = 1 \ldots D; \quad y_0^{(k=1 \ldots N)} = x_0 = 1$

- **For layer $k = 1 \ldots N$**
 - For $j = 1 \ldots D_k$
 - $z_j^{(k)} = \sum_{i=0}^{N_k} w_{i,j}^{(k)} y_i^{(k-1)}$
 - $y_j^{(k)} = f_k \left(z_j^{(k)} \right)$

- **Output**:
 - $Y = y_j^{(N)}, j = 1 \ldots D_N$
How does backpropagation relate to training the network (pick one)

- Backpropagation is the process of training the network
- Backpropagation is used to update the model parameters during training
- Backpropagation is used to compute the derivatives of the divergence with respect to model parameters, to be used in gradient descent.
How does backpropagation relate to training the network (pick one)

- Backpropagation is the process of training the network
- Backpropagation is used to update the model parameters during training
- Backpropagation is used to compute the derivatives of the divergence with respect to model parameters, to be used in gradient descent. (correct)
• Have assumed so far that
 1. The computation of the output of one neuron does not directly affect computation of other neurons in the same (or previous) layers
 2. Inputs to neurons only combine through weighted addition
 3. Activations are actually differentiable
 – All of these conditions are frequently not applicable
• Will not discuss all of these in class, but explained in slides
 – Will appear in quiz. Please read the slides
Special Case 1. Vector activations

• Vector activations: all outputs are functions of all inputs
Special Case 1. Vector activations

Scalar activation: Modifying a z_i only changes corresponding y_i

$$y_i^{(k)} = f(z_i^{(k)})$$

Vector activation: Modifying a z_i potentially changes all, $y_1 \ldots y_M$

$$\begin{bmatrix} y_1^{(k)} \\ y_2^{(k)} \\ \vdots \\ y_M^{(k)} \end{bmatrix} = f \begin{bmatrix} z_1^{(k)} \\ z_2^{(k)} \\ \vdots \\ z_D^{(k)} \end{bmatrix}$$
“Influence” diagram

Scalar activation: Each z_i influences one y_i

Vector activation: Each z_i influences all, $y_1 \ldots y_M$
Scalar Activation: Derivative rule

\[
\frac{\partial \text{Div}}{\partial z_i^{(k)}} = \frac{\partial \text{Div}}{\partial y_i^{(k)}} \frac{dy_i^{(k)}}{dz_i^{(k)}},
\]

- In the case of scalar activation functions, the derivative of the loss w.r.t to the input to the unit is a simple product of derivatives
For vector activations the derivative of the loss w.r.t. to any input is a sum of partial derivatives.

\[
\frac{\partial \text{Div}}{\partial z_i^{(k)}} = \sum_j \frac{\partial \text{Div}}{\partial y_j^{(k)}} \frac{\partial y_j^{(k)}}{\partial z_i^{(k)}}
\]

Note: derivatives of scalar activations are just a special case of vector activations:

\[
\frac{\partial y_j^{(k)}}{\partial z_i^{(k)}} = 0 \text{ for } i \neq j
\]
Example Vector Activation: Softmax

\[y_i^{(k)} = \frac{\exp(z_i^{(k)})}{\sum_j \exp(z_j^{(k)})} \]
Example Vector Activation: Softmax

\[y_i^{(k)} = \frac{\exp \left(z_i^{(k)} \right)}{\sum_j \exp \left(z_j^{(k)} \right)} \]

\[\frac{\partial \text{Div}}{\partial z_i^{(k)}} = \sum_j \frac{\partial \text{Div}}{\partial y_j^{(k)}} \frac{\partial y_j^{(k)}}{\partial z_i^{(k)}} \]
Example Vector Activation: Softmax

$$y_i^{(k)} = \frac{\exp(z_i^{(k)})}{\sum_j \exp(z_j^{(k)})}$$

$$\frac{\partial \text{Div}}{\partial z_i^{(k)}} = \sum_j \frac{\partial \text{Div}}{\partial y_j^{(k)}} \frac{\partial y_j^{(k)}}{\partial z_i^{(k)}}$$

$$\frac{\partial y_j^{(k)}}{\partial z_i^{(k)}} = \begin{cases} y_i^{(k)} (1 - y_i^{(k)}) & \text{if } i = j \\ -y_i^{(k)} y_j^{(k)} & \text{if } i \neq j \end{cases}$$
Example Vector Activation: Softmax

- For future reference
- \(\delta_{ij} \) is the Kronecker delta: \(\delta_{ij} = 1 \) if \(i = j \), \(0 \) if \(i \neq j \)
Backward Pass for softmax output layer

- **Output layer (N):**
 - For \(i = 1 \ldots D_N \)
 - \(\frac{\partial \text{Div}}{\partial y_i^{(N)}} = \frac{\partial \text{Div}(y,d)}{\partial y_i} \)
 - \(\frac{\partial D}{\partial z_i^{(N)}} = \sum_j \frac{\partial \text{Div}(y,d)}{\partial y_j^{(N)}} y_i^{(N)} (\delta_{ij} - y_j^{(N)}) \)
 - \(\frac{\partial D}{\partial w_{ij}^{(N)}} = y_i^{(N-1)} \frac{\partial \text{Div}}{\partial z_j^{(N)}} \) for \(j = 0 \ldots D_{N-1} \)

- **For layer \(k = N - 1 \) down to 1**
 - For \(i = 1 \ldots D_k \)
 - \(\frac{\partial \text{Div}}{\partial y_i^{(k)}} = \sum_j w_{ij}^{(k+1)} \frac{\partial \text{Div}}{\partial z_j^{(k+1)}} \)
 - \(\frac{\partial \text{Div}}{\partial z_i^{(k)}} = \frac{\partial \text{Div}}{\partial y_i^{(k)}} f_k' \left(z_i^{(k)} \right) \)
 - \(\frac{\partial \text{Div}}{\partial w_{ij}^{(k)}} = y_i^{(k-1)} \frac{\partial \text{Div}}{\partial z_j^{(k)}} \) for \(j = 0 \ldots D_{k-1} \)
Special cases

• Examples of vector activations and other special cases on slides
 – Please look up
 – Will appear in quiz!
Vector Activations

- In reality the vector combinations can be anything
 - E.g. linear combinations, polynomials, logistic (softmax), etc.
Special Case 2: Multiplicative networks

- Some types of networks have *multiplicative* combination
 - In contrast to the *additive* combination we have seen so far
- Seen in networks such as LSTMs, GRUs, attention models, etc.
Backpropagation: Multiplicative Networks

Forward:

\[o_i^{(k)} = y_j^{(k-1)} y_l^{(k-1)} \]

Backward:

\[\frac{\partial \text{Div}}{\partial o_i^{(k)}} = \sum_j w_{ij}^{(k+1)} \frac{\partial \text{Div}}{\partial z_j^{(k+1)}} \]

\[\frac{\partial \text{Div}}{\partial y_j^{(k-1)}} = \frac{\partial o_i^{(k)}}{\partial y_j^{(k-1)}} \quad \frac{\partial \text{Div}}{\partial o_i^{(k)}} = \frac{\partial o_i^{(k)}}{\partial o_i^{(k)}} \quad \frac{\partial \text{Div}}{\partial y_l^{(k-1)}} = y_{ij}^{(k-1)} \frac{\partial \text{Div}}{\partial o_i^{(k)}} \]

- Some types of networks have multiplicative combination
Multiplicative combination as a case of vector activations

- A layer of multiplicative combination is a special case of vector activation

\[z_i^{(k)} = y_i^{(k-1)} \]

\[y_i^{(k)} = z_{2i-1}^{(k)} z_{2i}^{(k)} \]
Multiplicative combination: Can be viewed as a case of vector activations

- A layer of multiplicative combination is a special case of vector activation

\[
\begin{align*}
 z_{i}^{(k)} &= \sum_{j} w_{ji}^{(k)} y_{j}^{(k-1)} \\
 y_{i}^{(k)} &= \prod_{l} \left(z_{l}^{(k)} \right)^{\alpha_{li}^{(k)}} \\
 \frac{\partial y_{i}^{(k)}}{\partial z_{j}^{(k)}} &= \alpha_{ji}^{(k)} \left(z_{j}^{(k)} \right)^{\alpha_{ji}^{(k)} - 1} \prod_{l \neq j} \left(z_{l}^{(k)} \right)^{\alpha_{li}^{(k)}} \\
 \frac{\partial \text{Div}}{\partial z_{j}^{(k)}} &= \sum_{i} \frac{\partial \text{Div}}{\partial y_{i}^{(k)}} \frac{\partial y_{i}^{(k)}}{\partial z_{j}^{(k)}}
\end{align*}
\]
Gradients: Backward Computation

For $k = N \ldots 1$

For $i = 1: \text{layer width}$

If layer has vector activation

$$\frac{\partial \text{Div}}{\partial z_i^{(k)}} = \sum_j \frac{\partial \text{Div}}{\partial y_j^{(k)}} \frac{\partial y_j^{(k)}}{\partial z_i^{(k)}}$$

Else if activation is scalar

$$\frac{\partial \text{Div}}{\partial y_i^{(k-1)}} = \sum_j w_{ij}^{(k)} \frac{\partial \text{Div}}{\partial z_j^{(k)}}$$

$$\frac{\partial \text{Div}}{\partial w_{ij}^{(k)}} = y_i^{(k-1)} \frac{\partial \text{Div}}{\partial z_j^{(k)}}$$
Special Case: Non-differentiable activations

 Activation functions are sometimes not actually differentiable
 - E.g. The RELU (Rectified Linear Unit)
 • And its variants: leaky RELU, randomized leaky RELU
 - E.g. The “max” function

 Must use “subgradients” where available
 - Or “secants”
The subgradient

- A subgradient of a function $f(x)$ at a point x_0 is any vector v such that
 \[(f(x) - f(x_0)) \geq v^T(x - x_0)\]
 - Any direction such that moving in that direction increases the function

- Guaranteed to exist only for convex functions
 - "bowl" shaped functions
 - For non-convex functions, the equivalent concept is a "quasi-secant"

- The subgradient is a direction in which the function is guaranteed to increase

- If the function is differentiable at x_0, the subgradient is the gradient
 - The gradient is not always the subgradient though
Non-differentiability: RELU

\[\Delta f(z) = \alpha \Delta z \]

- At 0 a negative perturbation \(\Delta z < 0 \) results in no change of \(f(z) \)
 - \(\alpha = 0 \)
- A positive perturbation \(\Delta z > 0 \) results in \(\Delta f(z) = \Delta z \)
 - \(\alpha = 1 \)
- Peering very closely, we can imagine that the curve is rotating continuously from slope = 0 to slope = 1 at \(z = 0 \)
 - So any slope between 0 and 1 is valid
Subgradients and the RELU

- The subderivative of a RELU is the slope of any line that lies entirely under it
 - The subgradient is a generalization of the subderivative
 - At the differentiable points on the curve, this is the same as the gradient

- Can use any subgradient at 0
 - Typically, will use the equation given
Subgradients and the Max

\[y = \max_j z_j \]

- Vector equivalent of subgradient
 - 1 w.r.t. the largest incoming input
 - Incremental changes in this input will change the output
 - 0 for the rest
 - Incremental changes to these inputs will not change the output

\[
\frac{\partial y}{\partial z_i} = \begin{cases}
1, & i = \text{argmax}_j z_j \\
0, & \text{otherwise}
\end{cases}
\]
We have $y = \max(z_1, z_2, z_3)$, computed at $z_1 = 1$, $z_2 = 2$, $z_3 = 3$. Select all that are true

- $\frac{dy}{dz_1} = 1$
- $\frac{dy}{dz_1} = 0$ (correct)
- $\frac{dy}{dz_2} = 1$ (correct)
- $\frac{dy}{dz_2} = 0$
- $\frac{dy}{dz_3} = 1$
- $\frac{dy}{dz_3} = 0$
We have $y = \max(z_1, z_2, z_3)$, computed at $z_1 = 1$, $z_2 = 2$, $z_3 = 3$. Select all that are true

- $\frac{dy}{dz_1} = 1$
- $\frac{dy}{dz_1} = 0$ (correct)
- $\frac{dy}{dz_2} = 1$
- $\frac{dy}{dz_2} = 0$ (correct)
- $\frac{dy}{dz_3} = 1$ (correct)
- $\frac{dy}{dz_3} = 0$
Subgradients and the Max

- Multiple outputs, each selecting the max of a different subset of inputs
 - Will be seen in convolutional networks
- Gradient for any output:
 - 1 for the specific component that is maximum in corresponding input subset
 - 0 otherwise

$$y_i = \max_{l \in S_j} z_l$$

$$\frac{\partial y_j}{\partial z_i} = \begin{cases} 1, & i = \arg\max_{l \in S_j} z_l \\ 0, & \text{otherwise} \end{cases}$$
Backward Pass: Recap

• Output layer \((N)\):

 - For \(i = 1 \ldots D_N\)

 \[
 \frac{\partial \text{Div}}{\partial y_i^{(N)}} = \frac{\partial \text{Div}(y, d)}{\partial y_i}
 \]

 \[
 \frac{\partial \text{Div}}{\partial z_i^{(N)}} = \frac{\partial \text{Div}}{\partial y_i^{(N)}} \frac{\partial y_i^{(N)}}{\partial z_i^{(N)}}
 \]

 OR \(\sum_j \frac{\partial \text{Div}}{\partial y_j^{(N)}} \frac{\partial y_j^{(N)}}{\partial z_i^{(N)}}\) (vector activation)

 \[
 \frac{\partial \text{Div}}{\partial w_{ji}^{(N)}} = y_j^{(N-1)} \frac{\partial \text{Di}}{\partial z_i^{(N)}}
 \]

 for \(j = 0 \ldots D_k\)

• For layer \(k = N - 1\) downto \(1\)

 - For \(i = 1 \ldots D_k\)

 \[
 \frac{\partial \text{Div}}{\partial y_i^{(k)}} = \sum_j w_{ij}^{(k+1)} \frac{\partial \text{Div}}{\partial z_j^{(k+1)}}
 \]

 \[
 \frac{\partial \text{Di}}{\partial z_i^{(k)}} = \frac{\partial \text{Div}}{\partial y_i^{(k)}} \frac{\partial y_i^{(k)}}{\partial z_i^{(k)}}
 \]

 OR \(\sum_j \frac{\partial \text{Div}}{\partial y_j^{(k)}} \frac{\partial y_j^{(k)}}{\partial z_i^{(k)}}\) (vector activation)

 \[
 \frac{\partial \text{Div}}{\partial w_{ji}^{(k)}} = y_j^{(k-1)} \frac{\partial \text{Div}}{\partial z_i^{(k)}}
 \]

 for \(j = 0 \ldots D_k\)

These may be subgradients
Overall Approach

• For each data instance
 – **Forward pass:** Pass instance forward through the net. Store all intermediate outputs of all computation.
 – **Backward pass:** Sweep backward through the net, iteratively compute all derivatives w.r.t weights

• Actual loss is the sum of the divergence over all training instances

\[
\text{Loss} = \frac{1}{|\{X\}|} \sum_X \text{Div}(Y(X), d(X))
\]

• Actual gradient is the sum or average of the derivatives computed for each training instance

\[
\nabla_W \text{Loss} = \frac{1}{|\{X\}|} \sum_X \nabla_W \text{Div}(Y(X), d(X))
\]

\[
W \leftarrow W - \eta \nabla_W \text{Loss}^T
\]
Training by BackProp

- Initialize weights $W^{(k)}$ for all layers $k = 1 \ldots K$
- Do: \textit{(Gradient descent iterations)}
 - Initialize $\text{Loss} = 0$; For all i, j, k, initialize $\frac{d\text{Loss}}{dw_{i,j}^{(k)}} = 0$
 - For all $t = 1: T$ \textit{(Iterate over training instances)}
 - \textbf{Forward pass:} Compute
 - Output Y_t
 - $\text{Loss} += \text{Div}(Y_t, d_t)$
 - \textbf{Backward pass:} For all i, j, k:
 - Compute $\frac{d\text{Div}(Y_t, d_t)}{dw_{i,j}^{(k)}}$
 - $\frac{d\text{Loss}}{dw_{i,j}^{(k)}} += \frac{d\text{Div}(Y_t, d_t)}{dw_{i,j}^{(k)}}$
 - For all i, j, k, update:
 $$w_{i,j}^{(k)} = w_{i,j}^{(k)} - \frac{\eta}{T} \frac{d\text{Loss}}{dw_{i,j}^{(k)}}$$
 - Until Loss has converged
Vector formulation

• For layered networks it is generally simpler to think of the process in terms of vector operations
 – Simpler arithmetic
 – Fast matrix libraries make operations much faster

• We can restate the entire process in vector terms
 – This is what is actually used in any real system
Vector formulation

- Arrange the inputs to neurons of the kth layer as a vector z_k
- Arrange the outputs of neurons in the kth layer as a vector y_k
- Arrange the weights to any layer as a matrix W_k
 - Similarly with biases
The computation of a single layer is easily expressed in matrix notation as (setting $y_0 = x$):

$$z_k = W_k y_{k-1} + b_k,$$

and

$$y_k = f_k(z_k).$$
The forward pass: Evaluating the network

\[y_0 = x \]
The forward pass

\[z_1 = W_1 y_0 + b_1 \]
The forward pass

$$y_1 = f_1(z_1)$$

The Complete computation

$$y_1 = f_1(W_1 x + b_1)$$
The forward pass

\[x \xrightarrow{W_1, b_1} z_1 \xrightarrow{y_1} W_2, b_2 \xrightarrow{z_2} \]

\[z_2 = W_2 y_1 + b_2 \]

The Complete computation

\[y_1 = f_1(W_1 x + b_1) \]
The forward pass

\[y_2 = f_2(W_2 f_1(W_1 x + b_1) + b_2) \]
The forward pass

The Complete computation

\[z_N = W_N f_{N-1}(...f_2(W_2 f_1(W_1 x + b_1) + b_2)...) + b_N \]
The forward pass

\[Y = f_N(W_N f_{N-1}(... f_2(W_2 f_1(W_1 x + b_1) + b_2) ...) + b_N) \]
Forward pass:

Initialize

\[y_0 = x \]

For \(k = 1 \) to \(N \):

\[z_k = W_k y_{k-1} + b_k \]

\[y_k = f_k(z_k) \]

Output

\[Y = y_N \]
The Forward Pass

• Set $y_0 = x$

• Iterate through layers:
 – For layer $k = 1$ to N:
 \[z_k = W_k y_{k-1} + b_k \]
 \[y_k = f_k(z_k) \]

• Output:
 \[Y = y_N \]
The Backward Pass

• Have completed the forward pass
• Before presenting the backward pass, some more calculus...
 – Vector calculus this time
Vector Calculus Notes 1: Definitions

• A derivative is a multiplicative factor that multiplies a perturbation in the input to compute the corresponding perturbation of the output.

• For a scalar function of a vector argument

\[y = f(z) \]
\[\Delta y = \nabla_z y \Delta z \]

• If \(z \) is an \(R \times 1 \) vector, \(\nabla_z y \) is a \(1 \times R \) vector
 – The shape of the derivative is the transpose of the shape of \(z \).

• \(\nabla_z y^T \) is called the gradient of \(y \) w.r.t \(z \).
Vector Calculus Notes 1: Definitions

- For a *vector* function of a vector argument
 \[\mathbf{y} = f(\mathbf{z}) \]
 \[
 \begin{bmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_M
 \end{bmatrix} = f
 \begin{bmatrix}
 z_1 \\
 z_2 \\
 \vdots \\
 z_D
 \end{bmatrix}
 \]

 \[\Delta \mathbf{y} = \nabla_{\mathbf{z}} \mathbf{y} \Delta \mathbf{z} \]

- If **z** is an \(R \times 1 \) vector, and **y** is an \(L \times 1 \) \(\nabla_{\mathbf{z}} \mathbf{y} \) is an \(L \times R \) matrix
 - Or the dimensions won’t match

- \(\nabla_{\mathbf{z}} \mathbf{y} \) is called the *Jacobian* of **y** w.r.t **z*
Calculus Notes: The Jacobian

- The derivative of a vector function w.r.t. vector input is called a **Jacobian**
- It is the matrix of partial derivatives given below

\[
\begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_M \\
\end{bmatrix} = f\left(\begin{bmatrix}
z_1 \\
z_2 \\
\vdots \\
z_D \\
\end{bmatrix}\right)
\]

Using vector notation

\[\mathbf{y} = f(\mathbf{z})\]

Check:

\[\Delta \mathbf{y} = J_y(\mathbf{z})\Delta \mathbf{z}\]
Jacobians can describe the derivatives of neural activations w.r.t. their input.

\[y_i = f(z_i) \]

\[
J_y(z) = \begin{bmatrix}
 f'(z_1) & 0 & \cdots & 0 \\
 0 & f'(z_2) & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & f'(z_M)
\end{bmatrix}
\]

- **For scalar activations (shorthand notation):**
 - Jacobian is a diagonal matrix
 - Diagonal entries are individual derivatives of outputs w.r.t inputs
For Vector activations

- Jacobian is a full matrix
 - Entries are partial derivatives of individual outputs w.r.t individual inputs
Special case: Affine functions

- Matrix W and bias b operating on vector y to produce vector z
- The Jacobian of z w.r.t y is simply the matrix W

$z(y) = Wy + b$

$\nabla_y z = J_z(y) = W$
Vector Calculus Notes 2: Chain rule

• For nested functions we have the following chain rule

\[y = y(z(x)) \quad \Rightarrow \quad \nabla_x y = \nabla_z y \nabla_x z \]

Check

\[\Delta y = \nabla_z y \Delta z \]
\[\Delta z = \nabla_x z \Delta x \]

\[\Delta y = \nabla_z y \nabla_x z \Delta x = \nabla_x y \Delta x \]

Note the order: The derivative of the outer function comes first
Vector Calculus Notes 2: Chain rule

- Chain rule for Jacobians:
- For vector functions of vector inputs:

\[y = y(z(x)) \quad \Rightarrow \quad J_y(x) = J_y(z)J_z(x) \]

Check

\[\Delta y = J_y(z)\Delta z \]
\[\Delta z = J_z(x)\Delta x \]

\[\Delta y = J_y(z)J_z(x)\Delta x = J_y(x)\Delta x \]

Note the order: The derivative of the outer function comes first
Vector Calculus Notes 2: Chain rule

• *Combining Jacobians and Gradients*

• For *scalar* functions of vector inputs (*z()* is vector):

\[D = D(y(z)) \quad \Rightarrow \quad \nabla_z D = \nabla_y(D) J_y(z) \]

Check

\[\Delta D = \nabla_y(D) \Delta y \]

\[\Delta y = J_y(z) \Delta z \]

\[\Delta D = \nabla_y(D) J_y(z) \Delta z = \nabla_z D \Delta z \]

Note the order: The derivative of the outer function comes first
Vector Calculus Notes 2: Chain rule

• For nested functions we have the following chain rule

\[D = D \left(y_N \left(z_N \left(y_{N-1} \left(z_{N-1} \left(\ldots y_1 \left(z_1(x) \right) \right) \right) \right) \right) \right) \]

\[\nabla_x D = \nabla_{y_N} D \nabla_{z_N} y_N \nabla_{y_{N-1}} z_N \nabla_{z_{N-1}} y_{N-1} \ldots \nabla_{z_1} y_1 \nabla_{x} z_1 \]

Note the order: The derivative of the outer function comes first
Vector Calculus Notes 2: Chain rule

• For nested functions we have the following chain rule

\[D = D \left(y_N \left(z_N \left(y_{N-1} \left(z_{N-1} \left(\ldots y_1 (z_1(x)) \right) \right) \right) \right) \right) \]

\[\nabla_x D = \nabla_{y_N} D \nabla_{z_N} y_N \nabla_{y_{N-1}} z_N \nabla_{z_{N-1}} y_{N-1} \ldots \nabla_{z_1} y_1 \nabla_x z_1 \]

Note the order: The derivative of the outer function comes first.
More calculus: Special Case

• Scalar functions of Affine functions

\[z = Wy + b \]
\[D = f(z) \]
\[\nabla_y D = \nabla_z(D) W \]
\[\nabla_b D = \nabla_z(D) \]
\[\nabla_W D = y \nabla_z(D) \]

• Note: the derivative shapes are the transpose of the shapes of \(W \) and \(b \)
More calculus: Special Case

• Scalar functions of Affine functions

\[z = Wy + b \quad D = f(z) \]

• Writing the transpose

\[z^T = y^T W^T + b^T \]
\[\nabla_{W^T} z^T = y^T \]

\[\nabla_{W^T} D = \nabla_{z^T} D \quad \nabla_{W^T} z^T = \nabla_{z^T} D \quad y^T \]

\[\nabla_W D = (\nabla_{W^T} D)^\top = y \nabla_z D \]

\[\nabla_W D = y \nabla_z (D) \]
Special Case: Application to a network

- Scalar functions of Affine functions

\[z = Wy + b \]

\[\text{Div} = \text{Div}(z) \]

\[\nabla_y \text{Div} = \nabla_z \text{Div} W \]

\[z_k = W_k y_{k-1} + b_k \]

The divergence is a scalar function of \(z_k \)

Applying the above rule

\[\nabla_{y_{k-1}} \text{Div} = \nabla_{z_k} \text{Div} W_k \]
Special Case: Application to a network

- Scalar functions of Affine functions

\[z = W y + b \]

\[\text{Div} = \text{Div}(z) \]

\[\nabla_b \text{Div} = \nabla_z \text{Div} \]

\[\nabla_w \text{Div} = y \nabla_z \text{Div} \]

\[z_k = W_k y_{k-1} + b_k \]

\[\nabla_{b_k} \text{Div} = \nabla_{z_k} \text{Div} \]

\[\nabla_{w_k} D = y_{k-1} \nabla_{z_k} \text{Div} \]
We are given the function $Y = F(G(H(X)))$, where Y and X are vectors, and G and H also compute vector outputs.

Select the correct formula for the derivative of Y w.r.t. X. We use the notation $\nabla_X(Y)$ to represent the derivative of Y w.r.t X.

- $\nabla_X(H) \nabla_H(G) \nabla_G(F)$
- $\nabla_G(F)\nabla_H(G) \nabla_X(H)$
- Both are correct
We are given the function $Y = F(G(H(X)))$, where Y and X are vectors, and G and H also compute vector outputs.

Select the correct formula for the derivative of Y w.r.t. X. We use the notation $\nabla_X(Y)$ to represent the derivative of Y w.r.t X.

- $\nabla_X(H) \nabla_H(G) \nabla_G(F)$
- $\nabla_G(F) \nabla_H(G) \nabla_X(H)$ (correct)
- Both are correct
The backward pass

- The network is a nested function

\[Y = f_N(w_N f_{N-1}(... f_2(w_2 f_1(w_1 x + b_1) + b_2) ...) + b_N) \]

- The divergence for any \(x \) is also a nested function

\[Div(Y, d) = Div(f_N(w_N f_{N-1}(... f_2(w_2 f_1(w_1 x + b_1) + b_2) ...) + b_N), d) \]
The backward pass

In the following slides we will also be using the notation $\nabla_z Y$ to represent the derivative of any Y w.r.t any z.
The backward pass

First compute the derivative of the divergence w.r.t. Y. The actual derivative depends on the divergence function.

N.B: The gradient is the transpose of the derivative
The divergence is a nested function: $Div(Y(z_N))$

$$\nabla_{z_N} Div = \nabla_Y Div \cdot \nabla_{z_N} Y$$

Already computed New term
The backward pass

\[\nabla_{z_N} \text{Div} = \nabla_Y \text{Div} J_Y(z_N) \]

Already computed New term
The backward pass

The divergence is a nested function: \(\nabla_{y_{N-1}} \text{Div} = \nabla_{z_N} \text{Div} \cdot \nabla_{y_{N-1}} z_N \)

\[z_N = W_N y_{N-1} + b_N \Rightarrow \nabla_{y_{N-1}} z_N = W_N \]
The backward pass

\[\nabla_{y_{N-1}} \text{Div} = \nabla_{z_N} \text{Div} \mathbf{W}_N \]

Already computed New term
The backward pass

\[\nabla_{y_{N-1}} Div = \nabla_{z_N} Div W_N \]

\[z = Wy + b \]
\[Div = Div(z) \]
\[\nabla_b Div = \nabla_z Div \]
\[\nabla_w Div = y \nabla_z Div \]
\[\nabla_{y_{N-1}} Div \]
\[\nabla_{w_N} Div = y_{N-1} \nabla_{z_N} Div \]
\[\nabla_{b_N} Div = \nabla_{z_N} Div \]
The backward pass

\[\nabla_{z_{N-1}} \text{Div} = \nabla_{y_{N-1}} \text{Div} \cdot \nabla_{z_{N-1}} y_{N-1} \]

Already computed New term

\[\nabla_{z_{N-1}} \text{Div} \]
The Jacobian will be a diagonal matrix for scalar activations.
The backward pass

\[\nabla_{y_{N-2}} \text{Div} = \nabla_{z_{N-1}} \text{Div} \cdot \nabla_{y_{N-2}} z_{N-1} \]
The backward pass

\[\nabla_{y_{N-2}} \text{Div} = \nabla_{z_{N-1}} \text{Div} W_{N-1} \]
The backward pass

\[\nabla_{y_{N-2}} \text{Div} = \nabla_{z_{N-1}} \text{Div} W_{N-1} \]

\[\nabla_{w_{N-1}} \text{Div} = y_{N-2} \nabla_{z_{N-1}} \text{Div} \]

\[\nabla_{b_{N-1}} \text{Div} = \nabla_{z_{N-1}} \text{Div} \]
The backward pass

\[\nabla_{z_1} \text{Div} = \nabla_{y_1} \text{Div} \left(J_{y_1}(z_1) \right) \]
The backward pass

In some problems we will also want to compute the derivative w.r.t. the input.

\[\nabla_{w_1} \text{Div} = x \nabla_{z_1} \text{Div} \]

\[\nabla_{b_1} \text{Div} = \nabla_{z_1} \text{Div} \]
The Backward Pass

• Set $y_N = Y, y_0 = x$

• Initialize: Compute $\nabla_{y_N} Div = \nabla_Y Div$

• For layer $k = N$ downto 1:

 – Compute $J_{y_k}(z_k)$

 • Will require intermediate values computed in the forward pass

 – Backward recursion step:
 $\nabla_{z_k} Div = \nabla_{y_k} Div J_{y_k}(z_k)$
 $\nabla_{y_{k-1}} Div = \nabla_{z_k} Div W_k$

 – Gradient computation:
 $\nabla_{W_k} Div = y_{k-1} \nabla_{z_k} Div$
 $\nabla_{b_k} Div = \nabla_{z_k} Div$
The Backward Pass

• Set \(y_N = Y, y_0 = x \)

• Initialize: Compute \(\nabla_{y_N} \text{Div} = \nabla_Y \text{Div} \)

• For layer \(k = N \) downto 1:
 – Compute \(J_{y_k}(z_k) \)
 • Will require intermediate values computed in the forward pass
 – Backward recursion step: \(\nabla_{z_k} \text{Div} = \nabla_{y_k} \text{Div} J_{y_k}(z_k) \)
 \(\nabla_{y_{k-1}} \text{Div} = \nabla_{z_k} \text{Div} W_k \)
 – Gradient computation:
 \(\nabla_{W_k} \text{Div} = y_{k-1} \nabla_{z_k} \text{Div} \)
 \(\nabla_{b_k} \text{Div} = \nabla_{z_k} \text{Div} \)

Note analogy to forward pass
For comparison: The Forward Pass

• Set $y_0 = x$

• For layer $k = 1$ to N:
 – Forward recursion step:
 \[
 z_k = W_k y_{k-1} + b_k
 \]
 \[
 y_k = f_k(z_k)
 \]

• Output:
 \[
 Y = y_N
 \]
Neural network training algorithm

- Initialize all weights and biases \((W_1, b_1, W_2, b_2, ..., W_N, b_N)\)
- Do:
 - \(Loss = 0\)
 - For all \(k\), initialize \(\nabla_{W_k} Loss = 0, \nabla_{b_k} Loss = 0\)
 - For all \(t = 1:T\) # Loop through training instances
 - Forward pass: Compute
 - Output \(Y(X_t)\)
 - Divergence \(\text{Div}(Y_t, d_t)\)
 - \(Loss += \text{Div}(Y_t, d_t)\)
 - Backward pass: For all \(k\) compute:
 - \(\nabla_{y_k} \text{Div} = \nabla_{z_{k+1}} \text{Div} W_{k+1}\)
 - \(\nabla_{z_k} \text{Div} = \nabla_{y_k} \text{Div} J_y(z_k)\)
 - \(\nabla_{W_k} \text{Div}(Y_t, d_t) = y_{k-1} \nabla_{z_k} \text{Div}; \nabla_{b_k} \text{Div}(Y_t, d_t) = \nabla_{z_k} \text{Div}\)
 - \(\nabla_{W_k} Loss += \nabla_{W_k} \text{Div}(Y_t, d_t); \nabla_{b_k} Loss += \nabla_{b_k} \text{Div}(Y_t, d_t)\)
 - For all \(k\), update:
 \[
 W_k = W_k - \frac{\eta}{T} (\nabla_{W_k} Loss)^T; \quad b_k = b_k - \frac{\eta}{T} (\nabla_{W_k} Loss)^T
 \]
- Until \(Loss\) has converged
Setting up for digit recognition

- Simple Problem: Recognizing “2” or “not 2”
- Single output with sigmoid activation
 - \(Y \in (0, 1) \)
 - \(d \) is either 0 or 1
- Use KL divergence
- Backpropagation to compute derivatives
 - To apply in gradient descent to learn network parameters
Recognizing the digit

More complex problem: Recognizing digit

Network with 10 (or 11) outputs
 – First ten outputs correspond to the ten digits
 • Optional 11th is for none of the above

Softmax output layer:
 – Ideal output: One of the outputs goes to 1, the others go to 0

Backpropagation with KL divergence
 – To compute derivatives for gradient descent updates to learn network
• Neural networks must be trained to minimize the average divergence between the output of the network and the desired output over a set of training instances, with respect to network parameters.

• Minimization is performed using gradient descent

• Gradients (derivatives) of the divergence (for any individual instance) w.r.t. network parameters can be computed using backpropagation
 – Which requires a “forward” pass of inference followed by a “backward” pass of gradient computation

• The computed gradients can be incorporated into gradient descent
Issues

• Convergence: How well does it learn
 – And how can we improve it
• How well will it generalize (outside training data)
• What does the output really mean?
• Etc..
Next up

• Convergence and generalization