Generative Adversarial Networks

11785 Deep Learning
Spring 2024

Chetan Chilkunda Quentin Auster
Recap and Learning Objectives

- VAEs
- Flow Models
- Diffusion Models

Today: GANs
Learning Objectives

- Generative vs Discriminative models
- Explicit vs Implicit models
- The insufficiency of Maximum Likelihood Estimation for learning GANs
 - Using a Discriminator network for losses
- How GANs train
- Benefits and challenges of GANs
- Learning paradigms (learning through comparison)
 - Comparison by Ratios and the emergence of the Jensen Shannon Divergence
 - Comparison by Differences and the use of Wasserstein distance
 - Zero-sum vs Non-zero-sum
- Variants of GANs
The Problem

From a large collection of images of faces, can a network learn to generate new portrait?

Generate samples from the distribution of “face” images

How do we even characterize this distribution?
The Problem

From a large collection of images of faces, can a network learn to generate new portrait?

Generate samples from the distribution of “face” images

How do we even characterize this distribution?
What are GANs

Generative Adversarial Networks
What are GANs

Generative Model which generates data similar to training data (like VAEs)
Discriminative vs Generative Models

Discriminative

● Learn the conditional distribution $P(Y \mid X)$.
● Learns the decision boundary.
● Limited scope. Used for classification tasks.
● E.g., logistic regression, SVM, etc.

Generative

● Learns joint distribution $P(X, Y)$
 ○ Can also condition on covariates
● Learns the actual probability distribution of the data.
 ○ This is a tougher problem, since it requires a deeper “understanding” of the distribution.
● Capable of both generative and discriminative tasks.
● E.g., Naïve Bayes, Gaussian Mixture Models, VAE, Diffusion, GANs.
Generative Models

Goals and Tasks
- Generation
- Density Estimation
- Missing Value Imputation
- Structure Discovery
- Latent Space Interpolation + Arithmetic
- … and more

Evaluation
- Sample quality
- Sample diversity
- Generalization
Generative Models

Goals and Tasks

- Generation
- Density Estimation
- Missing Value Imputation
- Structure Discovery
- Latent Space Interpolation + Arithmetic
- ... and more

Evaluation

- Sample quality
- Sample diversity
- Generalization
Generative Models

A lot...

How can we start to distinguish between model types?

- Can we evaluate a probability density function?
- Can we sample from them (quickly)?
- What training method can we use?
- Does it rely on a latent variable for generation?
- What architecture should we use?
Generative Models

How can we start to distinguish between model types?

- Can we evaluate a probability density function?
- Can we sample from them (quickly)?
- What training method can we use?
- Does it rely on a latent variable for generation?
- What architecture should we use?

A lot...
Explicit vs Implicit Models

Explicit

- Direct access to probability density function for the distribution.
- Can compute the exact probability of samples.

Implicit

- Ability to sample from distribution, but no access to the density function.

Figures from Murphy (2023), Fig. 26.1, with code available at https://github.com/probml/pyprobml/blob/master/notebooks/book2/26/genmo_types_implicit_explicit.ipynb
Explicit vs Implicit Models

Explicit
- Direct access to probability density function for the distribution.
- Can compute the exact probability of samples.

Implicit
- Ability to sample from distribution, but no access to the density function.

Figures from Murphy (2023), Fig. 26.1, with code available at https://github.com/probml/pyprobml/blob/master/notebooks/book2/26/genmo_types_implicit_explicit.ipynb
Q1: What is the difference between Discriminative models vs. Generative models?

- Discriminative models model the decision boundary between classes, whereas Generative models model class distributions
- Generative models model the decision boundary between classes, whereas Discriminative models model class distributions

Q2: What is the difference between Explicit and Implicit Generative models?

- Implicit models compute the probability of samples, whereas Explicit models only let you draw samples from the distribution
- Explicit models compute the probability of samples, whereas Implicit models only let you draw samples from the distribution
Q1: What is the difference between Discriminative models vs. Generative models?

- Discriminative models model the decision boundary between classes, whereas Generative models model class distributions
- Generative models model the decision boundary between classes, whereas Discriminative models model class distributions

Q2: What is the difference between Explicit and Implicit Generative models?

- Implicit models compute the probability of samples, whereas Explicit models only let you draw samples from the distribution
- **Explicit models compute the probability of samples, whereas Implicit models only let you draw samples from the distribution**
Learning Objectives

✓ Generative vs Discriminative models
✓ Explicit vs Implicit models
❏ The insufficiency of Maximum Likelihood Estimation for learning GANs
 ❏ Using a Discriminator network for losses
❏ How GANs train
❏ Benefits and challenges of GANs
❏ Learning paradigms (learning through comparison)
 ❏ Comparison by Ratios and the emergence of the Jensen Shannon Divergence
 ❏ Comparison by Differences and the use of Wasserstein distance
 ❏ Zero-sum vs Non-zero-sum
❏ Variants of GANs
Generative Models

How can we start to distinguish between model types?

- Can we evaluate a probability density function?
- Can we sample from them (quickly)?
- What training method can we use?
- Does it rely on a latent variable for generation?
- What architecture should we use?

A lot...
From a large collection of images of faces, can a network learn to generate new portrait?

Generate samples from the distribution of “face” images

How do we even characterize this distribution?
What we have seen: VAE

Generator is a decoder of a VAE... how did we train this?

\[Z \sim P(Z) \quad \text{Generator} \quad G(Z) \quad \text{Generated Data} \quad X' \]
What we have seen: VAE

Generator is a decoder of a VAE... how did we train this?

\[Z \sim P(Z) \]

\[G(Z; \theta) \]

\[X' \sim P(X; \theta) \]

This is a parametric model
What we have seen: VAE

Generator is a decoder of a VAE... how did we train this?

By maximizing the likelihood of the data (MLE)

$$\theta^* = \arg \max_\theta \log P(X; \theta)$$
What we have seen: VAE

Generator is a decoder of a VAE... how did we train this?

By maximizing the \textit{likelihood} of the data (MLE)

\[\theta^* = \arg\min_{\theta} -\log P(X; \theta) \]
What we have seen: VAE

Generator is a decoder of a VAE… how did we train this?

By maximizing the likelihood of the data (MLE)

\[\theta^* = \arg\min_\theta \ - \log P(X; \theta) \]

This is a parametric model

Any issues here?
Issues with Maximum Likelihood Estimation

- Likelihood can be difficult to compute
 - VAEs and GANs are implicit generative models, so we don’t directly have the likelihood
 - With VAEs, we were able to compute bounds on the log likelihood.

- Likelihood is not related to perceptual sample quality
Issues with Maximum Likelihood Estimation

- Likelihood can be difficult to compute
 - VAEs and GANs are implicit generative models, so we don’t directly have the likelihood
 - With VAEs, we were able to compute bounds on the log likelihood.

- Likelihood is not related to perceptual sample quality
 - High Likelihood, Bad Samples
 - Consider a composite model: 0.01(Great Model) + 0.99 (Noise)
 - For high dimensional (D) data, the log likelihood of the composite model will be similar to that of the “Great Model,” but 99% of the samples will be noise.

\[
q_2(x) = 0.01q_0(x) + 0.99q_1(x)
\]

\[
\log q_2(x) = \log[0.01q_0(x) + 0.99q_1(x)] \geq \log[0.01q_0(x)] = \log q_0(x) - 100
\]

\[
|\log q_0(x)| \sim D \gg 100 \implies \log q_2(x) \approx \log q_0(x)
\]
Issues with Maximum Likelihood Estimation

● Likelihood can be difficult to compute
 ○ VAEs and GANs are implicit generative models, so we don’t directly have the likelihood
 ○ With VAEs, we were able to compute bounds on the log likelihood.

● Likelihood is not related to perceptual sample quality
 ○ Low Likelihood, Good Samples
 ■ Consider a Gaussian Mixture Model centered on training images
 ■ There may be low noise, meaning the samples will look good, however the model may overfit to
 the training data and have a poor likelihood on the test set

Example from Murphy (2023), Section 20.4.1.3 and Theis et al., “A Note on the Evaluation of Generative Models.”
Replace the negative log likelihood with a more relevant loss

\[Z \sim P(Z) \]

Generator
\[G(Z; \theta) \]

\[X' \sim P(X; \theta) \]

Does it look like a face? ("DILLAF")
Q1: VAEs are implicit Generative models, True or False
- True
- False

Q2: Why would likelihood maximization not result in a model that produces more face-like outputs (for a face-generating VAE)?
- The model can maximize the likelihood of training data without any assurance about what other (non-training) samples look like
- The model is more likely to run into poor local optima
- The model only captures the mode of the distribution of faces, whereas most face-like images are in the tail of the distribution

Q3: The face-generating model is more likely to generate face-like images if it were trained with a differentiable loss function that explicitly evaluates if the outputs look like faces or not, True or False
- True
- False
Poll 2

Q1: VAEs are implicit Generative models, True or False
- True
- False

Q2: Why would likelihood maximization not result in a model that produces more face-like outputs (for a face-generating VAE)?
- The model can maximize the likelihood of training data without any assurance about what other (non-training) samples look like
- The model is more likely to run into poor local optima
- The model only captures the mode of the distribution of faces, whereas most face-like images are in the tail of the distribution

Q3: The face-generating model is more likely to generate face-like images if it were trained with a differentiable loss function that explicitly evaluates if the outputs look like faces or not, True or False
- True
- False
Replace the negative log likelihood with a more relevant loss

What is a good “DILLAF” loss?
Replace the negative log likelihood with a more relevant loss

What is a good “DILLAF” loss?

Enter: GANs
What are GANs

Generative Adversarial Networks

Generative Model which generates data similar to training data (like VAEs for example)
What are GANs

Generative Model which generates data similar to training data (like VAEs for example)

Adversarial Training using two competing (adversarial) networks that are trying to beat each other
What are GANs

Generative Model which generates data similar to training data (like VAEs for example)

Adversarial Training using two competing (adversarial) networks that are trying to beat each other

Deep Neural **Networks**
What are GANs

Generative Model which generates data similar to training data (like VAEs for example)

Goal is to **model the training data distribution** $P(X)$ so we can generate new samples

Adversarial Training using two competing (adversarial) networks that are trying to beat each other

We use a “**Generator**” and a “**Discriminator**” to train (where the Discriminator is our “DILLAF” loss!)

Deep Neural **Networks**
How GANs work

\[Z \sim P(Z) \]

Generator
\[G(Z) \]

Generated Data
\[X' \]

Discriminator
\[D(X) \]

Real or Fake?

Real Data
\[X \]
How GANs work

\[Z \sim P(Z) \rightarrow \text{Generator} \rightarrow \text{Generated Data} \rightarrow \text{Discriminator} \rightarrow \text{Real or Fake?} \]

\[G(Z) \]

\[D(X) \]
How GANs work

\[Z \sim P(Z) \]

Generator
\[G(Z) \]

Generated Data
\[X' \]

Discriminator
\[D(X) \]

Real Data
\[X \]

Real or Fake?
The generator produces realistic looking \(X' = G(z) \) from the latent vector \(Z \).

- Generator input \(X \) can be sampled from a known prior (e.g., a standard Gaussian).

Goal: We want the generated distribution \(P_G(X) \) to match the true data distribution \(P_X(X) \).

- \(P_G(X) \) is just easier notation for \(P_{X'}(X) \), which is the probability that a generated sample takes on the value \(X \).
The Discriminator

- The Discriminator $D(X)$ is trained to distinguish between the real and generated (fake) data
 - Specifically, data produced by the generator
 - If a perfect discriminator is fooled, the real and generated data cannot be distinguished
Training GANs

Both Generator and Discriminator need to be trained together

\[Z \sim P(Z) \]

Generator
\[G(Z) \]

Generated Data
\[X' \]

Discriminator
\[D(X) \]

Real or Fake?

Real Data
\[X \]
But first, some notation

\[x \] Data sample

\[z \] Latent input noise vector

\[P_X \] Distribution of real data

\[P_G \] Distribution of generated data

\[P_Z \] Distribution of latent input noise vector

\[G(z; \theta_G) \] Generator (the function itself)

\[D(x; \theta_D) \] Discriminator (the function itself)

\[G(z) \text{ or } x' \] Generator output

\[D(x) \text{ or } D(G(z)) \] Discriminator output
Training the Discriminator

- Fed real and synthetic examples
- Aims to minimize classification loss → Minimize error between actual and predicted
- $D(x) = 1$ for real faces, $D(x) = 0$ for synthetic faces
Training the Discriminator

- Fed real and synthetic examples
- Aims to minimize classification loss → Minimize error between actual and predicted
- \(D(x) = 1 \) for real faces, \(D(x) = 0 \) for synthetic faces
 - Maximize \(\log (D(X)) \) for real faces
 - Maximize \(\log (1 - D(X')) \) for synthetic faces
Training the Generator

- The discriminator loss is propagated back to the generator.
- Aims to maximize the discriminator loss (we want to “fool” the discriminator).
- Trained such that $D(G(Z)) = 1$ (i.e., $1 - D(G(Z)) = 0$)
 - Minimize $\log (1 - D(G(Z)))$
The GAN formulation

- **Discriminator**
 - For real data X, maximize $\log (D(X))$
 - For synthetic data, maximize $\log (1 - D(X'))$

- **Generator**
 - Minimize $\log (1 - D(X'))$
The original GAN formulation is therefore a min-max optimization

\[
\begin{align*}
\text{Optimize: } & \quad \min_G \max_D \mathbb{E}_{x \sim P_X} \log D(X) + \mathbb{E}_{z \sim P_Z} \log(1 - D(G(z))) \\
\end{align*}
\]

Objectives

- \(D: D(X) = 1 \text{ and } D(G(Z)) = 0\)
- \(G: D(G(Z)) = 1\)
Training GANs

If the discriminator is undertrained, it provides sub-optimal feedback to the generator.

If discriminator is overtrained, there is no local feedback for marginal improvements.

Optimize:
\[
\min_G \max_D \mathbb{E}_{x \sim P_X} \log D(X) + \mathbb{E}_{z \sim P_Z} \log(1 - D(G(z)))
\]
Training GANs

Step 1:
Train D using G

Step 2:
Train G using D

Optimize: \[
\min_G \max_D \mathbb{E}_{x \sim P_X} \log D(X) + \mathbb{E}_{z \sim P_Z} \log(1 - D(G(z)))
\]

The discriminator is not needed after convergence
Training GANs

for num_epochs do:

 for k_steps do:
 \{z^{(1)}... z^{(m)}\} \sim P_z \ (\text{Sample } m \text{ noise vectors})
 \{x^{(1)}... x^{(m)}\} \sim P_x \ (\text{Sample } m \text{ data points})
 L_D \leftarrow \frac{1}{m} \sum_{i=1}^{m} \left[\log D(x^{(i)}) + \log \left(1 - D\left(G(z^{(i)})\right)\right) \right]
 g_{\theta_D} \leftarrow \nabla_{\theta_D} L_D
 \theta_D \leftarrow \theta_D + \alpha \cdot g_{\theta_D}
 end for

 \{z^{(1)}... z^{(m)}\} \sim P_z \ (\text{Sample } m \text{ noise vectors})
 L_G \leftarrow \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G(z^{(i)})\right)\right)
 g_{\theta_G} \leftarrow \nabla_{\theta_G} L_G
 \theta_G \leftarrow \theta_G - \alpha \cdot g_{\theta_G}
end for

Hyperparameter.
Goodfellow et al. use $k = 1$ in practice, this saturates early in training. We can instead maximize \(\log(D(G(z)))\) for better gradients.

Goodfellow et al. (2014), Generative Adversarial Networks.
Poll 3

Q1: When training a GAN, which component must you train first

- The discriminator
- The generator

Q2: Which component is updated more frequently

- The discriminator
- The generator
Q1: When training a GAN, which component must you train first

- The discriminator
- The generator

Q2: Which component is updated more frequently

- The discriminator
- The generator

The discriminator is the “DILLAF” loss. Training the loss is more important, since this is what guides the training!
Learning Objectives

✓ Generative vs Discriminative models
✓ Explicit vs Implicit models
✓ The insufficiency of Maximum Likelihood Estimation for learning GANs
 ✓ Using a Discriminator network for losses
❑ How GANs train
❑ Benefits and challenges of GANs
❑ Learning paradigms (learning through comparison)
 ❑ Comparison by Ratios and the emergence of the Jensen Shannon Divergence
 ❑ Comparison by Differences and the use of Wasserstein distance
 ❑ Zero-sum vs Non-zero-sum
❑ Variants of GANs
The GAN formulation

- How does this work when each piece is optimized?
 - We will consider the optimal Discriminator first…
 - Then the optimal Generator
The optimal discriminator (binary classification)

The distributions $P(x, y_1)$ and $P(x, y_2)$

The posterior probability of the classes for any instance $x = X$ is:

$$P(y_i | X) = \frac{P(X, y_i)}{P(X, y_1) + P(X, y_2)}$$
The optimal discriminator (binary classification)

The distributions

The posterior
\(P(y_2|x) \)

The posterior probability of the classes for any instance \(x = X \) is:

\[
P(y_i|X) = \frac{P(X,y_i)}{P(X,y_1)+P(X,y_2)}
\]
The optimal discriminator (binary classification)

Assuming a uniform prior, the optimal discriminator in our case will be a Bayesian Classifier.

\[D(X) = \frac{P_X(X)}{P_X(X) + P_G(X)} \]
Iterative Training

Recall our training procedure:

- Start with a training distribution and a generator distribution that is untrained
- Fit a discriminator
- Update the generator to “fool” the discriminator
Recall our training procedure:

1. Start with a training distribution and a generator distribution that is untrained
2. Fit a discriminator
3. Update the generator to “fool” the discriminator

\[
\min_G \max_D \mathbb{E}_{x \sim P_x} \log D(x) + \mathbb{E}_{z \sim P_z} \log(1 - D(G(z)))
\]

\[
D(X; \theta^k_D)
\]

\[
PG(X; \theta^k_G)
\]
Iterative Training

Recall our training procedure:

- Start with a training distribution and a generator distribution that is untrained
- Fit a discriminator
- Update the generator to “fool” the discriminator
Iterative Training

Recall our training procedure:

- Start with a training distribution and a generator distribution that is untrained
- Fit a discriminator
- Update the generator to “fool” the discriminator
Recall our training procedure:

- Start with a training distribution and a generator distribution that is untrained
- Fit a discriminator
- Update the generator to “fool” the discriminator
Iterative Training

Recall our training procedure:

- Start with a training distribution and a generator distribution that is untrained
- Fit a discriminator
- Update the generator to "fool" the discriminator
Iterative Training

Recall our training procedure:

- Start with a training distribution and a generator distribution that is untrained
- Fit a discriminator
- Update the generator to “fool” the discriminator
Iterative Training

Recall our training procedure:

- Start with a training distribution and a generator distribution that is untrained
- Fit a discriminator
- Update the generator to “fool” the discriminator

\[
P_G(X; \theta^k_G) \quad \text{and} \quad P_X(X)
\]

\[
D(X; \theta^k_D)
\]

\[
\min_G \max_D \mathbb{E}_{x \sim P_X} \log D(x) + \mathbb{E}_{z \sim P_z} \log (1 - D(G(z)))
\]
Iterative Training

Recall our training procedure:

- Start with a training distribution and a generator distribution that is untrained
- Fit a discriminator
- Update the generator to “fool” the discriminator

\[
\min_G \max_D \mathbb{E}_{x \sim P_x} \log D(X) + \mathbb{E}_{z \sim P_z} \log (1 - D(G(z)))
\]
Iterative Training

Recall our training procedure:

- Start with a training distribution and a generator distribution that is untrained
- Fit a discriminator
- Update the generator to “fool” the discriminator
Iterative Training

Recall our training procedure:

- In the limit, the Generator’s distribution will sit perfectly on the true distribution, and the Discriminator will be random.
- The derivative of \(D(X) \) wrt \(X \) will be zero → No further updates
Min-Max Stationary Point

● There exists a stationary point…
 ○ If the generated data exactly matches the real data (discriminator outputs 0.5 for all inputs)
 ○ If the discriminator outputs 0.5, the gradients for the generator are flat, so the generator does not learn
 ○ This is true of a perfect discriminator paired with a very good generator. However, it is also true of a random discriminator.

● Stationary points need not be stable.
 ○ Depends on the exact GAN formulation
 ○ The generator may overshoot or oscillate around the optimum
 ○ A discriminator with unlimited capacity can still assign an arbitrarily large distance to 2 similar distributions.
Benefits and Challenges

- GANs produce clear crisp results for many problems
- However, they have stability issues and are difficult to train
 - Mode Collapse or Mode Hopping
 - Improvements can be made by using larger batch sizes, increasing discriminator expressivity, regularizing the discriminator and generator, and other optimization methods.
 - Low variability/diversity in outputs
 - Poor gradients
Benefits and Challenges

● GANs produce clear crisp results for many problems

● However, they have stability issues and are difficult to train
 ○ Mode Collapse or Mode Hopping
 ■ Improvements can be made by using larger batch sizes, increasing discriminator expressivity, regularizing the discriminator and generator, and other optimization methods.
 ○ Low variability/diversity in outputs
 ○ Poor gradients
Benefits and Challenges

- GANs produce clear crisp results for many problems
- However, they have stability issues and are difficult to train
 - **Mode Collapse** or Mode Hopping
 ■ Improvements can be made by using larger batch sizes, increasing discriminator expressivity, regularizing the discriminator and generator, and other optimization methods.
 - Low variability/diversity in outputs
 - Poor gradients

Illustration of Mode Collapse from Murphy (2023), Fig. 26.6, with code available at https://github.com/probml/pyprobml/blob/master/notebooks/book2/26/gan_mixture_of_gaussians.ipynb.
Benefits and Challenges

- GANs produce clear crisp results for many problems

- However, they have stability issues and are difficult to train
 - Mode Collapse or Mode Hopping
 - Improvements can be made by using larger batch sizes, increasing discriminator expressivity, regularizing the discriminator and generator, and other optimization methods.
 - Low variability/diversity in outputs
 - Poor gradients as Discriminator gets better
Poll 4

Identify potential reasons a GAN could fail

- Generator always generates the same face that fools the discriminator
- The divergence may have poor derivatives preventing the model from learning
- The discriminator may be random resulting in no derivatives
- The discriminator may be too certain, resulting in no derivatives
Identify potential reasons a GAN could fail

- Generator always generates the same face that fools the discriminator
- The divergence may have poor derivatives preventing the model from learning
- The discriminator may be random resulting in no derivatives
- The discriminator may be too certain, resulting in no derivatives
Learning Objectives

✓ Generative vs Discriminative models
✓ Explicit vs Implicit models
✓ The insufficiency of Maximum Likelihood Estimation for learning GANs
 ✓ Using a Discriminator network for losses
✓ How GANs train
✓ Benefits and challenges of GANs
◆ Learning paradigms (learning through comparison)
 ◆ Comparison by Ratios and the emergence of the Jensen Shannon Divergence
 ◆ Comparison by Differences and the use of Wasserstein distance
 ◆ Zero-sum vs Non-zero-sum
◆ Variants of GANs
What is the learning paradigm?

- $Z \sim P(Z)$
- Generator $G(Z)$
- Generated Data X'
- Discriminator $D(X)$
- Real or Fake?

What loss are we propagating back?
What loss are we actually using?

- KL Divergence?

\[
KL(P, Q) = \sum_X P(X) \log \left(\frac{P(X)}{Q(X)} \right)
\]

\[
KL(Q, P) = \sum_X Q(X) \log \left(\frac{Q(X)}{P(X)} \right)
\]

- Are there any problems with this?
What loss are we actually using?

- KL Divergence?

\[
KL(P, Q) = \sum_{X} P(X) \log \left(\frac{P(X)}{Q(X)} \right)
\]

\[
KL(Q, P) = \sum_{X} Q(X) \log \left(\frac{Q(X)}{P(X)} \right)
\]

- Are there any problems with this?

1. KL is not symmetric
 - One sacrifices image quality
 - One sacrifices image diversity
2. We run into issues if either P or Q become zero
Jensen Shannon Divergence

- Symmetric alternate to KL Divergence that removes issues with P or Q of 0.
- Does not exaggerate instances where one of the distributions assigns 0 probability

\[JSD(P, Q) = \frac{1}{2} KL(P, \frac{P+Q}{2}) + \frac{1}{2} KL(Q, \frac{P+Q}{2}) \]
Jensen Shannon Divergence

- Symmetric alternate to KL Divergence that removes issues with P or Q of 0.
- Does not exaggerate instances where one of the distributions assigns 0 probability

\[JSD(P, Q) = \frac{1}{2} KL(P, \frac{P+Q}{2}) + \frac{1}{2} KL(Q, \frac{P+Q}{2}) \]
Jensen Shannon Divergence

- Symmetric alternate to KL Divergence that removes issues with P or Q of 0.
- Does not exaggerate instances where one of the distributions assigns 0 probability

\[JSD(P, Q) = \frac{1}{2} KL(P, \frac{P+Q}{2}) + \frac{1}{2} KL(Q, \frac{P+Q}{2}) \]

- This isn’t simply a convenience we take. It emerges as a natural consequence if we want to compare the distributions of our generator and our true data using the ratio of their density functions!
Jensen Shannon Divergence

- Symmetric alternate to KL Divergence that removes issues with P or Q of 0.
- Does not exaggerate instances where one of the distributions assigns 0 probability

\[JSD(P, Q) = \frac{1}{2} KL(P, \frac{P+Q}{2}) + \frac{1}{2} KL(Q, \frac{P+Q}{2}) \]

- This isn’t simply a convenience we take. It emerges as a natural consequence if we want to compare the distributions of our generator and our true data using the ratio of their density functions!
Jensen Shannon Divergence

- Recall we converted the ratio of density functions into a binary classification problem

\[
\frac{P_X(X)}{P_G(X)} = \frac{D(X)}{1-D(X)} \quad \rightarrow \quad D^*(x) = \frac{P_X(X)}{P_X(X) + P_G(X)}
\]
Jensen Shannon Divergence

- Recall we converted the ratio of density functions into a binary classification problem

\[
\frac{P_X(X)}{P_G(X)} = \frac{D(X)}{1-D(X)} \Rightarrow D^*(x) = \frac{P_X(X)}{P_X(X) + P_G(X)}
\]

- Using a binary cross entropy loss for the parameterized discriminator, we have

\[
Div = \mathbb{E} \left[y \log D(X; \theta_D) + (1 - y) \log(1 - D(X; \theta_D)) \right]
\]

\[
= \frac{1}{2} \mathbb{E}_{P_x} \left[\log D(X; \theta_D) \right] + \frac{1}{2} \mathbb{E}_{P_G} \left[\log(1 - D(X; \theta_D)) \right]
\]
Jensen Shannon Divergence

- Recall we converted the ratio of density functions into a binary classification problem
 \[
 \frac{P_X(X)}{P_G(X)} = \frac{D(X)}{1-D(X)} \quad \Rightarrow \quad D^*(x) = \frac{P_X(X)}{P_X(X) + P_G(X)}
 \]

- Using a binary cross entropy loss for the parameterized discriminator, we have
 \[
 Div = \mathbb{E} [y \log D(X; \theta_D) + (1 - y) \log(1 - D(X; \theta_D))] \\
 = \frac{1}{2} \mathbb{E}_{P_X} [\log D(X; \theta_D)] + \frac{1}{2} \mathbb{E}_{P_G} [\log(1 - D(X; \theta_D))]
 \]

- Substituting in the optimal discriminator, we get an objective with the JSD in it!
 \[
 Div = 2JSD(P_X, P_G) - \log 4
 \]
Jensen Shannon Divergence

- Recall we converted the ratio of density functions into a binary classification problem
 \[
 \frac{P_X(X)}{P_G(X)} = \frac{D(X)}{1-D(X)} \quad \Rightarrow \quad D^*(x) = \frac{P_X(X)}{P_X(X) + P_G(X)}
 \]

- Using a binary cross entropy loss for the parameterized discriminator, we have
 \[
 Div = \mathbb{E} [y \log D(X; \theta_D) + (1 - y) \log(1 - D(X; \theta_D))] = \frac{1}{2} \mathbb{E}_{P_X} [\log D(X; \theta_D)] + \frac{1}{2} \mathbb{E}_{P_G} [\log(1 - D(X; \theta_D))]
 \]

- Substituting in the optimal discriminator, we get an objective with the JSD in it!
 \[
 Div = 2JSD(P_X, P_G) - \log 4
 \]

This is a consequence of making a comparison of the ratios between distributions.
Let’s take a quick step back

What are the “decisions” we are making here vs what are the “inherent” elements?

● Learning by comparison (pretty inherent). However…
 ○ We have focused on a comparison through ratios
 ○ What about a comparison through differences?

● We have assumed a “zero-sum” adversarial structure…
 ○ This need not be the case (and we have actually already seen a variation)
Let’s take a quick step back

What are the “decisions” we are making here vs what are the “inherent” elements?

● Learning by comparison (pretty inherent). However…
 ○ We have focused on a comparison through ratios
 ○ What about a comparison through differences?

● We have assumed a “zero-sum” adversarial structure…
 ○ This need not be the case (and we have actually already seen a variation)
Learning by Comparison

Ratios

- E.g., density ratios (we just did this) or f-divergence
Learning by Comparison

Ratios

• E.g., density ratios (we just did this) or f-divergence

• Poor behavior when the generator distribution and true distribution do not have overlapping support
 ○ When the true distribution assigns a non-zero probability but the generator assigns a zero probability, the ratios in KL blow up, and the JSD becomes log 2 no matter what.
Learning by Comparison

Ratios

- E.g., density ratios (we just did this) or f-divergence
- Poor behavior when the generator distribution and true distribution do not have overlapping support
 - When the true distribution assigns a non-zero probability but the generator assigns a zero probability, the ratios in KL blow up, and the JSD becomes log 2 no matter what.
Learning by Comparison

Ratios

● E.g., density ratios (we just did this) or f-divergence

● Poor behavior when the generator distribution and true distribution do not have overlapping support
 ○ When the true distribution assigns a non-zero probability but the generator assigns a zero probability, the ratios in KL blow up, and the JSD becomes log 2 no matter what.
Learning by Comparison

Ratios

- E.g., density ratios (we just did this) or f-divergence
- Poor behavior when the generator distribution and true distribution do not have overlapping support
 - When the true distribution assigns a non-zero probability but the generator assigns a zero probability, the ratios in KL blow up, and the JSD becomes log 2 no matter what.

Differences

- E.g., integral probability metrics (IPM) or moment matching
- Wasserstein GANs (example of IPM)
- Introduces “smoothness”
Wasserstein GAN

Earth Mover’s Distance or Optimal Transport

How much distance you need to cover to move all the parts of one distribution to the other?

Earth Mover’s Distance or Optimal Transport

How much distance you need to cover to move all the parts of one distribution to the other?

\[W(P_X, P_G) = \inf_{\gamma \in \Gamma(P_X, P_G)} \mathbb{E}_{(x, y) \sim \gamma(x, y)}[||x - y||] \]

Inf (Topic for real analysis): Infimum, the closest thing to a lower bound you can get. (alt to a min)

Mapping of which x goes to which y

Distance between the points

Wasserstein GAN

Earth Mover’s Distance or Optimal Transport

How much distance you need to cover to move all the parts of one distribution to the other?

\[
W(P_X, P_G) = \inf_{\gamma \in \mathcal{P}(P_X, P_G)} \mathbb{E}_{(x,y) \sim \gamma} [\| x - y \|]
\]

Inf (Topic for real analysis):
Infimum, the closest thing to a lower bound you can get. (alt to a \text{min})

Mapping of which x goes to which y

Distance between the points

Wasserstein GAN

Earth Mover’s Distance or Optimal Transport

How much distance you need to cover to move all the parts of one distribution to the other?

\[W(P_X, P_G) = \inf_{\gamma \in \Gamma(P_X, P_G)} \mathbb{E}_{(x,y) \sim \gamma(x,y)} [||x - y||] \]

\[\text{Inf} \text{ (Topic for real analysis): Infimum, the closest thing to a lower bound you can get. (alt to a min)} \]

Mapping of which x goes to which y

Distance between the points

Tends to be intractable
Wasserstein GAN

Dealing with the intractable…

(for reference, don’t worry about the details here; a nice resource is here)

- Simplify with Kantorovich-Rubinstein inequality
- Find a 1-Lipschitz function using a network similar to a Discriminator (a “Critic”)
- Enforce the Lipschitz constraint
 - Authors use clipping, but acknowledge that “Weight clipping is a clearly terrible way to enforce a Lipschitz constraint”
Wasserstein GAN

Figure 2: Optimal discriminator and critic when learning to differentiate two Gaussians. As we can see, the discriminator of a minimax GAN saturates and results in vanishing gradients. Our WGAN critic provides very clean gradients on all parts of the space.

Arjovsky et al. (2017), “Wasserstein GAN.”
Let’s take a quick step back

What are the “decisions” we are making here vs what are the “inherent” elements?

● Learning by comparison (pretty inherent). However…
 ○ We have focused on a comparison through ratios
 ○ What about a comparison through differences?

● We have assumed a “zero-sum” adversarial structure…
 ○ This need not be the case (and we have actually already seen a variation)
Non-Zero-Sum Losses

● Recall our min-max (zero-sum) learning objective:

\[
\text{Optimize: } \min_G \max_D \mathbb{E}_{x \sim P_X} \log D(X) + \mathbb{E}_{z \sim P_z} \log (1 - D(G(z)))
\]

● Rather than have the generator minimize the probability of the discriminator labeling its examples as fake, why not have it maximize the probability of the discriminator classifying its examples as real (recall note on slide 51)
 ○ Known as “non-saturating loss”
 ○ Subtle difference, but enjoys better gradients early in training (when the generator is performing poorly).
 ○ Can still recover the zero-sum formulation if we want
Training GANs

for num_epochs do:
 for k_steps do:
 \{z^{(1)} \ldots z^{(m)}\} \sim P_Z \ (\text{Sample } m \text{ noise vectors})
 \{x^{(1)} \ldots x^{(m)}\} \sim P_X \ (\text{Sample } m \text{ data points})
 L_D \leftarrow \frac{1}{m} \sum_{i=1}^{m} \left[\log D(x^{(i)}) + \log \left(1 - D\left(G(z^{(i)})\right)\right) \right]
 g_{\theta_D} \leftarrow \nabla_{\theta_D} L_D
 \theta_D \leftarrow \theta_D + \alpha \cdot g_{\theta_D}
 end for

 \{z^{(1)} \ldots z^{(m)}\} \sim P_Z \ (\text{Sample } m \text{ noise vectors})
 L_G \leftarrow \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G(z^{(i)})\right)\right)
 g_{\theta_G} \leftarrow \nabla_{\theta_G} L_G
 \theta_G \leftarrow \theta_G - \alpha \cdot g_{\theta_G}
end for

Hyperparameter. Goodfellow et al. use k = 1

In practice, this saturates early in training. We can instead maximize \log (D(G(z))) for better gradients.
Learning Objectives

✓ Generative vs Discriminative models
✓ Explicit vs Implicit models
✓ The insufficiency of Maximum Likelihood Estimation for learning GANs
 ✓ Using a Discriminator network for losses
✓ How GANs train
✓ Benefits and challenges of GANs
✓ Learning paradigms (learning through comparison)
 ✓ Comparison by Ratios and the emergence of the Jensen Shannon Divergence
 ✓ Comparison by Differences and the use of Wasserstein distance
 ✓ Zero-sum vs Non-zero-sum
□ Variants of GANs
GANs in the wild

- Cycle GAN
- StarGAN
- Conditional GANs
- BiGAN
- ...and many(!) more
GANs in the wild

- Cycle GAN
- StarGAN
- Conditional GANs
- BiGAN
- …and many(!) more

Image “translation.” While a vanilla GAN will not retain information about the original image, Cycle GAN incorporates a reconstruction loss so that enough of the original is kept (such that it can be retrieved using a second generator).

GANs in the wild

- Cycle GAN
- StarGAN
- Conditional GANs
- BiGAN
- …and many(!) more

Figure 2. Comparison between cross-domain models and our proposed model, StarGAN. (a) To handle multiple domains, cross-domain models should be built for every pair of image domains. (b) StarGAN is capable of learning mappings among multiple domains using a single generator. The figure represents a star topology connecting multi-domains.

Image “translation.” Ability to learn mappings across multiple domains with a single generator.
GANs in the wild

- Cycle GAN
- StarGAN
- Conditional GANs
- BiGAN
- …and many(!) more

Given paired data (x with some corresponding y, such as a class label or set of attributes), we can learn a conditional distribution.

GANs in the wild

- Cycle GAN
- StarGAN
- Conditional GANs
- BiGAN
- …and many(!) more

Instead of mapping from latent space to feature space, we can map from the feature space to the latent space. The authors find the learned feature representations are useful for discriminative tasks among others.

Figure 1: The structure of Bidirectional Generative Adversarial Networks (BiGAN).

Learning Objectives

✓ Generative vs Discriminative models
✓ Explicit vs Implicit models
✓ The insufficiency of Maximum Likelihood Estimation for learning GANs
 ✓ Using a Discriminator network for losses
✓ How GANs train
✓ Benefits and challenges of GANs
✓ Learning paradigms (learning through comparison)
 ✓ Comparison by Ratios and the emergence of the Jensen Shannon Divergence
 ✓ Comparison by Differences and the use of Wasserstein distance
 ✓ Zero-sum vs Non-zero-sum
✓ Variants of GANs
Sources