Training Neural Networks: Optimization

Intro to Deep Learning, Spring 2024
Recap

• Neural networks are universal approximators

• We must *train* them to approximate any function

• Networks are trained to minimize total “error” on a training set
 – We do so through empirical risk minimization

• We use variants of gradient descent to do so
 – Gradients are computed through backpropagation
Recap

• Vanilla gradient descent may be too slow or unstable

• Better convergence can be obtained through
 – Second order methods that normalize the variation across dimensions
 – Adaptive or decaying learning rates that can improve convergence
 – Methods like Rprop that decouple the dimensions can improve convergence
 – Momentum methods which emphasize directions of steady improvement and deemphasize unstable directions
Moving on...

- Incremental updates
- Revisiting “trend” algorithms
- Generalization
- Tricks of the trade
 - Divergences..
 - Activations
 - Normalizations
Moving on: Topics for the day

• Incremental updates
• Revisiting “trend” algorithms
• Generalization
• Tricks of the trade
 – Divergences..
 – Activations
 – Normalizations
• Given input output pairs at a number of locations, estimate the entire function
Gradient descent

- Start with an initial function
- Adjust its value at all points to make the outputs closer to the required value
- Gradient descent adjusts parameters to adjust the function value at all points
- Repeat this iteratively until we get arbitrarily close to the target function at the training points
Gradient descent

• Start with an initial function
• Adjust its value at all points to make the outputs closer to the required value
 – Gradient descent adjusts parameters to adjust the function value at all points
 – Repeat this iteratively until we get arbitrarily close to the target function at the training points
Gradient descent

- Start with an initial function
- Adjust its value at all points to make the outputs closer to the required value
 - Gradient descent adjusts parameters to adjust the function value at all points
 - Repeat this iteratively until we get arbitrarily close to the target function at the training points
Gradient descent

• Start with an initial function
• Adjust its value at all points to make the outputs closer to the required value
 – Gradient descent adjusts parameters to adjust the function value at all points
 – Repeat this iteratively until we get arbitrarily close to the target function at the training points
Gradient descent

• Start with an initial function
• Adjust its value at all points to make the outputs closer to the required value
 – Gradient descent adjusts parameters to adjust the function value at all points
 – Repeat this iteratively until we get arbitrarily close to the target function at the training points
Gradient descent

• Start with an initial function
• Adjust its value at *all* points to make the outputs closer to the required value
 – Gradient descent adjusts parameters to adjust the function value at *all* points
 – Repeat this iteratively until we get arbitrarily close to the target function at the training points
Effect of number of samples

- Problem with conventional gradient descent: we try to simultaneously adjust the function at all training points
 - We must process all training points before making a single adjustment
 - “Batch” update
Select all that are true

- The actual loss function we try to minimize requires batch updates
- Batch updates minimize the total loss over the entire training data
- Batch updates optimize the actual loss function
- Batch updates require processing the entire training data before we perform a single update
Poll 1

Select all that are true [all correct]

- The actual loss function we try to minimize requires batch updates
- Batch updates minimize the total loss over the entire training data
- Batch updates optimize the actual loss function
- Batch updates require processing the entire training data before we perform a single update
Alternative: Incremental update

- Alternative: adjust the function at one training point at a time
 - Keep adjustments small
Alternative: Incremental update

- Alternative: adjust the function at one training point at a time
 - Keep adjustments small
Alternative: Incremental update

- Alternative: adjust the function at one training point at a time
 - Keep adjustments small
• Alternative: adjust the function at one training point at a time
 – Keep adjustments small
Alternative: Incremental update

- Alternative: adjust the function at one training point at a time
 - Keep adjustments small
 - Eventually, when we have processed all the training points, we will have adjusted the entire function
 - With greater overall adjustment than we would if we made a single “Batch” update
Incremental Update

- Given \((X_1, d_1), (X_2, d_2), \ldots, (X_T, d_T)\)
- Initialize all weights \(W_1, W_2, \ldots, W_K\)
- Do:
 - For all \(t = 1: T\)
 - For every layer \(k:\)
 - Compute \(\nabla_{W_k} \text{Div}(Y_t, d_t)\)
 - Update
 \[
 W_k = W_k - \eta \nabla_{W_k} \text{Div}(Y_t, d_t)^T
 \]
- Until \(Loss\) has converged
Incremental Updates

• The iterations can make multiple passes over the data

• A single pass through the entire training data is called an “epoch”
 – An epoch over a training set with T samples results in T updates of parameters
Incremental Update

• Given \((X_1, d_1), (X_2, d_2), \ldots, (X_T, d_T)\)

• Initialize all weights \(W_1, W_2, \ldots, W_K\)

• Do:

 – For all \(t = 1: T\)

 • For every layer \(k\):

 – Compute \(\nabla_{W_k} \text{Div}(Y_t, d_t)\)

 – Update

 \[
 W_k = W_k - \eta \nabla_{W_k} \text{Div}(Y_t, d_t)^T
 \]

• Until \textbf{Loss} has converged
Caveats: order of presentation

- If we loop through the samples in the same order, we may get *cyclic* behavior
Caveats: order of presentation

- If we loop through the samples in the same order, we may get \emph{cyclic} behavior
Caveats: order of presentation

- If we loop through the samples in the same order, we may get *cyclic* behavior
Caveats: order of presentation

• If we loop through the samples in the same order, we may get cyclic behavior
Caveats: order of presentation

- If we loop through the samples in the same order, we may get cyclic behavior.
- We must go through them randomly to get more convergent behavior.
Caveats: order of presentation

• If we loop through the samples in the same order, we may get cyclic behavior.
• We must go through them randomly to get more convergent behavior.
Caveats: order of presentation

• If we loop through the samples in the same order, we may get cyclic behavior
• We must go through them randomly to get more convergent behavior
Caveats: order of presentation

- If we loop through the samples in the same order, we may get cyclic behavior.
- We must go through them randomly to get more convergent behavior.
Caveats: order of presentation

• If we loop through the samples in the same order, we may get *cyclic* behavior

• We must go through them *randomly* to get more convergent behavior
Incremental Update: Stochastic Gradient Descent

- Given \((X_1, d_1), (X_2, d_2),..., (X_T, d_T)\)
- Initialize all weights \(W_1, W_2, ..., W_K\)
- Do:
 - Randomly permute \((X_1, d_1), (X_2, d_2),..., (X_T, d_T)\)
 - For all \(t = 1: T\)
 - For every layer \(k\):
 - Compute \(\nabla_{W_k} \text{Div}(Y_t, d_t)\)
 - Update \(W_k = W_k - \eta \nabla_{W_k} \text{Div}(Y_t, d_t)\)\(^T\)
- Until \textbf{Loss} has converged
In any gradient descent optimization problem, presenting training instances incrementally can be more effective than presenting them all at once

- Provided training instances are provided in random order
- “Stochastic Gradient Descent”

This also holds for training neural networks
Explanations and restrictions

• So why does this process of incremental updates work?
• Under what conditions?

• For “why”: first consider a simplistic explanation that’s often given
 – Look at an extreme example
The expected behavior of the gradient

\[
dE(W^{(1)}, W^{(2)}, ..., W^{(K)}) = \frac{1}{T} \sum_i dDiv(Y(X_i), d_i; W^{(1)}, W^{(2)}, ..., W^{(K)})
\]

\[
d_{w_{i,j}}^{(k)} = \frac{1}{T} \sum_i d_{w_{i,j}}^{(k)}
\]

- The individual training instances contribute different directions to the overall gradient
 - The final gradient points is the average of individual gradients
 - It points towards the net direction
Extreme example

- Extreme instance of data clotting: all the training instances are exactly the same

\[X_1 = X_2 = \cdots = X_T \]
The expected behavior of the gradient

\[
\frac{dE}{dw_{i,j}^{(k)}} = \frac{1}{T} \sum_i \frac{dDiv(Y(X_i), d_i)}{dw_{i,j}^{(k)}} = \frac{dDiv(Y(X_i), d_i)}{dw_{i,j}^{(k)}}
\]

- The individual training instance contribute identical directions to the overall gradient
 - The final gradient points is simply the gradient for an individual instance
Batch vs SGD

- Batch gradient descent operates over T training instances to get a *single* update
- SGD gets T updates for the same computation

$$X_1 = X_2 = \cdots = X_T$$
Clumpy data..

- Also holds if all the data are not identical, but are tightly clumped together

\[X_1 \approx X_2 \approx \ldots \approx X_T \]
• As data get increasingly diverse, the benefits of incremental updates decrease, but do not entirely vanish
When does it work

- What are the considerations?
- And how well does it work?
Incremental learning runs the risk of always chasing the latest input.

- **Modelling problem**: Find a linear regression line (through origin) to model the data.
Incremental learning runs the risk of always chasing the latest input

- **Modelling problem**: Find a linear regression line (through origin) to model the data
 - **Batch processing**: Find the line through origin that has the lowest overall squared projection error w.r.t. data
Incremental learning runs the risk of always chasing the latest input

- **Incremental learning**: Update the model to always minimize the error on the latest instance
 - It will never converge
Incremental learning runs the risk of always chasing the latest input

- **Incremental learning**: Update the model to always minimize the error on the latest instance
 - It will never converge
Incremental learning runs the risk of always chasing the latest input

- **Incremental learning**: Update the model to always minimize the error on the latest instance
 - It will never converge
Incremental learning runs the risk of always chasing the latest input.

- Incremental learning: Update the model to always minimize the error on the latest instance
 - It will never converge
 - Solution?
Incremental learning runs the risk of always chasing the latest input

- **Incremental learning**: Update the model to always minimize the error on the latest instance
 - Shrink the learning rate with iterations
 - With increasing iterations, it will swing less and less towards the new point
Incremental learning runs the risk of always chasing the latest input

- **Incremental learning**: Update the model to always minimize the error on the latest instance
 - Shrink the learning rate with iterations
 - With increasing iterations, it will swing less and less towards the new point
Incremental learning runs the risk of always chasing the latest input

- **Incremental learning**: Update the model to always minimize the error on the latest instance
 - Shrink the learning rate with iterations
 - With increasing iterations, it will swing less and less towards the new point
Incremental learning runs the risk of always chasing the latest input

- Incremental learning: Update the model to always minimize the error on the latest instance
 - Shrink the learning rate with iterations
 - With increasing iterations, it will swing less and less towards the new point
Incremental learning runs the risk of always chasing the latest input

• **Incremental learning:** Update the model to always minimize the error on the latest instance
 – Shrink the learning rate with iterations
 – With increasing iterations, it will swing less and less towards the new point
Incremental learning runs the risk of always chasing the latest input

• **Incremental learning**: Update the model to always minimize the error on the latest instance
 – Shrink the learning rate with iterations
 – With increasing iterations, it will swing less and less towards the new point
 – Eventually arriving at the correct solution and not moving much from it further because the step sizes are now too small...
Incremental learning caveat: learning rate

• Incremental learning: Update the model to always minimize the error on the latest instance
 – Caveat: We must *shrink* the learning rate with iterations for convergence
 • Correction for individual instances with the eventual miniscule learning rates will not modify the function
Incremental Update: Stochastic Gradient Descent

- Given \((X_1, d_1), (X_2, d_2), \ldots, (X_T, d_T)\)
- Initialize all weights \(W_1, W_2, \ldots, W_K; \ j = 0\)
- Do:
 - Randomly permute \((X_1, d_1), (X_2, d_2), \ldots, (X_T, d_T)\)
 - For all \(t = 1: T\)
 - \(j = j + 1\)
 - For every layer \(k:\)
 - Compute \(\nabla_{W_k} \text{Div}(Y_t, d_t)\)
 - Update \(W_k = W_k - \eta_j \nabla_{W_k} \text{Div}(Y_t, d_t)^T\)
- Until Loss has converged
Incremental Update: Stochastic Gradient Descent

• Given \((X_1, d_1), (X_2, d_2), \ldots, (X_T, d_T)\)
• Initialize all weights \(W_1, W_2, \ldots, W_K; \ j = 0\)
• Do:

 – Randomly permute \((X_1, d_1), (X_2, d_2), \ldots, (X_T, d_T)\)

 – For all \(t = 1: T\)

 • \(j = j + 1\)

 • For every layer \(k:\)

 – Compute

 \[
 \nabla_{W_k} \text{Div}(Y_t, d_t)
 \]

 – Update

 \[
 W_k = W_k - \eta_j \nabla_{W_k} \text{Div}(Y_t, d_t)^T
 \]

• Until \textbf{Loss} has converged
SGD convergence

• SGD converges “almost surely” to a global or local minimum for most functions
 – Sufficient condition: step sizes follow the following conditions
 (Robbins and Munro 1951)
 \[\sum_{k} \eta_k = \infty \]
 • Eventually the entire parameter space can be searched
 \[\sum_{k} \eta_k^2 < \infty \]
 • The steps shrink
 – The fastest converging series that satisfies both above requirements is
 \[\eta_k \propto \frac{1}{k} \]
 • This is the optimal rate of shrinking the step size for strongly convex functions
 – More generally, the learning rates are heuristically determined
• If the loss is convex, SGD converges to the optimal solution
• For non-convex losses SGD converges to a local minimum
SGD convergence

• We will define convergence in terms of the number of iterations taken to get within ϵ of the optimal solution

 $|f(W^{(k)}) - f(W^*)| < \epsilon$

 – Note: $f(W)$ here is the optimization objective on the entire training data, although SGD itself updates after every training instance

• Using the optimal learning rate $1/k$, for strongly convex functions,

 $|f(W^{(k)}) - f(W^*)| < \frac{1}{k} |f(W^{(0)}) - f(W^*)|$

 – Strongly convex \Rightarrow Can be placed inside a quadratic bowl, touching at any point
 – Giving us the iterations to ϵ convergence as $O\left(\frac{1}{\epsilon}\right)$

• For generically convex (but not strongly convex) function, various proofs report an ϵ convergence of $\frac{1}{\sqrt{k}}$ using a learning rate of $\frac{1}{\sqrt{k}}$.

Batch gradient convergence

• In contrast, using the batch update method, for strongly convex functions,

\[|f(W^{(k)}) - f(W^*)| < c^k |f(W^{(0)}) - f(W^*)| \]

 – Giving us the iterations to \(\epsilon \) convergence as \(O \left(\log \left(\frac{1}{\epsilon} \right) \right) \)

• For generic convex functions, iterations to \(\epsilon \) convergence is \(O \left(\frac{1}{\epsilon} \right) \)

• Batch gradients converge “faster”
 – But SGD performs \(T \) updates for every batch update
SGD Convergence: Loss value

If:

• f is λ-strongly convex, and
• at step t we have a noisy estimate of the subgradient \hat{g}_t with $\mathbb{E}[\|\hat{g}_t\|^2] \leq G^2$ for all t,
• and we use step size $\eta_t = \frac{1}{\lambda t}$

Then for any $T > 1$:

$$\mathbb{E}[f(w_T) - f(w^*)] \leq \frac{17G^2(1 + \log(T))}{\lambda T}$$
SGD Convergence

• We can bound the expected difference between the loss over our data using the optimal weights w^* and the weights w_T at any single iteration to $O\left(\frac{\log(T)}{T}\right)$ for strongly convex loss or $O\left(\frac{\log(T)}{\sqrt{T}}\right)$ for convex loss.

• Averaging schemes can improve the bound to $O\left(\frac{1}{T}\right)$ and $O\left(\frac{1}{\sqrt{T}}\right)$.

• Smoothness of the loss is not required.
SGD Convergence and weight averaging

Polynomial Decay Averaging:

$$\bar{w}_t^\gamma = \left(1 - \frac{\gamma + 1}{t + \gamma}\right)\bar{w}_{t-1}^\gamma + \frac{\gamma + 1}{t + \gamma}w_t$$

With γ some small positive constant, e.g. $\gamma = 3$

Achieves $O\left(\frac{1}{T}\right)$ (strongly convex) and $O\left(\frac{1}{\sqrt{T}}\right)$ (convex) convergence
• A simpler problem: K-means
• Note: SGD converges faster
 – But to a poorer minimum
• Also note the rather large variation between runs
 – Let’s try to understand these results..
Select all that are true

- SGD is an online version of batch updates
- SGD can have oscillatory behavior if we do not randomize the order of the inputs
- SGD can converge faster than batch updates, but arrive at poorer optima
- SGD convergence to the global optimum can only be guaranteed if step sizes shrink across iterations, but sum to infinity in the limit
Select all that are true [all correct]

- SGD is an online version of batch updates
- SGD can have oscillatory behavior if we do not randomize the order of the inputs
- SGD can converge faster than batch updates, but arrive at poorer optima
- SGD convergence to the global optimum can only be guaranteed if step sizes shrink across iterations, but sum to infinity in the limit
Recall: Modelling a function

\[Y = f(X; \mathbf{W}) \]

- To learn a network \(f(X; \mathbf{W}) \) to model a function \(g(X) \) we minimize the expected divergence

\[
\hat{\mathbf{W}} = \arg\min_{\mathbf{W}} \int_X \text{div}(f(X; \mathbf{W}), g(X)) P(X) dX \\
= \arg\min_{\mathbf{W}} E[\text{div}(f(X; \mathbf{W}), g(X))]
\]
Recall: The *Empirical risk*

- In practice, we minimize the *empirical risk (or loss)*

\[
\text{Loss}(W) = \frac{1}{N} \sum_{i=1}^{N} \text{div}(f(X_i; W), d_i)
\]

\[
\hat{W} = \arg\min_W \text{Loss}(W)
\]

- The *expected value of the empirical risk* is actually the *expected divergence*

\[
E[\text{Loss}(W)] = E[\text{div}(f(X; W), g(X))]
\]
Recall: The *Empirical risk*

- In practice, we minimize the *empirical risk* (or loss)

\[
Loss(W) = \frac{1}{N} \sum_{i=1}^{N} \text{div}(f(X_i; W), d_i)
\]

The empirical risk is an *unbiased* estimate of the expected divergence

Though there is no guarantee that minimizing it will minimize the expected divergence

\[
E[Loss(W)] = E[\text{div}(f(X; W), g(X))]
\]
Recall: The *Empirical* risk

The empirical risk is an *unbiased* estimate of the expected divergence. Though there is no guarantee that minimizing it will minimize the expected divergence.

The variance of the empirical risk: \(\text{var}(\text{Loss}) = \frac{1}{N} \text{var}(\text{div}) \)

The variance of the estimator is proportional to \(\frac{1}{N} \)

The larger this variance, the greater the likelihood that the \(W \) that minimizes the empirical risk will differ significantly from the \(W \) that minimizes the expected divergence.

\[
\text{Loss}(W) = \frac{1}{N} \sum_{i=1}^{N} \text{div}(f(X_i; W), d_i)
\]

\[
E[\text{Loss}(W)] = E[\text{div}(f(X; W), g(X))]
\]
At each iteration, SGD focuses on the divergence of a single sample $\text{div}(f(X_i; W), d_i)$.

The expected value of the sample error is still the expected divergence $E[\text{div}(f(X; W), g(X))]$.
SGD

- At each iteration, **SGD** focuses on the divergence of a **single** sample \(\text{div}(f(X_i; W), d_i) \)
- The **expected value** of the **sample error** is **still** the **expected divergence** \(E[\text{div}(f(X; W), g(X))] \)

The sample divergence is also an **unbiased** estimate of the expected error
SGD

At each iteration, SGD focuses on the divergence of a single sample $\text{div}(f(X_i; W), d_i)$

The sample divergence is also an unbiased estimate of the expected error

- The expected value of the sample error is still the expected divergence $E[\text{div}(f(X; W), g(X))]$
Explaining the variance

- The blue curve is the function being approximated
- The red curve is the approximation by the model at a given W
- The heights of the shaded regions represent the point-by-point error
 - The divergence is a function of the error
 - We want to find the W that minimizes the average divergence
Explaining the variance

- Sample estimate approximates the shaded area with the average length of the error lines
• Sample estimate approximates the shaded area with the average length of the error lines
• This average length will change with position of the samples
Explaining the variance

• Sample estimate approximates the shaded area with the average length of the error lines
• This average length will change with position of the samples
• Having more samples makes the estimate more robust to changes in the position of samples
 – The variance of the estimate is smaller
Explaining the variance

- Having very few samples makes the estimate swing wildly with the sample position
 - Since our estimator learns the W to minimize this estimate, the learned W too can swing wildly
• Having very few samples makes the estimate swing wildly with the sample position
 – Since our estimator learns the W to minimize this estimate, the learned W too can swing wildly
Explaining the variance

- Having very few samples makes the estimate swing wildly with the sample position
 - Since our estimator learns the W to minimize this estimate, the learned W too can swing wildly
SGD example

- A simpler problem: K-means
- Note: SGD converges faster
- But also has large variation between runs
SGD vs batch

• SGD uses the gradient from only one sample at a time, and is consequently high variance

• But also provides significantly quicker updates than batch

• Is there a good medium?
Alternative: Mini-batch update

- Alternative: adjust the function at a small, randomly chosen subset of points
 - Keep adjustments small
 - If the subsets cover the training set, we will have adjusted the entire function
- As before, vary the subsets randomly in different passes through the training data
Alternative: Mini-batch update

- Alternative: adjust the function at a small, randomly chosen subset of points
 - Keep adjustments small
 - If the subsets cover the training set, we will have adjusted the entire function
- As before, vary the subsets randomly in different passes through the training data
Alternative: Mini-batch update

- Alternative: adjust the function at a small, randomly chosen subset of points
 - Keep adjustments small
 - If the subsets cover the training set, we will have adjusted the entire function
- As before, vary the subsets randomly in different passes through the training data
Alternative: Mini-batch update

- Alternative: adjust the function at a small, randomly chosen subset of points
 - Keep adjustments small
 - If the subsets cover the training set, we will have adjusted the entire function
- As before, vary the subsets randomly in different passes through the training data
Incremental Update: Mini-batch update

- Given \((X_1, d_1), (X_2, d_2), \ldots, (X_T, d_T)\)
- Initialize all weights \(W_1, W_2, \ldots, W_K; \ j = 0\)
- Do:
 - Randomly permute \((X_1, d_1), (X_2, d_2), \ldots, (X_T, d_T)\)
 - For \(t = 1:b:T\)
 - \(j = j + 1\)
 - For every layer \(k:\)
 - \(\Delta W_k = 0\)
 - For \(t' = t : t+b-1\)
 - For every layer \(k:\)
 » Compute \(\nabla_{W_k} \text{Div}(Y_t, d_t)\)
 » \(\Delta W_k = \Delta W_k + \frac{1}{b} \nabla_{W_k} \text{Div}(Y_t, d_t)^T\)
 - Update
 - For every layer \(k:\)
 \[W_k = W_k - \eta_j \Delta W_k \]
- Until \(Err\) has converged
Incremental Update: Mini-batch update

- Given \((X_1, d_1), (X_2, d_2), \ldots, (X_T, d_T)\)
- Initialize all weights \(W_1, W_2, \ldots, W_K\); \(j = 0\)
- Do:
 - Randomly permute \((X_1, d_1), (X_2, d_2), \ldots, (X_T, d_T)\)
 - For \(t = 1 : b : T\)
 - \(j = j + 1\)
 - For every layer \(k\):
 - \(\Delta W_k = 0\)
 - For \(t' = t : t + b - 1\)
 - For every layer \(k\):

 \[
 \begin{align*}
 &\text{Compute } \nabla_{W_k} \text{Div}(Y_t, d_t) \\
 &\Delta W_k = \Delta W_k + \frac{1}{b} \nabla_{W_k} \text{Div}(Y_t, d_t)^T
 \end{align*}
 \]
 - Update
 - For every layer \(k\):
 \[
 W_k = W_k - \eta_j \Delta W_k
 \]
Mini Batches

- Mini-batch updates compute and minimize a batch loss

\[
\text{MiniBatchLoss}(W) = \frac{1}{b} \sum_{i=1}^{b} \text{div}(f(X_i; W), d_i)
\]

- The expected value of the batch loss is also the expected divergence

\[
E[\text{MiniBatchLoss}(W)] = E[\text{div}(f(X; W), g(X))]
\]
Mini Batches

- Mini-batch updates compute and minimize a *batch loss*

\[
MiniBatchLoss(W) = \frac{1}{b} \sum_{i=1}^{b} \text{div}(f(X_i; W), d_i)
\]

- The *expected value* of the batch loss is also the expected divergence

\[
E[MiniBatchLoss(W)] = E[\text{div}(f(X; W), g(X))]
\]
Mini Batches

- Mini-batch updates compute and minimize a batch loss.
- The expected value of the batch loss is also the expected divergence.
- The variance of the minibatch loss: \(\text{var}(\text{BatchLoss}) = \frac{1}{b} \text{var}(\text{div}) \)
 This will be much smaller than the variance of the sample error in SGD.
- The minibatch loss is also an unbiased estimate of the expected error.

- Mini-batch updates compute and minimize a batch loss:
 \[
 \text{MiniBatchLoss}(W) = \frac{1}{b} \sum_{i=1}^{b} \text{div}(f(X_i; W), d_i)
 \]
- The expected value of the batch loss is also the expected divergence:
 \[
 E[\text{MiniBatchLoss}(W)] = E[\text{div}(f(X; W), g(X))]
 \]
Minibatch convergence

• For convex functions, convergence rate for SGD is $O\left(\frac{1}{\sqrt{k}}\right)$.

• For *mini-batch* updates with batches of size b, the convergence rate is $O\left(\frac{1}{\sqrt{bk}} + \frac{1}{k}\right)$

 – Apparently an improvement of \sqrt{b} over SGD

 – But since the batch size is b, we perform b times as many computations per iteration as SGD

 – We actually get a *degradation* of \sqrt{b}

• However, in practice

 – The objectives are generally not convex; mini-batches are more effective with the right learning rates

 – We also get additional benefits of vector processing
• Mini-batch performs comparably to batch training on this simple problem
 – But converges orders of magnitude faster
Measuring Loss

• Convergence is generally defined in terms of the overall training loss
 – Not sample or batch loss

• Infeasible to actually measure the overall training loss after each iteration

• More typically, we estimate is as
 – Divergence or classification error on a held-out set
 – Average sample/batch loss over the past N samples/batches
Training and minibatches

• In practice, training is usually performed using mini-batches
 – The mini-batch size is generally set to the largest that your hardware will support (in memory) without compromising overall compute time
 • Larger minibatches = less variance
 • Larger minibatches = few updates per epoch

• Convergence depends on learning rate
 – Simple technique: fix learning rate until the error plateaus, then reduce learning rate by a fixed factor (e.g. 10)
 – Advanced methods: Adaptive updates, where the learning rate is itself determined as part of the estimation
Select all that are true

- Minibatch descent is an online version of batch updates
- Minibatch descent is faster than SGD when the batch size is 1
- The variance of minibatch updates decreases with batch size
- Minibatch gradient approaches batch updates in variance, but SGD in efficiency when we use vector processing and large batches
Select all that are true

- Minibatch descent is an online version of batch updates
- Minibatch descent is faster than SGD when the batch size is 1 [false]
- The variance of minibatch updates decreases with batch size
- Minibatch gradient approaches batch updates in variance, but SGD in efficiency when we use vector processing and large batches
• SGD: Presenting training instances one-at-a-time can be more effective than full-batch training
 – Provided they are provided in random order

• For SGD to converge, the learning rate must shrink sufficiently rapidly with iterations
 – Otherwise the learning will continuously “chase” the latest sample

• SGD estimates have higher variance than batch estimates

• Minibatch updates operate on *batches* of instances at a time
 – Estimates have lower variance than SGD
 – Convergence rate is theoretically worse than SGD
 – But we compensate by being able to perform batch processing
Training and minibatches

- Convergence depends on learning rate
 - Simple technique: fix learning rate until the error plateaus, then reduce learning rate by a fixed factor (e.g. 10)

 - **Advanced methods**: Adaptive updates, where the learning rate is itself determined as part of the estimation
Moving on: Topics for the day

• Incremental updates
• Revisiting “trend” algorithms
• Generalization
• Tricks of the trade
 – Divergences..
 – Activations
 – Normalizations
Recall: Momentum Update

- The momentum method maintains a running average of all gradients until the current step

\[\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W \text{Loss}(W^{(k-1)})^T \]

\[W^{(k)} = W^{(k-1)} + \Delta W^{(k)} \]

- Typical \(\beta \) value is 0.9

- The running average steps
 - Get longer in directions where gradient retains the same sign
 - Become shorter in directions where the sign keeps flipping
Recall: Momentum Update

- The momentum method
 \[\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Loss(W^{(k-1)})^T \]
- At any iteration, to compute the current step:
Recall: Momentum Update

• The momentum method

\[\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_w \text{Loss}(W^{(k-1)})^T \]

• At any iteration, to compute the current step:
 – First compute the gradient step at the current location
Recall: Momentum Update

- The momentum method
 \[\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W \text{Loss}(W^{(k-1)})^T \]

- At any iteration, to compute the current step:
 - First compute the gradient step at the current location
 - Then add in the scaled previous step
 - Which is actually a running average
Recall: Momentum Update

• The momentum method

\[\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W \text{Loss}(W^{(k-1)})^T \]

• At any iteration, to compute the current step:
 – First compute the gradient step at the current location
 – Then add in the scaled *previous* step
 • Which is actually a running average
 – To get the final step
Momentum update steps are actually computed in two stages
- First: We take a step against the gradient at the current location
- Second: Then we add a scaled version of the previous step

The procedure can be made more optimal by reversing the order of operations.
Nestorov’s Accelerated Gradient

- Change the order of operations
- At any iteration, to compute the current step:
Nestorov’s Accelerated Gradient

• Change the order of operations
• At any iteration, to compute the current step:
 – First extend the previous step
Nestorov’s Accelerated Gradient

• Change the order of operations
• At any iteration, to compute the current step:
 – First extend the previous step
 – Then compute the gradient step at the resultant position
Nestorov’s Accelerated Gradient

• Change the order of operations
• At any iteration, to compute the current step:
 – First extend the previous step
 – Then compute the gradient step at the resultant position
 – Add the two to obtain the final step
Nestorov’s Accelerated Gradient

- Nestorov’s method

\[
\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W \text{Loss}(W^{(k-1)} + \beta \Delta W^{(k-1)})^T
\]

\[
W^{(k)} = W^{(k-1)} + \Delta W^{(k)}
\]
Nestorov’s Accelerated Gradient

• Comparison with momentum (example from Hinton)
• Converges much faster
Momentum and incremental updates

- The momentum method

\[\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla W \text{Loss}(W^{(k-1)})^T \]

- Incremental SGD and mini-batch gradients tend to have high variance

- Momentum smooths out the variations
 - Smoother and faster convergence
Momentum: Mini-batch update

- Given \((X_1, d_1), (X_2, d_2), \ldots, (X_T, d_T)\)
- Initialize all weights \(W_1, W_2, \ldots, W_K\); \(j = 0, \Delta W_k = 0\)
- Do:
 - Randomly permute \((X_1, d_1), (X_2, d_2), \ldots, (X_T, d_T)\)
 - For \(t = 1: b: T\)
 - \(j = j + 1\)
 - For every layer \(k\):
 - \(\nabla W_k \text{Loss} = 0\)
 - For \(t' = t : t+b-1\)
 - For every layer \(k\):
 - Compute \(\nabla W_k \text{Div}(Y_t, d_t)\)
 - \(\nabla W_k \text{Loss} += \frac{1}{b} \nabla W_k \text{Div}(Y_t, d_t)\)
 - Update
 - For every layer \(k\):
 \[
 \Delta W_k = \beta \Delta W_k - \eta_j (\nabla W_k \text{Loss})^T
 \]
 \[
 W_k = W_k + \Delta W_k
 \]
- Until \(\text{Loss}\) has converged
Nestorov’s Accelerated Gradient

- At any iteration, to compute the current step:
 - First extend the previous step
 - Then compute the gradient at the resultant position
 - Add the two to obtain the final step

- This also applies directly to incremental update methods
 - The accelerated gradient smooths out the variance in the gradients
Nestorov’s Accelerated Gradient

- Nestorov’s method

\[
\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W \text{Loss}(W^{(k-1)} + \beta \Delta W^{(k-1)})^T
\]

\[
W^{(k)} = W^{(k-1)} + \Delta W^{(k)}
\]
Nestorov: Mini-batch update

- Given \((X_1, d_1), (X_2, d_2), ..., (X_T, d_T)\)
- Initialize all weights \(W_1, W_2, ..., W_K\); \(j = 0, \Delta W_k = 0\)
- Do:
 - Randomly permute \((X_1, d_1), (X_2, d_2), ..., (X_T, d_T)\)
 - For \(t = 1: b: T\)
 - \(j = j + 1\)
 - For every layer \(k\):
 - \(W_k = W_k + \beta \Delta W_k\)
 - \(\nabla_{W_k} Loss = 0\)
 - For \(t' = t : t+b-1\)
 - For every layer \(k\):
 - Compute \(\nabla_{W_k} \text{Div}(Y_t, d_t)\)
 - \(\nabla_{W_k} Loss + = \frac{1}{b} \nabla_{W_k} \text{Div}(Y_t, d_t)\)
 - Update
 - For every layer \(k\):
 - \(W_k = W_k - \eta_j \nabla_{W_k} Loss^T\)
 - \(\Delta W_k = \beta \Delta W_k - \eta_j \nabla_{W_k} Loss^T\)

- Until \textit{Loss} has converged
The other term in the update

• Standard gradient descent rule

\[W \leftarrow W - \eta \nabla_w L(W) \]

• Gradient descent invokes two terms for updates
 – The derivative
 – and the learning rate
The other term in the update

• Standard gradient descent rule
 \[W \leftarrow W - \eta \nabla_W L(W) \]

• Gradient descent invokes two terms for updates
 – The derivative
 – and the learning rate

• Momentum methods fix this term to reduce unstable oscillation
The other term in the update

- Standard gradient descent rule
 \[W \leftarrow W - \eta \nabla_w L(W) \]

- Gradient descent invokes two terms for updates
 - The derivative
 - and the learning rate

- Momentum methods fix this term to reduce unstable oscillation

- What about this term?
Adjusting the learning rate

• Have separate learning rates for each component
• Directions in which the derivatives swing more should likely have lower learning rates
 – Is likely indicative of more wildly swinging behavior

• Directions of greater swing are indicated by total movement
 – Direction of greater movement should have lower learning rate

With separate learning rates in each direction, which should have the lowest learning rate in the vertical direction?
Smoothing the trajectory

- Observation: Steps in “oscillatory” directions show large total movement
 - In the example, total motion in the vertical direction is much greater than in the horizontal direction

- Solution: Lower learning rate in the vertical direction than in the horizontal direction
 - Based on total motion
 - As quantified by RMS value

<table>
<thead>
<tr>
<th>Step</th>
<th>X component</th>
<th>Y component</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>+2.5</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>+2.5</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-2</td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>
RMS Prop

• Notation:
 – Formulae are *by parameter*

 – Derivative of loss w.r.t any individual parameter w is shown as $\partial_w D$
 • Batch or minibatch loss, or individual divergence for batch/minibatch/SGD

 – The *squared* derivative is $\partial_w^2 D = (\partial_w D)^2$
 • Short-hand notation represents the squared derivative, not the second derivative

 – The *mean squared* derivative is a running estimate of the average squared derivative. We will show this as $E[\partial_w^2 D]$

• Modified update rule: We want to
 – scale down learning rates for terms with large mean squared derivatives
 – scale up learning rates for terms with small mean squared derivatives
RMS Prop

• This is a variant on the basic mini-batch SGD algorithm

• Procedure:
 – Maintain a running estimate of the mean squared value of derivatives for each parameter
 – Scale learning rate of the parameter by the inverse of the root mean squared derivative

\[
E[\partial_w^2 D]_k = \gamma E[\partial_w^2 D]_{k-1} + (1 - \gamma)(\partial_w^2 D)_k
\]

\[
w_{k+1} = w_k - \frac{\eta}{\sqrt{E[\partial_w^2 D]_k + \epsilon}} \partial_w D
\]
RMS Prop

• This is a variant on the *basic* mini-batch SGD algorithm

• **Procedure:**
 – Maintain a running estimate of the mean squared value of derivatives for each parameter
 – Scale learning rate of the parameter by the *inverse* of the *root mean squared* derivative

\[
E[\partial_w^2 D]_k = \gamma E[\partial_w^2 D]_{k-1} + (1 - \gamma)(\partial_w^2 D)_k
\]

\[
w_{k+1} = w_k - \frac{\eta}{\sqrt{E[\partial_w^2 D]_k + \epsilon}} \partial_w D
\]

Note similarity to RPROP
The magnitude of the derivative is being normalized out
RMS Prop (updates are for each weight of each layer)

- Do:
 - Randomly shuffle inputs to change their order
 - Initialize: \(k = 1 \); for all weights \(w \) in all layers, \(E[\partial_w^2 D]_k = 0 \)
 - For all \(t = 1: B: T \) (incrementing in blocks of \(B \) inputs)
 - For all weights in all layers initialize \((\partial_w D)_k = 0 \)
 - For \(b = 0: B - 1 \)
 - Compute
 » Output \(Y(X_{t+b}) \)
 » Compute gradient \(\frac{dDiv(Y(X_{t+b}),d_{t+b})}{dw} \)
 » Compute \((\partial_w D)_k + = \frac{1}{B} \frac{dDiv(Y(X_{t+b}),d_{t+b})}{dw} \)
 - update: for all \(w \in \{w_{ij}^k \forall i,j,k\} \)
 \[
 E[\partial_w^2 D]_k = \gamma E[\partial_w^2 D]_{k-1} + (1 - \gamma) (\partial_w^2 D)_k
 \]
 \[
 w_{k+1} = w_k - \frac{\eta}{\sqrt{E[\partial_w^2 D]_k + \epsilon}} \partial_w D
 \]
 - \(k = k + 1 \)
- Until loss has converged

Typical values:
- \(\gamma = 0.9 \)
- \(\eta = 0.001 \)
All the terms in gradient descent

• Standard gradient descent rule
 \[W \leftarrow W - \eta \nabla_W L(W) \]

• RMSprop only adapts the learning rate
 – by total movement

• Momentum only smooths the gradient
All the terms in gradient descent

• Standard gradient descent rule
 \[W \leftarrow W - \eta \nabla_W L(W) \]

• RMSprop only adapts the learning rate
 – by total movement

• Momentum only smooths the gradient

• How about combining both?
ADAM: RMSprop with momentum

• RMS prop only adapts the learning rate
• Momentum only smooths the gradient
• ADAM combines the two

• **Procedure:**
 – Maintain a running estimate of the mean derivative for each parameter
 – Maintain a running estimate of the mean squared value of derivatives for each parameter
 – Learning rate is proportional to the inverse of the root mean squared derivative

\[
\begin{align*}
m_k & = \delta m_{k-1} + (1 - \delta)(\partial_w D)_k \\
ν_k & = γ ν_{k-1} + (1 - γ)(\partial_w^2 D)_k \\
\hat{m}_k &= \frac{m_k}{1 - \delta^k} , \quad \hat{ν}_k = \frac{ν_k}{1 - γ^k} \\
w_{k+1} & = w_k - \frac{η}{\sqrt{\hat{ν}_k + \epsilon}} \hat{m}_k
\end{align*}
\]
ADAM: RMSprop with momentum

• RMS prop only adapts the learning rate
• Momentum only smooths the gradient
• ADAM combines the two

• Procedure:
 – Maintain a running estimate of the mean derivative for each parameter
 – Maintain a running estimate of the mean squared value of derivatives for each parameter
 – Learning rate is proportional to the inverse of the root mean squared derivative

\[
\begin{align*}
 m_k &= \delta m_{k-1} + (1 - \delta)(\partial_w D)_k \\
 \nu_k &= \gamma \nu_{k-1} + (1 - \gamma)(\partial_w^2 D)_k \\

 \hat{m}_k &= \frac{m_k}{1 - \delta^k}, \quad \hat{\nu}_k = \frac{\nu_k}{1 - \gamma^k} \\
 w_{k+1} &= w_k - \frac{\eta}{\sqrt{\hat{\nu}_k + \epsilon}} \hat{m}_k
\end{align*}
\]

Ensures that the \(\delta \) and \(\gamma \) terms do not dominate in early iterations
ADAM: RMSprop with momentum

Typically μ_0 is 0 and δ is close to 1. So $(1 - \delta) \approx 0$. Without the denominator term μ_k will stay close to 0 for $k = 0, 1, 2, \ldots$ for a long time, resulting in minimal parameter updates.

The denominator term ensures that $\mu_1 = (\partial_w D)_1$ and updates actually happen.

For large k, the denominator just becomes 1.

- Maintain a running estimate of the mean squared value of the derivatives for each parameter.
- Learning rate is proportional to the inverse of the root mean squared derivative.

\[
m_k = \delta m_{k-1} + (1 - \delta)(\partial_w D)_k
\]
\[
v_k = \gamma v_{k-1} + (1 - \gamma)(\partial_w^2 D)_k
\]
\[
\hat{m}_k = \frac{m_k}{1 - \delta^k}, \quad \hat{v}_k = \frac{v_k}{1 - \gamma^k}
\]
\[
w_{k+1} = w_k - \frac{\eta}{\sqrt{\hat{v}_k + \epsilon}} \hat{m}_k
\]

Ensures that the δ and γ terms do not dominate in early iterations.
Other variants of the same theme

• Many:
 – Adagrad
 – AdaDelta
 – AdaMax
 – ...

• Generally no explicit learning rate to optimize
 – But come with other hyper parameters to be optimized
 – Typical params:
 • RMSProp: $\eta = 0.001$, $\gamma = 0.9$
 • ADAM: $\eta = 0.001$, $\delta = 0.9$, $\gamma = 0.999$
Which of the following are true

- Vanilla SGD considers the long-term trends of gradients in update steps
- Momentum methods consider the long-term average of derivatives to make updates
- RMSprop only considers the second order moment of derivatives, but not their average trend, to make updates
- ADAM considers both the average trend and second moment of derivatives to make updates
- Trend-based optimizers like momentum, RMSprop and ADAM are important to smooth out the variance of SGD or minibatch updates
Poll 4

Which of the following are true

- Vanilla SGD considers the long-term trends of gradients in update steps [false]
- Momentum methods consider the long-term average of derivatives to make updates
- RMSprop only considers the second order moment of derivatives, but not their average trend, to make updates
- ADAM considers both the average trend and second moment of derivatives to make updates
- Trend-based optimizers like momentum, RMSprop and ADAM are important to smooth out the variance of SGD or minibatch updates
Visualizing the optimizers: Beale’s Function

- [Link](http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html)
Visualizing the optimizers: Long Valley

Visualizing the optimizers: Saddle Point

Story so far

• Gradient descent can be sped up by incremental updates
 – Convergence is guaranteed under most conditions
 • Learning rate must shrink with time for convergence
 – Stochastic gradient descent: update after each observation. Can be much faster than batch learning
 – Mini-batch updates: update after batches. Can be more efficient than SGD

• Convergence can be improved using smoothed updates
 – RMSprop and more advanced techniques