
Homework 1 Part 1
An Introduction to Neural Networks

11-785: Introduction to Deep Learning (Spring 2020)

OUT: January 19, 2020
DUE: February 8, 2020, 11:59 PM

Start Here

• Collaboration policy:

– You are expected to comply with the University Policy on Academic Integrity and Plagiarism.

– You are allowed to talk with / work with other students on homework assignments

– You can share ideas but not code, you must submit your own code. All submitted code will be
compared against all code submitted this semester and in previous semesters using MOSS.

• Overview:

– MyTorch: An introduction to the library structure you will be creating as well as an explanation
of the local autograder and the way you will submit your homework.

– Multiple Choice: These are a series of multiple choice (autograded) questions which will speed
up your ability to complete the homework, if you thoroughly understand their answers.

– A Simple Neural Network: All of the problems in Part 1 will be graded on Autolab. You can
download the starter code/mytorch folder structure from Autolab as well. This assignment has
100 points total, including 95 that are autograded.

– Appendix: This contains information and formulas about some of the functions you have to
implement in the homework.

– Glossary: This contains basic definitions to most of the technical vocabulary used in the handout.

• Directions:

– You are required to do this assignment in the Python (version 3) programming language. Do not
use any auto-differentiation toolboxes (PyTorch, TensorFlow, Keras, etc) - you are only permitted
and recommended to vectorize your computation using the Numpy library.

– We recommend that you look through all of the problems before attempting the first problem.
However we do recommend you complete the problems in order, as the difficulty increases, and
questions often rely on the completion of previous questions.
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1 MyTorch

The culmination of all of the Homework Part 1’s will be your own custom deep learning library, which we
are calling MyTorch c©. It will act similar to other deep learning libraries like PyTorch or Tensorflow. The
files in your homework are structured in such a way that you can easily import and reuse modules of code
for your subsequent homeworks. For Homework 1, MyTorch will have the following structure:

• mytorch

– loss.py

– activation.py

– batchnorm.py

– linear.py

• hw1

– hw1.py

– mc.py

• autograder

– hw1 autograder

∗ runner.py

∗ test.py

• create tarball.sh

• Install python (version 3), numpy, pytest. In order to run the local autograder on your machine, you
will need the following libraries installed in python (version 3):

pip3 install numpy

pip3 install pytest

• Hand-in 1 your code by running the following command from the top level directory, then SUBMIT
the created handin.tar file to autolab:

sh create_tarball.sh

• Autograde 2 your code by running the following command from the top level directory:

python3 autograder/hw1_autograder/runner.py

• DO NOT:

– Import any other external libraries other than numpy, as extra packages that do not exist in
autolab will cause submission failures.

– Add, move, or remove any files or change any file names.

1Make sure that all class and function definitions originally specified (as well as class attributes and methods) are fully
implemented to the specification provided in this writeup and in the docstrings or comments.

2We provide a local autograder that you can use for your code. It roughly has the same behavior as the one on Autolab,
except that it will compare your outputs and attributes with prestored results on prestored data (while autolab directly compares
you to a solution). In theory, passing one means that you pass the other, but we recommend you also submit partial solutions
on autolab from time to time while completing the homework.
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2 Multiple Choice

• These questions are intended to give you major hints throughout the homework.

• Please try to thoroughly understand the questions and answers for each one.

• Answer the questions by returning the correct letter as a string in the corresponding question function
in hw1/mc.py

• Each question has only a single correct answer

• Verify your solutions by running the local autograder.

• To get credit (5 points), you must answer all questions correctly.

(1) Question 1: What are the correct shapes of b and c from the code below? [1 point]

a = np . arange ( 6 0 . ) . reshape (3 , 4 , 5 )
b = np . sum( a , a x i s =0, keepdims=True )
c = np . sum( a , a x i s =0)

(A) b.shape=(3, 4, 5) c.shape=(4, 5)

(B) b.shape=(1, 4, 5) c.shape=(4, 5)

(C) b.shape=(3, 4, 5) c.shape=(1, 4, 5)

(D) b.shape=(3, 4, 5) c.shape=(3, 4, 5)

(2) Question 2: First, read through the appendix on Batchnorm. In the appendix we discuss
reducing covariate shift of the data. What does the mean (µB) and standard deviation
(σ2
B) refer to? [1 point]

(A) Every neuron in a layer has a mean and standard deviation, computed over an entire batch

(B) Every layer has a mean and a standard deviation computed over all the neurons in that layer

(C) Every neuron in a layer has a mean and a standard deviation computed over the entire testing set

(3) Question 3: For Batchnorm, is it necessary to maintain a running mean and running
variance of the training data? [1 point]

(A) Yes! We cannot calculate the mean and variance during inference, hence we need to maintain an
estimate of the mean and variance to use when calculating the norm of x (x̂) at test time.3

(B) No! Life is a simulation. Nothing is real.

3You need to calculate the running average at training time, because you really want to find an estimate for the overall
covariate shifts over the entire data. Running averages give you an estimate of the overall covariate shifts.

At test time you typically have only one test instance, so if you use the test data itself to compute means and variances,
you’ll wipe the data out (mean will be itself, var will be inf). Thus, you use the global values (obtained as running averages)
from the training data at test time.
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(4) Question 4: Read https://www.geeksforgeeks.org/zip-in-python/ (zip is useful for creat-
ing the weights and biases for the linear layer in one line of code.) Did you enjoy the
read? [1 point]

(A) Yes

(B) No

(5) Question 5: Which one of these is a valid layer as defined from class? For this question
(and later in the homework), w.shape=(input, output) with x.shape=(batch size, input)

and b.shape=(1, output). Note, below that anywhere we use dot, we could have instead
used matmul. [1 point]

(A) z = activationFunction(np.dot(x, b) + w)

(B) z = activationFunction(np.dot(x, w)) + b

(C) z = activationFunction(np.dot(x, w) + b)

(D) baked_potato = activationFunction(potato)
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3 A Simple Neural Network

Write your own implementation of the backpropagation algorithm for training your own neural network, as
well as a few other features such as activation and loss functions.

The autograder tests will compare the outputs of your methods and the attributes of your classes with a
reference solution. Therefore, we do enforce a large portion of the design of your code; however, you still
have a lot of freedom in your implementation.

Keep your code as concise as possible, and leverage Numpy as much as possible. No PyTorch!

3.1 Task 1: Activations [12 points]

• In mytorch/activations.py, implement the forward and derivative class methods for each activa-
tion function.

• The identity function has been implemented for you as an example.

• The output of the activation should be stored in the self.state variable of the class. The self.state
variable should be used for calculating the derivative during the backward pass.

3.1.1 Sigmoid Forward [2 points]

S(z) =
1

1 + e−z

3.1.2 Sigmoid Derivative [2 points]

S’(z) = S(z) · (1− S(z))

3.1.3 Tanh Forward [2 points]

tanh(z) =
ez − e−z

ez + e−z

3.1.4 Tanh Derivative [2 points]

tanh’(z) = 1− tanh(z)2

3.1.5 ReLU Forward [2 points]

R(z) =

{
z z > 0

0 z ≤ 0

3.1.6 ReLU Derivative [2 points]

R’(z) =

{
1 z > 0

0 z ≤ 0

Note: ReLU’s derivative is undefined at 0, however we will implement the above derivative for this homework.
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3.2 Task 2: Loss [4 points]

• In mytorch/loss.py, implement the forward and derivative methods for SoftmaxCrossEntropy.
This class inherits the base Criterion class.

• We will be using the softmax cross entropy loss detailed in the appendix of this writeup; use the
LogSumExp trick (see appendix) to ensure numerical stability.

3.2.1 Forward [2 points]

Implement the softmax cross entropy operation on a batch of output vectors.

Hint: Add a class attribute to keep track of intermediate values necessary for the backward computation.

• Input shapes:

– x: (batch size, 10)

– y: (batch size, 10) (one hot vectors)

• Output Shape:

– out: (batch size,)

3.2.2 Derivative [2 points]

Calculate the ‘derivative’ of softmax cross entropy using intermediate values saved in the forward pass.

• Output shapes:

– out: (batch size, 10)

3.3 Task 3: Batch Normalization [15 points]

• In mytorch/batchnorm.py, implement the forward and backward methods for BatchNorm.

• The Batch Normalization technique comes from Ioffe and Szegedy [2015]. The appendix has the
information necessary to complete the forward and backward functions of BatchNorm.

• For the autograder tests, you can assume batch norm will be applied to networks with sigmoid non-
linearities.

• You will not be able to test Batch Norm until you complete section 3.5. In section 3.5, you will create
your own Multi Layer Perceptron and add Batch Norm layers to your MLP. That is where you will
gain the 10 points are for Batch Norm’s correctness during training and 5 points during inference.
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3.4 Task 4: Linear Layer [4 points]

• In mytorch/linear.py, implement the forward and backward methods for the Linear class.

3.4.1 Forward [2 points]

Hint: Add a class attribute to keep track of intermediate values necessary for the backward computation.

• Input shapes:

– x: (batch size, in feature)

• Output Shape:

– out: (batch size, out feature)

3.4.2 Backward [2 points]

Write the code for the backward method of Linear.

The input delta is the derivative of the loss with respect to the output of the linear layer. It has the same
shape as the linear layer output.

• Input shapes:

– delta: (batch size, out feature)

dW and db: Calculate self.dW and self.db for the backward method. self.dW and self.db represent the
gradients of the loss (averaged across the batch) w.r.t self.W and self.b. Their shapes are the same
as the weight self.W and the bias self.b.

dx: Calculate the return value for the backward method. dx is the derivative of the loss with respect to the
input of the linear layer and has the same shape as the input.

• Output Shape:

– dx: (batch size, in feature)
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3.5 Task 5: Simple MLP [55 Points]

In this section of the homework, you will be implementing a Multi-Layer Perceptron with an API similar to
popular Automatic Differentiation Libraries like PyTorch, which you will be allowed and encouraged to use
in the second part of the homework.

In hw1/hw1.py go through the functions of the given MLP class thoroughly and make sure you understand
what each function in the class does so that you can create a generic implementation that supports an
arbitrary number of layers, types of activations and network sizes.

The parameters for the MLP class are:

• input size: The size of each individual data example.

• output size: The number of outputs.

• hiddens: A list with the number of units in each hidden layer.

• activations: A list of Activation objects for each layer.

• weight init fn: A function applied to each weight matrix before training.

• bias init fn: A function applied to each bias vector before training.

• criterion: A Criterion object to compute the loss and its derivative.

• lr: The learning rate.

• momentum: Momentum scale (Should be 0.0 until completing 3.5.3).

• num bn layers: Number of BatchNorm layers start from upstream (Should be 0 until completing 3.3).

The attributes of the MLP class are:

• @linear layers: A list of Linear objects.

• @bn layers: A list of BatchNorm objects. (Should be None until completing 3.3).

The methods of the MLP class are:

• forward: Forward pass. Accepts a mini-batch of data and return a batch of output activations.

• backward: Backward pass. Accepts ground truth labels and computes gradients for all parameters.
Hint: Use state stored in activations during forward pass to simplify your code.

• zero grads: Set all gradient terms to 0.

• step: Apply gradients computed in backward to the parameters.

• train (Already implemented): Set the mode of the network to train.

• eval (Already implemented): Set the mode of the network to evaluation.

Note: Pay attention to the data structures being passed into the constructor and the class attributes
specified initially.

Sample constructor call:

MLP(784, 10, [64, 64, 32], [Sigmoid(), Sigmoid(), Sigmoid(), Identity()],

weight_init_fn, bias_init_fn, SoftmaxCrossEntropy(), 0.008, momentum=0.9, num_bn_layers=0)
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3.5.1 Linear MLP [5 points]

• In hw1/hw1.py implement a linear classifier (MLP with no hidden layers) using the MLP class. We
suggest you read through the entire assignment before you start implementing this part.

• For this problem, some useful parameters may be: input size, output size, hiddens, activations,
weight init fn, bias init fn, criterion.

• The activation function function will be a single Identity activation, and the criterion is a Softmax-
CrossEntropy object.

You will have to implement the forward and backward method of the MLP class so that it can at least work
as a linear classifier.

The step function also needs to implemented, as it will be invoked after every backward pass to update the
parameters of the network (the gradient descent algorithm).

After all parts are filled, train the model for 100 epochs with a batch size of 100 and try visualizing the
training curves using the utilities provided in test.py.

3.5.2 Hidden Layers [40 points]

Update the MLP class that previously just supported a single fully connected layer (a linear model) such that
it can now support an arbitrary number of hidden layers, each with an arbitrary number of units.

Specifically, the hiddens argument of the MLP class will no longer be assumed to be an empty list and can
be of arbitrary length (arbitrary number of layers) and contain arbitrary positive integers (arbitrary number
of units in each layer).

The implementation should apply the Activation objects, passed as activations, to their respective layers.
For example, activations[0] should be applied to the activity of the first hidden layer.

While at risk of being pedantic, here is a clarification of the expected arguments to be passed to the MLP

constructor once it can support an arbitrary numbers of layers with an arbitrary assortment of activation
functions.

• input size: The size of each individual data example.

• output size: The number of outputs.

• hiddens: A list of layer sizes (number of units per layer).

• activations: A list of Activation objects to be applied after each linear transformation respectively.

• weight init fn: A function applied to each weight matrix before training.

• bias init fn: A function applied to each bias vector before training.

• criterion: SoftmaxCrossEntropy object.

Extra Hints

For slightly more specification, you will be updating the linear layers and bn layers attributes (if you need
to). You will also need to update the forward, backward, and step methods to now account for the multitude
of layers (and possibly batchnorm).

We will be using the ordering for the forward pass as follows:

Linear Layer → Batch Norm (if applicable) → Activation → Next Layer ...

If applicable, the value num bn layers indicates that the first num bn layers linear layers should be followed
by a batchnorm in the forward pass.
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3.5.3 Momentum [10 points]

Modify the step function present in the MLP class to include momentum in your gradient descent. The
momentum value will be passed as a parameter to the MLP.

We will be using the following momentum update equation:

∇W k = β∇W k−1 − η∇WLoss(W k−1)

W k = W k−1 +∇W k

as discussed in lecture. The momentum values for the weights and biases are stored within the Linear class.

3.6 Task 6: Training Statistics [5 points]

At the bottom of hw1/hw1.py complete the function get training stats.

You will be passed the MNIST data set (provided as a 3-tuple of {train set, val set, test set}. (You
will not use the test set in this function.)

• training losses: A Numpy ndarray containing the average training loss for each epoch.

• training errors: A Numpy ndarray containing the classification error on the training set at each
epoch (Hint: You should not be evaluating performance on the training set after each epoch, but
compute an approximation of the training classification error for each training batch).

• validation losses: A Numpy ndarray containing the average validation loss loss for each epoch.

• validation errors: A Numpy ndarray containing the classification error on the validation set after
each epoch.

Complete the function such that, given a network, a dataset, a number of epochs and a batch size, you train
the network and returns those quantities.

Then execute the provided test file using the command below. The command will run get training stats

on MNIST for a given network and plot the previous arrays into files. Run the following command, which
will automatically add the images to your submission tar.

python3 autograder/hw1_autograder/test.py --outpath hw1

Your function should perform nepoch number of epochs. Remember to invoke the zero grad function after
each batch.

Note: Please ensure that you shuffle the training set after each epoch by using np.random.shuffle and
generate a list of indices and performing a gather operation on the data using these indices.

Note: You will not be autograded on that part. Instead we will grade you manually by looking at your code
and plots. We will check that your code and the statistics you obtain make sense. Contrary to the other
questions, we do not require an exact match with the solution, only that you run your forward, backward
and step functions in the right order, and use the partitions of the dataset correctly (train and val at least),
with shuffling of the training set between epochs.

Note: We provide examples of the plots that you should obtain. If you get similar or better values at the
end of the training (loss around 0.3, error around 0.1), then you are very likely to get all the points. If you
are a bit above but that the errors and losses still drop significantly during training, it’s possible that you
get all the points as well.

References
Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing

internal covariate shift. CoRR, abs/1502.03167, 2015. URL http://arxiv.org/abs/1502.03167.
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Appendix

A Softmax Cross Entropy

Let’s define softmax, a useful function that offers a smooth (and differentiable) version of the max function
with a nice probabilistic interpretation. We denote the softmax function for a logit xj of K logits (outputs)
as σ(xj).

σ(xj) =
exj∑K
k=1 e

xk

Notice that the softmax function properly normalizes the k logits, so we can interpret each σ(xj) as a
probability and the largest logit xj will have the greatest mass in the distribution.

K∑
j=1

σ(xj) =
1∑K

k=1 e
xk

K∑
j=1

exj = 1

For two distributions P and Q, we define cross-entropy over discrete events X as

CE =
∑
x∈X

P (x) log
1

Q(x)
= −

∑
x∈X

P (x) logQ(x)

Cross-entropy comes from information theory, where it is defined as the expected information quantified as
log 1

q of some subjective distribution Q over an objective distribution P . It quantifies how much information

we (our model Q) receive when we observe true outcomes from Q – it tells us how far our model is from the
true distribution P . We minimize Cross-Entropy when P = Q. The value of cross-entropy in this case is
known simply as the entropy.

H =
∑
x∈X

P (x) log
1

P (x)
= −

∑
x∈X

P (x) logP (x)

This is the irreducible information we receive when we observe the outcome of a random process. Consider
a coin toss. Even if we know the Bernoulli parameter p (the probability of heads) ahead of time, we will
never have absolute certainty about the outcome until we actually observe the toss. The greater p is, the
more certain we are about the outcome and the less information we expect to receive upon observation.

We can normalize our network output using softmax and then use Cross-Entropy as an objective function.
Our softmax outputs represent Q, our subjective distribution. We will denote each softmax output as ŷj and
represent the true distribution P with output labels yj = 1 when the label is for each output. We let yj = 1
when the label is j and yj = 0 otherwise. The result is a degenerate distribution that will aim to estimate
P when averaged over the training set. Let’s formalize this objective function and take the derivative.
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L(ŷ, y) = CE(ŷ, y)

= −
K∑
i=1

yi log ŷi

= −
K∑
i=1

yi log σ(xi)

= −
K∑
i=1

yi log
exi∑K
k=1 e

xk

∂L(ŷ, y)

∂xj
=

∂

∂xj

(
−

K∑
i=1

yi log
exi∑K
k=1 e

xk

)

=
∂

∂xj

(
−

K∑
i=1

yi(log exi − log

K∑
k=1

exk)

)

=
∂

∂xj

(
K∑
i=1

−yi log exi +

K∑
i=1

yi log

K∑
k=1

exk

)

=
∂

∂xj

(
K∑
i=1

−yixi +

K∑
i=1

yi log

K∑
k=1

exk

)

The next step is a little bit more subtle, but recall there is only a single true label for each example and
therefore only a single yi is equal to 1; all others are 0. Therefore we can imagine expanding the sum over i
in the second term and only one term of this sum will be 1 and all the others will be zero.

∂L(ŷ, y)

∂xj
=

∂

∂xj

(
K∑
i=1

−yixi + log

K∑
k=1

exk

)

Now we take the partial derivative and remember that the derivative of a sum is the sum of the derivative
of its terms and that any term without xj can be discarded.

∂L(ŷ, y)

∂xj
=

∂

∂xj
(−yjxj) +

∂

∂xj
log

K∑
k=1

exk

= −yj +
1∑K

k=1 e
xk

·

(
∂

∂xj

K∑
k=1

exk

)

= −yj +
1∑K

k=1 e
xk

· (exj )

= −yj +
exj∑K
k=1 e

xk

That second term looks very familiar, huh?
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∂L(ŷ, y)

∂xj
= −yj +

exj∑K
k=1 e

xk

= −yj + σ(xj)

= σ(xj)− yj
= ŷj − yj

After all that work we end up with a very simple and elegant expression for the derivative of softmax with
cross-entropy divergence with respect to its input. What this is telling us is that when yj = 1, the gradient is
negative and thus the opposite direction of the gradient is positive: it is telling us to increase the probability
mass of that specific output through the softmax.

B LogSumExp

The LogSumExp trick is used to prevent numerical underflow and overflow which can occur when the
exponent is very large or very small. For example, look at the results of trying to exponentiate in python
shown in the image below:

As you can see, for exponents that are too large, python throws an overflow error, and for exponents that
are too small, it rounds down to zero.

We can avoid these errors by using the LogSumExp trick:

You can read more about the derivation of the equivalence here and here

C Batch Normalization

Batch Normalization (commonly referred to as “BatchNorm”) is a wildly successful and simple technique
for accelerating training and learning better neural network representations. The general motivation of
BatchNorm is the non-stationarity of unit activity during training that requires downstream units to adapt
to a non-stationary input distribution. This co-adaptation problem, which the paper authors refer to as
internal covariate shift, significantly slows learning.

Just as it is common to whiten training data (standardize and de-correlate the covariates), we can invoke
the abstraction of a neural network as a hierarchical set of feature filters and consider the activity of each
layer to be the covariates for the subsequent layer and consider whitening the activity over all training
examples after each update. Whitening layer activity across the training data for each parameter update is
computationally infeasible, so instead we make some (large) assumptions that end up working well anyway.
The main assumption we make is that the activity of a given unit is independent of the activity of all other
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units in a given layer. That is, for a layer l with m units, individual unit activities (consider each a random
variable) x = {x(k), . . . ,x(d)} are independent of each other – {x(1) ⊥ . . .x(k) . . . ⊥ x(d)}.

Under this independence assumption, the covariates are not correlated and therefore we only need to nor-
malize the individual unit activities. Since it is not practical in neural network optimization to perform
updates with a full-batch gradient, we typically use an approximation of the “true” full-batch gradient over
a subset of the training data. We make the same approximation in our normalization by approximating the
mean and variance of the unit activities over this same subset of the training data.

Given this setup, consider uB to be the mean and σ2
B the variance of a unit’s activity over a subset of the

training data, which we will hence refer to as a batch of data B. For a training set X with n examples, we
partition it into n/m batches B of size m. For an arbitrary unit k, we compute the batch statistics uB and
σ2
B and normalize as follows (σ2

B is added with ε = 1e− 8 such that we do not divide by zero):

u
(k)
B ←

1

m

m∑
i=1

x
(k)
i (1)

(σ2
B)(k) ← 1

m

m∑
i=1

(
x
(k)
i − u

(k)
B

)2
(2)

x̂i ←
xi − uB√
σ2
B + ε

(3)

A significant issue posed by simply normalizing individual unit activity across batches is that it limits the
set of possible network representations. A way around this is to introduce a set of learnable parameters for
each unit that ensure the BatchNorm transformation can be learned to perform an identity transformation.
To do so, these per-unit learnable parameters γ(k) and β(k), rescale and reshift the normalized unit activity.
Thus the output of the BatchNorm transformation for a data example, yi is given as follows,

yi ← γx̂i + β (4)

We can now derive the analytic partial derivatives of the BatchNorm transformation. Let LB be the train-
ing loss over the batch and ∂LB

∂yi
the derivative of the loss with respect to the output of the BatchNorm

transformation for a single data example xi ∈ B.

∂L

∂x̂i
=
∂LB
∂yi

∂yi
∂x̂i

=
∂LB
∂yi

γ (5)

∂L

∂β
=

m∑
i=1

∂LB
∂yi

∂yi
∂β

=

m∑
i=1

∂LB
∂yi

(6)

∂L

∂γ
=

m∑
i=1

∂LB
∂yi

∂yi
∂γ

=

m∑
i=1

∂LB
∂yi

x̂i (7)

∂L

∂σ2
B

=

m∑
i=1

∂LB
∂x̂i

∂x̂i
∂σ2
B

(8)

=

m∑
i=1

∂LB
∂x̂i

∂

∂σ2
B

[
(xi − µB)(σ2

B + ε)−
1
2

]
(9)

= −1

2

m∑
i=1

∂LB
∂x̂i

(xi − µB)(σ2
B + ε)−

3
2 (10)

∂L

∂µB
=

m∑
i=1

∂LB
∂x̂i

∂x̂i
∂µB

(11)

14



Solve for ∂x̂i

∂µB

∂x̂i
∂µB

=
∂

∂µB

[
(xi − µB)(σ2

B + ε)−
1
2

]
(12)

= −(σ2
B + ε)−

1
2 + (xi − µB)

∂

∂µB

[
(σ2
B + ε)−

1
2

]
(13)

= −(σ2
B + ε)−

1
2 + (xi − µB)

∂

∂µB

( 1

m

m∑
i=1

(xi − uB)
2

+ ε

)− 1
2

 (14)

= −(σ2
B + ε)−

1
2 (15)

− 1

2
(xi − µB)

( 1

m

m∑
i=1

(xi − uB)
2

+ ε

)− 3
2

∂

∂µB

(
1

m

m∑
i=1

(xi − µB)
2

)
= −(σ2

B + ε)−
1
2 − 1

2
(xi − µB)

(
σ2
B + ε

)− 3
2

(
− 2

m

m∑
i=1

(xi − µB)

)
(16)

Now sub this expression for ∂x̂i

∂µB
into ∂L

∂µB
=
∑m
i=1

∂LB
∂x̂i

∂x̂i

∂µB

∂L

∂µB
= −

m∑
i=1

∂LB
∂x̂i

(σ2
B + ε)−

1
2 − 1

2

m∑
i=1

∂LB
∂x̂i

(xi − µB)
(
σ2
B + ε

)− 3
2

(
− 2

m

m∑
i=1

(xi − µB)

)
(17)

Notice that part of the expression in the second term is just ∂L
∂σ2

B

∂L

∂µB
= −

m∑
i=1

∂LB
∂x̂i

(σ2
B + ε)−

1
2 +

∂L

∂σ2
B

(
− 2

m

m∑
i=1

(xi − µB)

)

= −
m∑
i=1

∂LB
∂x̂i

(σ2
B + ε)−

1
2 − 2

m

∂L

∂σ2
B

m∑
i=1

(xi − µB)

Now for the grand finale, let’s solve for ∂L
∂xi
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∂LB
∂xi

=
∂LB
∂x̂i

∂x̂i
∂xi

(18)

=
∂LB
∂x̂i

[
∂x̂i
∂xi

+
∂x̂i
∂σ2
B

∂σ2
B

∂xi
+
∂x̂i
∂µB

∂µB
∂xi

]
(19)

=
∂LB
∂x̂i

∂x̂i
∂xi

+
∂LB
∂x̂i

∂x̂i
∂σ2
B

∂σ2
B

∂xi
+
∂LB
∂x̂i

∂x̂i
∂µB

∂µB
∂xi

(20)

=
∂LB
∂x̂i

∂x̂i
∂xi

+
∂LB
∂σ2
B

∂σ2
B

∂xi
+
∂LB
∂µB

∂µB
∂xi

(21)

=
∂LB
∂x̂i

[
∂

∂xi

(
(xi − µB)(σ2

B + ε)−
1
2

)]
+
∂LB
∂σ2
B

∂σ2
B

∂xi
+
∂LB
∂µB

∂µB
∂xi

(22)

=
∂LB
∂x̂i

[
(σ2
B + ε)−

1
2

]
+
∂LB
∂σ2
B

∂σ2
B

∂xi
+
∂LB
∂µB

∂µB
∂xi

(23)

=
∂LB
∂x̂i

[
(σ2
B + ε)−

1
2

]
+
∂LB
∂σ2
B

 ∂

∂xi

 1

m

m∑
j=1

(xj − µB)2

+
∂LB
∂µB

∂µB
∂xi

(24)

=
∂LB
∂x̂i

[
(σ2
B + ε)−

1
2

]
+
∂LB
∂σ2
B

[
2

m
(xi − µB)

]
+
∂LB
∂µB

∂µB
∂xi

(25)

=
∂LB
∂x̂i

[
(σ2
B + ε)−

1
2

]
+
∂LB
∂σ2
B

[
2

m
(xi − µB)

]
+
∂LB
∂µB

 ∂

∂xi

 1

m

m∑
j=1

xj

 (26)

=
∂LB
∂x̂i

[
(σ2
B + ε)−

1
2

]
+
∂LB
∂σ2
B

[
2

m
(xi − µB)

]
+
∂LB
∂µB

[
1

m

]
(27)

(28)

In summary, we have derived the following quantities required in the forward and backward computation for
a BatchNorm applied to a single unit:

Forward

uB =
1

m

m∑
i=1

xi (29)

(σ2
B) =

1

m

m∑
i=1

(xi − uB)
2

(30)

x̂i =
xi − uB√
σ2
B + ε

(31)

yi ← γx̂i + β (32)
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Backward

∂L

∂x̂i
=
∂LB
∂yi

∂yi
∂x̂i

=
∂LB
∂yi

γ (33)

∂L

∂β
=

m∑
i=1

∂LB
∂yi

∂yi
∂β

=

m∑
i=1

∂LB
∂yi

(34)

∂L

∂γ
=

m∑
i=1

∂LB
∂yi

∂yi
∂γ

=

m∑
i=1

∂LB
∂yi

x̂i (35)

∂L

∂σ2
B

=

m∑
i=1

∂LB
∂x̂i

∂x̂i
∂σ2
B

(36)

(37)

Inference

E[x] = α ∗ E[x] + (1− α) ∗ µB (38)

V ar[x] = α ∗ V ar[x] + (1− α) ∗ σ2
B (39)

We cannot calculate the mean and variance during inference, hence we need to maintain an estimate of the
mean and variance to use when calculating the norm of x (x̂) at test time. You need to calculate the running
average at training time, because you really want to find an estimate for the overall covariate shifts over the
entire data. Running averages give you an estimate of the overall covariate shifts. At test time you typically
have only one test instance, so if you use the test data itself to compute means and variances, you’ll wipe
the data out (mean will be itself, var will be inf). Thus, you use the global values (obtained as running
averages) from the training data at test time. The running mean is defined as E[x] and the running variance
is defined as V ar[x] above.
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Glossary

Activation function:

An activation function defines a threshold which specifies when a given neuron in our network fires, i.e.
what combinations of weights and biases lead the neuron to output a signal. They are modelled based on
activation potentials in the brain, which mean neurons only ”fire” when the signals are above the threshold.

Auto-differentiation libraries:

Libraries such as PyTorch and Tensorflow which allow internal calculations of partial derivatives.

A comprehensive explanation of auto-differentiation can be found here

Bias:

Biases act the same way as weights in a neural network, except unlike weights, biases are not dependent on
activity, but rather are always ”on”.

Backpropagation:

Short for ”backwards propagation”, backpropagation is an algorithm for learning using gradient descent.
Backpropagation is a specific type of autodifferentiation.

More details can be found here

Forward:

The forward pass of a neural network refers to the calculations of outputs, and the comparison of these to
the desired outputs (in supervised learning)

Gradient descent:

Gradient descent is an optimization algorithm. Optimizers are introduced on the supplementary page, but
you’ll have to wait for class to go more in depth.

Loss:

A loss function measures the difference between the output of the neural network (prediction) and the actual
desired output (label). The aim is to reduce the value of the loss function.

Multi-Layer Perceptron (MLP):

An MLP is a network of multiple perceptrons, which, as a combination of linear classifiers can be used to
classfy more complex shapes.

Perceptron:

A perceptron is a linear classifier. Meaning it can be used to distinguish which side of a linear function a
given point lies.

Weight:

Weights define the strength of the ”connections” between neurons in the network. A weight is a multiplier,
and defines how much of a signal is transmitted through the corresponding connection.
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