Neural Networks

Hopfield Nets and Boltzmann Machines
Recap: Hopfield network

- At each time each neuron receives a “field” $\sum_{j \neq i} w_{ji} y_j + b_i$
- If the sign of the field matches its own sign, it does not respond
- If the sign of the field opposes its own sign, it “flips” to match the sign of the field

\[y_i = \Theta \left(\sum_{j \neq i} w_{ji} y_j + b_i \right) \]

\[\Theta(z) = \begin{cases}
 +1 & \text{if } z > 0 \\
 -1 & \text{if } z \leq 0
\end{cases} \]
Recap: Energy of a Hopfield Network

- The system will evolve until the energy hits a local minimum
- In vector form
 - Bias term may be viewed as an extra input pegged to 1.0

\[E = -\frac{1}{2} y^T W y - b^T y \]
Recap: Hopfield net computation

1. Initialize network with initial pattern

\[y_i(0) = x_i, \quad 0 \leq i \leq N - 1 \]

2. Iterate until convergence

\[y_i(t + 1) = \Theta \left(\sum_{j \neq i} w_{ji} y_j \right), \quad 0 \leq i \leq N - 1 \]

- Very simple
- Updates can be done sequentially, or all at once
- Convergence

\[E = - \sum_i \sum_{j>i} w_{ji} y_j y_i \]

does not change significantly any more
Recap: Evolution

• The network will evolve until it arrives at a local minimum in the energy contour

\[E = -\frac{1}{2}y^T W y \]
Recap: Content-addressable memory

Each of the minima is a “stored” pattern
 – If the network is initialized close to a stored pattern, it will inevitably evolve to the pattern

This is a content addressable memory
 – Recall memory content from partial or corrupt values

Also called associative memory
Examples: Content addressable memory

Hopfield network reconstructing degraded images from noisy (top) or partial (bottom) cues.

- http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/
Examples: Content addressable memory

Noisy pattern completion: Initialize the entire network and let the entire network evolve

Hopfield network reconstructing degraded images from noisy (top) or partial (bottom) cues.

- http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/
Examples: Content addressable memory

Pattern completion: Fix the "seen" bits and only let the "unseen" bits evolve

Hopfield network reconstructing degraded images from noisy (top) or partial (bottom) cues.

- http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/
Training a Hopfield Net to “Memorize” target patterns

- The Hopfield network can be *trained* to remember specific “target” patterns
 - E.g. the pictures in the previous example
- This can be done by setting the weights W appropriately

Random Question:
Can you use *backprop* to train Hopfield nets?

Hint: Think RNN
Training a Hopfield Net to “Memorize” target patterns

• The Hopfield network can be trained to remember specific “target” patterns
 – E.g. the pictures in the previous example

• A Hopfield net with N neurons can designed to store up to N target N-bit memories
 – But can store an exponential number of unwanted “parasitic” memories along with the target patterns

• **Training the network:** Design weights matrix W such that the energy of ...
 – Target patterns is minimized, so that they are in energy wells
 – *Other untargeted* potentially parasitic patterns is maximized so that they don’t become parasitic
Training the network

\[\hat{W} = \arg\min_W \sum_{y \in Y_P} E(y) - \sum_{y \notin Y_P} E(y) \]

- Minimize energy of target patterns
- Maximize energy of all other patterns
Optimizing W

\[E(y) = -\frac{1}{2} y^T W y \]
\[\hat{W} = \arg\min_W \sum_{y \in Y_P} E(y) - \sum_{y \notin Y_P} E(y) \]

- Simple gradient descent:

\[W = W + \eta \left(\sum_{y \in Y_P} yy^T - \sum_{y \notin Y_P} yy^T \right) \]

Minimize energy of target patterns
Maximize energy of all other patterns
Training the network

\[W = W + \eta \left(\sum_{y \in Y_P} yy^T - \sum_{y \notin Y_P} yy^T \right) \]

- **Minimize energy of target patterns**
- **Maximize energy of all other patterns**
Simpler: Focus on confusing parasites

\[W = W + \eta \left(\sum_{y \in Y_P} yy^T - \sum_{y \notin Y_P \& y=\text{valley}} yy^T \right) \]

- Focus on minimizing parasites that can prevent the net from remembering target patterns
 - Energy valleys in the neighborhood of target patterns
Training to maximize memorability of target patterns

\[W = W + \eta \left(\sum_{y \in Y_P} yy^T - \sum_{y \notin Y_P \& y=\text{valley}} yy^T \right) \]

- Lower energy at valid memories
- Initialize the network at valid memories and let it evolve
 - It will settle in a valley. If this is not the target pattern, raise it
Training the Hopfield network

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{y \in \mathbf{Y}_P} yy^T - \sum_{y \notin \mathbf{Y}_P \& y = \text{valley}} yy^T \right)$$

- Initialize \mathbf{W}
- Compute the total outer product of all target patterns
 - More important patterns presented more frequently
- Initialize the network with each target pattern and let it evolve
 - And settle at a valley
- Compute the total outer product of valley patterns
- Update weights
Training the Hopfield network: SGD version

\[
W = W + \eta \left(\sum_{y \in Y_p} yy^T - \sum_{y \notin Y_p \& y = \text{valley}} yy^T \right)
\]

- Initialize \(W \)
- Do until convergence, satisfaction, or death from boredom:
 - Sample a target pattern \(y_p \)
 - Sampling frequency of pattern must reflect importance of pattern
 - Initialize the network at \(y_p \) and let it evolve
 - And settle at a valley \(y_v \)
 - Update weights
 - \(W = W + \eta (y_p y_p^T - y_v y_v^T) \)
More efficient training

• Really no need to raise the entire surface, or even every valley
• Raise the *neighborhood* of each target memory
 – Sufficient to make the memory a valley
 – The broader the neighborhood considered, the broader the valley
Training the Hopfield network: SGD version

\[\mathbf{w} = \mathbf{w} + \eta \left(\sum_{y \in \mathcal{Y}_p} yy^T - \sum_{y \notin \mathcal{Y}_p \& y = \text{valley}} yy^T \right) \]

- Initialize \(\mathbf{w} \)
- Do until convergence, satisfaction, or death from boredom:
 - Sample a target pattern \(\mathbf{y}_p \)
 - Sampling frequency of pattern must reflect importance of pattern
 - Initialize the network at \(\mathbf{y}_p \) and let it evolve \textit{a few steps (2-4)}
 - And arrive at a down-valley position \(\mathbf{y}_d \)
 - Update weights
 - \(\mathbf{w} = \mathbf{w} + \eta (\mathbf{y}_p \mathbf{y}_p^T - \mathbf{y}_d \mathbf{y}_d^T) \)
Problem with Hopfield net

- Why is the recalled pattern not perfect?
A Problem with Hopfield Nets

- Many local minima
 - Parasitic memories

- May be escaped by adding some *noise* during evolution
 - Permit changes in state even if energy increases..
 - Particularly if the increase in energy is small
Recap – Analogy: Spin Glasses

Total field at current dipole:

\[f(p_i) = \sum_{j \neq i} J_{ij} x_j + b_i \]

Response of current dipole:

\[x_i = \begin{cases}
 x_i & \text{if } \text{sign}(x_i f(p_i)) = 1 \\
 -x_i & \text{otherwise}
\end{cases} \]

- The total energy of the system

\[E(s) = C - \frac{1}{2} \sum_i x_i f(p_i) = - \sum_i \sum_{j>i} J_{ij} x_i x_j - \sum_i b_i x_j \]

- The system evolves to minimize the energy
 - Dipoles stop flipping if flips result in increase of energy
Recap: Spin Glasses

- The system stops at one of its **stable** configurations
 - Where energy is a local minimum
Revisiting Thermodynamic Phenomena

- Is the system actually in a specific state at any time?
 - No – the state is actually continuously changing
 - Based on the temperature of the system
 - At higher temperatures, state changes more rapidly
 - What is actually being characterized is the probability of the state at equilibrium
 - The system “prefers” low energy states
 - Evolution of the system favors transitions towards lower-energy states
The Helmholtz Free Energy of a System

• A thermodynamic system at temperature T can exist in one of many states
 – Potentially infinite states
 – At any time, the probability of finding the system in state s at temperature T is $P_T(s)$

• At each state s it has a potential energy E_s

• The internal energy of the system, representing its capacity to do work, is the average:

$$U_T = \sum_s P_T(s) E_s$$
The Helmholtz Free Energy of a System

- The capacity to do work is counteracted by the internal disorder of the system, i.e. its entropy

$$H_T = - \sum_s P_T(s) \log P_T(s)$$

- The Helmholtz free energy of the system measures the useful work derivable from it and combines the two terms

$$F_T = U_T + kT H_T$$

$$= \sum_s P_T(s) E_s - kT \sum_s P_T(s) \log P_T(s)$$
The Helmholtz Free Energy of a System

\[F_T = \sum_s P_T(s) E_s - kT \sum_s P_T(s) \log P_T(s) \]

- A system held at a specific temperature *anneals* by varying the rate at which it visits the various states, to reduce the free energy in the system, until a minimum free-energy state is achieved

- The probability distribution of the states at steady state is known as the *Boltzmann distribution*
The Helmholtz Free Energy of a System

\[F_T = \sum_s P_T(s) E_s - kT \sum_s P_T(s) \log P_T(s) \]

- Minimizing this w.r.t \(P_T(s) \), we get

\[P_T(s) = \frac{1}{Z} \exp \left(\frac{-E_s}{kT} \right) \]

- Also known as the *Gibbs* distribution
- \(Z \) is a normalizing constant
- Note the dependence on \(T \)
- A \(T = 0 \), the system will always remain at the lowest-energy configuration with prob = 1.
Revisiting Thermodynamic Phenomena

- The evolution of the system is actually *stochastic*
- At equilibrium the system visits various states according to the Boltzmann distribution
 - The probability of any state is inversely related to its energy
 - and also temperatures: \(P(s) \propto \exp \left(\frac{-E_s}{kT} \right) \)
- The most likely state is the lowest energy state
Returning to the problem with Hopfield Nets

- Many local minima
 - Parasitic memories

- May be escaped by adding some *noise* during evolution
 - Permit changes in state even if energy increases..
 - Particularly if the increase in energy is small
The Hopfield net as a distribution

- Mimics the Spin glass system
- The stochastic Hopfield network models a *probability distribution* over states
 - Where a state is a binary string
 - Specifically, it models a *Boltzmann distribution*
 - The parameters of the model are the weights of the network
- The probability that (at equilibrium) the network will be in any state is $P(S)$
 - It is a *generative* model: generates states according to $P(S)$

$$E(S) = - \sum_{i<j} w_{ij}s_is_j - b_is_i$$

$$P(S) = \frac{\exp(-E(S))}{\sum_{S'} \exp(-E(S'))}$$
The field at a single node

- Let S and S' be otherwise identical states that only differ in the i-th bit
 - S has i-th bit = $+1$ and S' has i-th bit = -1

$$P(S) = \frac{P(s_i = 1 | s_{j \neq i})P(s_{j \neq i})}{1 - P(s_i = 1 | s_{j \neq i})}$$

$$P(S') = \frac{P(s_i = -1 | s_{j \neq i})P(s_{j \neq i})}{1 - P(s_i = -1 | s_{j \neq i})}$$

$$\log P(S) - \log P(S') = \log P(s_i = 1 | s_{j \neq i}) - \log P(s_i = -1 | s_{j \neq i})$$
The field at a single node

• Let S and S' be the states with the ith bit in the $+1$ and -1 states

$$
\log P(S) = -E(S) + C
$$

$$
E(S) = -\frac{1}{2} \left(E_{not} + \sum_{j \neq i} w_{ij} s_j + b_i \right)
$$

$$
E(S') = -\frac{1}{2} \left(E_{not} - \sum_{j \neq i} w_{ij} s_j - b_i \right)
$$

• $\log P(S) - \log P(S') = E(S') - E(S) = \sum_{j \neq i} w_{ij} s_j + b_i$
The field at a single node

\[\log \left(\frac{P(s_i = 1|s_{j \neq i})}{1 - P(s_i = 1|s_{j \neq i})} \right) = \sum_{j \neq i} w_{ij} s_j + b_i \]

• Giving us

\[P(s_i = 1|s_{j \neq i}) = \frac{1}{1 + e^{-\left(\sum_{j \neq i} w_{ij} s_j + b_i \right)}} \]

• The probability of any node taking value 1 given other node values is a logistic
Redefining the network

First try: Redefine a regular Hopfield net as a stochastic system

Each neuron is now a stochastic unit with a binary state \(s_i \), which can take value 0 or 1 with a probability that depends on the local field

\[P(s_i = 1 | s_{j\neq i}) = \frac{1}{1 + e^{-z_i}} \]

Visible Neurons

\[z_i = \sum_j w_{ij} s_j + b_i \]
The Hopfield net is a probability distribution over binary sequences
- The Boltzmann distribution

- The conditional distribution of individual bits in the sequence is a logistic
Running the network

- Initialize the neurons
- Cycle through the neurons and randomly set the neuron to 1 or 0 according to the probability given above
 - Gibbs sampling: Fix N-1 variables and sample the remaining variable
 - As opposed to energy-based update (mean field approximation): run the test \(z_i > 0 \)
- After many many iterations (until “convergence”), sample the individual neurons

\[
z_i = \sum_j w_{ij} s_j + b_i
\]

\[
P(s_i = 1 | s_{j\neq i}) = \frac{1}{1 + e^{-z_i}}
\]
Recap: Stochastic Hopfield Nets

The evolution of the Hopfield net can be made *stochastic*

Instead of deterministically responding to the sign of the local field, each neuron responds *probabilistically*

- This is much more in accord with Thermodynamic models
- The evolution of the network is more likely to escape spurious “weak” memories

\[
\begin{align*}
 z_i &= \frac{1}{T} \sum_{j \neq i} w_{ij} y_j \\
 P(y_i = 1) &= \sigma(z_i) \\
 P(y_i = 0) &= 1 - \sigma(z_i)
\end{align*}
\]
Recap: Stochastic Hopfield Nets

The evolution of the Hopfield net can be made stochastic.

Instead of deterministically responding to the sign of the local field, each neuron responds probabilistically.

- This is much more in accord with Thermodynamic models.
- The evolution of the network is more likely to escape spurious “weak” memories.

The field quantifies the energy difference obtained by flipping the current unit.

\[z_i = \frac{1}{T} \sum_{j \neq i} w_{ji} y_j \]

\[P(y_i = 1) = \sigma(z_i) \]
Recap: Stochastic Hopfield Nets

- The evolution of the Hopfield net can be made stochastic.
- Instead of deterministically responding to the sign of the local field, each neuron responds probabilistically.
 - This is much more in accord with Thermodynamic models.
 - The evolution of the network is more likely to escape spurious "weak" memories.

The field quantifies the energy difference obtained by flipping the current unit.

If the difference is not large, the probability of flipping approaches 0.5.

Mathematically:

\[z_i = \frac{1}{T} \sum_{j \neq i} w_{ji} y_j \]

\[P(y_i = 1) = \sigma(z_i) \]
Recap: Stochastic Hopfield Nets

• The evolution of the Hopfield net can be made stochastic

Instead of deterministically responding to the sign of the local field, each neuron responds probabilistically.

This is much more in accord with Thermodynamic models.

The evolution of the network is more likely to escape spurious "weak" memories.

If the difference is not large, the probability of flipping approaches 0.5.

The field quantifies the energy difference obtained by flipping the current unit.

\[z_i = \frac{1}{T} \sum_{j \neq i} w_{ji} y_j \]

\[P(y_i = 1) = \sigma(z_i) \]

T is a "temperature" parameter: increasing it moves the probability of the bits towards 0.5.

At T=1.0 we get the traditional definition of field and energy.

At T = 0, we get deterministic Hopfield behavior.

- The evolution of the network is more likely to escape spurious "weak" memories.
Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern
 \[y_i(0) = x_i, \quad 0 \leq i \leq N - 1 \]

2. Iterate \(0 \leq i \leq N - 1\)
 \[
 P = \sigma \left(\sum_{j \neq i} w_{ji} y_j \right)
 \]
 \[y_i(t + 1) \sim \text{Binomial}(P) \]

Assuming \(T = 1\)
Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern
\[y_i(0) = x_i, \quad 0 \leq i \leq N - 1 \]

2. Iterate \(0 \leq i \leq N - 1 \)
\[
P = \sigma \left(\sum_{j \neq i} w_{ji} y_j \right)
\]
\[y_i(t + 1) \sim \text{Binomial}(P) \]

- When do we stop?
- What is the final state of the system
 - How do we “recall” a memory?
Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern

\[y_i(0) = x_i, \quad 0 \leq i \leq N - 1 \]

2. Iterate \(0 \leq i \leq N - 1 \)

\[P = \sigma \left(\sum_{j \neq i} w_{ji} y_j \right) \]

\[y_i(t + 1) \sim \text{Binomial}(P) \]

• When do we stop?

• What is the final state of the system
 – How do we “recall” a memory?
Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern

\[y_i(0) = x_i, \quad 0 \leq i \leq N - 1 \]

2. Iterate \(0 \leq i \leq N - 1 \)

\[P = \sigma \left(\sum_{j \neq i} w_{ji} y_j \right) \]

\[y_i(t + 1) \sim \text{Binomial}(P) \]

• Let the system evolve to “equilibrium”
• Let \(y_0, y_1, y_2, \ldots, y_L \) be the sequence of values (\(L \) large)
• Final predicted configuration: from the average of the final few iterations

\[y = \left(\frac{1}{M} \sum_{t=L-M+1}^{L} y_t \right) > 0? \]

– Estimates the probability that the bit is 1.0.
– If it is greater than 0.5, sets it to 1.0
Annealing

1. Initialize network with initial pattern
 \(y_i(0) = x_i, \quad 0 \leq i \leq N - 1 \)
2. For \(T = T_0 \) down to \(T_{\text{min}} \)
 i. For iter 1..\(L \)
 a) For \(0 \leq i \leq N - 1 \)
 \[
 P = \sigma \left(\frac{1}{T} \sum_{j \neq i} w_{ji} y_j \right) \\
 y_i(t + 1) \sim \text{Binomial}(P)
 \]

- Let the system evolve to “equilibrium”
- Let \(y_0, y_1, y_2, \ldots, y_L \) be the sequence of values (\(L \) large)
- Final predicted configuration: from the average of the final few iterations
 \[
 y = \left(\frac{1}{M} \sum_{t=L-M+1}^{L} y_t \right) > 0?
 \]
Evolution of the stochastic network

1. Initialize network with initial pattern

\[y_i(0) = x_i, \quad 0 \leq i \leq N - 1 \]

2. For \(T = T_0 \) down to \(T_{\text{min}} \)

Pattern completion: Fix the “seen” bits and only let the “unseen” bits evolve

- Let the system evolve to “equilibrium”
- Let \(y_0, y_1, y_2, \ldots, y_L \) be the sequence of values \((L \text{ large}) \)
- Final predicted configuration: from the average of the final few iterations

\[y = \left(\frac{1}{M} \sum_{t=L-M+1}^{L} y_t \right) > 0? \]
Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern
 \[y_i(0) = x_i, \quad 0 \leq i \leq N - 1 \]

2. Iterate \(0 \leq i \leq N - 1 \)
 \[P = \sigma \left(\sum_{j \neq i} w_{ji} y_j \right) \]
 \[y_i(t + 1) \sim \text{Binomial}(P) \]

Assuming \(T = 1 \)

• When do we stop?
• What is the final state of the system
 – How do we “recall” a memory?
Recap: Stochastic Hopfield Nets

- The probability of each neuron is given by a conditional distribution.
- What is the overall probability of the entire set of neurons taking any configuration \mathbf{y}.

$z_i = \frac{1}{T} \sum_{j \neq i} w_{ji} y_j$

$P(y_i = 1 | y_{j \neq i}) = \sigma(z_i)$
The overall probability

• The probability of any state y can be shown to be given by the Boltzmann distribution

$$E(y) = -\frac{1}{2}y^T Wy \quad P(y) = C \exp \left(\frac{-E(y)}{T} \right)$$

– Minimizing energy maximizes log likelihood
The Hopfield net is a distribution

The Hopfield net is a probability distribution over binary sequences

- The Boltzmann distribution

\[E(y) = -\frac{1}{2} y^T W y \]
\[P(y) = C \exp \left(-\frac{E(y)}{T} \right) \]

- The parameter of the distribution is the weights matrix \(W \)

- The conditional distribution of individual bits in the sequence is a logistic

- We will call this a Boltzmann machine

\[Z_i = \frac{1}{T} \sum_j w_{ji} s_j \]
\[P(s_i = 1 | s_{j \neq i}) = \frac{1}{1 + e^{-z_i}} \]
The Boltzmann Machine

The entire model can be viewed as a generative model.

- Has a probability of producing any binary vector \mathbf{y}:
 \[
 E(\mathbf{y}) = -\frac{1}{2} \mathbf{y}^{T} \mathbf{W} \mathbf{y}

 P(\mathbf{y}) = \exp \left(-\frac{E(\mathbf{y})}{T} \right)
 \]
Training the network

- Training a Hopfield net: Must learn weights to “remember” target states and “dislike” other states
 - “State” == binary pattern of all the neurons

- Training Boltzmann machine: Must learn weights to assign a desired probability distribution to states
 - (vectors y, which we will now calls S because I’m too lazy to normalize the notation)
 - This should assign more probability to patterns we “like” (or try to memorize) and less to other patterns

$$E(S) = - \sum_{i<j} w_{ij}s_is_j$$
$$P(S) = \frac{\exp(-E(S))}{\sum_{S'} \exp(-E(S'))}$$

$$P(S) = \frac{\exp(\sum_{i<j} w_{ij}s_is_j)}{\sum_{S'} \exp(\sum_{i<j} w_{ij}s_i's_j')}$$
Training the network

- Must train the network to assign a desired probability distribution to states
- Given a set of “training” inputs S_1, \ldots, S_N
 - Assign higher probability to patterns seen more frequently
 - Assign lower probability to patterns that are not seen at all
- Alternately viewed: maximize likelihood of stored states

$$E(S) = -\sum_{i<j} w_{ij} s_i s_j$$

$$P(S) = \frac{\exp(-E(S))}{\sum_{S'} \exp(-E(S'))}$$

$$P(S) = \frac{\exp\left(\sum_{i<j} w_{ij} s_i s_j\right)}{\sum_{S'} \exp\left(\sum_{i<j} w_{ij} s'_i s'_j\right)}$$
Maximum Likelihood Training

\[
\log(P(S)) = \left(\sum_{i<j} w_{ij}s_is_j \right) - \log \left(\sum_{s'} \exp \left(\sum_{i<j} w_{ij}s'_is'_j \right) \right)
\]

\[
\mathcal{L} = \frac{1}{N} \sum_{S \in \mathcal{S}} \log(P(S))
\]

Average log likelihood of training vectors (to be maximized)

\[
= \frac{1}{N} \sum_S \left(\sum_{i<j} w_{ij}s_is_j \right) - \log \left(\sum_{s'} \exp \left(\sum_{i<j} w_{ij}s'_is'_j \right) \right)
\]

- Maximize the average log likelihood of all “training” vectors \(S = \{S_1, S_2, ..., S_N\} \)
 - In the first summation, \(s_i \) and \(s_j \) are bits of \(S \)
 - In the second, \(s'_i \) and \(s'_j \) are bits of \(S' \)
Maximum Likelihood Training

\[\mathcal{L} = \frac{1}{N} \sum_{s} \left(\sum_{i<j} w_{ij} s_i s_j \right) - \log \left(\sum_{s'} \exp \left(\sum_{i<j} w_{ij} s'_i s'_j \right) \right) \]

\[\frac{d\mathcal{L}}{dw_{ij}} = \frac{1}{N} \sum_{s} s_i s_j - ??? \]

- We will use gradient ascent, but we run into a problem..
- The first term is just the average \(s_i s_j \) over all training patterns
- But the second term is summed over all states
 - Of which there can be an exponential number!
The second term

\[
\frac{d\log(\sum_{s'} \exp(\sum_{i<j} w_{ij} s'_i s'_j))}{dw_{ij}} = \sum_{s'} \frac{\exp(\sum_{i<j} w_{ij} s'_i s'_j)}{\sum_{s''} \exp(\sum_{i<j} w_{ij} s''_i s''_j)} s'_i s'_j
\]

\[
\frac{d\log(\sum_{s'} \exp(\sum_{i<j} w_{ij} s'_i s'_j))}{dw_{ij}} = \sum_{s'} P(S') s'_i s'_j
\]

- The second term is simply the *expected value* of \(s_i s_j\), over all possible values of the state.
- We cannot compute it exhaustively, but we can compute it by sampling!
Estimating the second term

\[
\frac{d \log(\sum_S e^{\sum_{i<j} w_{ij} s'_i s'_j})}{dw_{ij}} = \sum_{S'} P(S') s'_i s'_j
\]

\[
\sum_{S'} P(S') s'_i s'_j \approx \frac{1}{M} \sum_{S' \in S_{\text{samples}}} s'_i s'_j
\]

- The expectation can be estimated as the average of samples drawn from the distribution.

- Question: How do we draw samples from the Boltzmann distribution?
 - How do we draw samples from the network?
The simulation solution

- Initialize the network randomly and let it “evolve”
 - By probabilistically selecting state values according to our model
- After many many epochs, take a snapshot of the state
- Repeat this many many times
- Let the collection of states be

\[S_{simul} = \{ S_{simul,1}, S_{simul,1=2}, \ldots, S_{simul,M} \} \]
The simulation solution for the second term

\[
\frac{d \log \left(\sum_{S'} \exp \left(\sum_{i<j} w_{ij} s'_i s'_j \right) \right)}{dw_{ij}} = \sum_{S'} P(S') s'_i s'_j
\]

\[
\sum_{S'} P(S') s'_i s'_j \approx \frac{1}{M} \sum_{S' \in S_{simul}} s'_i s'_j
\]

- The second term in the derivative is computed as the average of sampled states when the network is running “freely”
Maximum Likelihood Training

Sampled estimate

\[
\langle \log(P(S)) \rangle = \frac{1}{N} \sum_S \left(\sum_{i<j} w_{ij} s_i s_j \right) - \log \left(\sum_{S' \in S_{simul}} \exp \left(\sum_{i<j} w_{ij} s'_i s'_j \right) \right)
\]

\[
\frac{d\langle \log(P(S)) \rangle}{dw_{ij}} = \frac{1}{N} \sum_S s_i s_j - \frac{1}{M} \sum_{S' \in S_{simul}} s'_i s'_j
\]

\[
w_{ij} = w_{ij} + \eta \frac{d\langle \log(P(S)) \rangle}{dw_{ij}}
\]

- The overall gradient ascent rule
Overall Training

- Initialize weights
- Let the network run to obtain simulated state samples
- Compute gradient and update weights
- Iterate

\[
\frac{d \langle \log(P(S)) \rangle}{dw_{ij}} = \frac{1}{N} \sum_s s_i s_j - \frac{1}{M} \sum_{s',s\in S_{simul}} s'_i s'_j
\]

\[
w_{ij} = w_{ij} + \eta \frac{d \langle \log(P(S)) \rangle}{dw_{ij}}
\]
Overall Training

\[\frac{d\langle \log(P(S)) \rangle}{dw_{ij}} = \frac{1}{N} \sum_{s} s_i s_j - \frac{1}{M} \sum_{s' \in s_{simul}} s'_i s'_j \]

\[w_{ij} = w_{ij} + \eta \frac{d\langle \log(P(S)) \rangle}{dw_{ij}} \]

Note the similarity to the update rule for the Hopfield network.
Adding Capacity to the Hopfield Network / Boltzmann Machine

• The network can store up to N N-bit patterns
• How do we increase the capacity
Expanding the network

• Add a large number of neurons whose actual values you don’t care about!
• New capacity: $\sim (N + K)$ patterns
 – Although we only care about the pattern of the first N neurons
 – We’re interested in N-bit patterns
• Terminology:
 – The neurons that store the actual patterns of interest: *Visible neurons*
 – The neurons that only serve to increase the capacity but whose actual values are not important: *Hidden neurons*
 – These can be set to anything in order to store a visible pattern
Training the network

• For a given pattern of visible neurons, there are any number of hidden patterns \(2^K\)

• Which of these do we choose?
 – Ideally choose the one that results in the lowest energy
 – But that’s an exponential search space!
The patterns

- In fact we could have *multiple* hidden patterns coupled with any visible pattern
 - These would be multiple stored patterns that all give the same visible output
 - How many do we permit

- Do we need to specify one or more particular hidden patterns?
 - How about *all* of them
 - What do I mean by this bizarre statement?
Boltzmann machine without hidden units

- This basic framework has no hidden units
- Extended to have hidden units

\[
\frac{d\langle \log(P(S)) \rangle}{dw_{ij}} = \frac{1}{N} \sum_s s_i s_j - \frac{1}{M} \sum_{s' \in S_{simul}} s'_i s'_j
\]

\[
w_{ij} = w_{ij} + \eta \frac{d\langle \log(P(S)) \rangle}{dw_{ij}}
\]
With hidden neurons

Now, with hidden neurons the complete state pattern for even the *training* patterns is unknown

– Since they are only defined over visible neurons
With hidden neurons

- We are interested in the *marginal* probabilities over *visible* bits
 - We want to learn to represent the visible bits
 - The hidden bits are the “latent” representation learned by the network

- \(S = (V, H) \)
 - \(V \) = visible bits
 - \(H \) = hidden bits

\[
P(S) = \frac{\exp(-E(S))}{\sum_{S'} \exp(-E(S'))}
\]

\[
P(S) = P(V, H)
\]

\[
P(V) = \sum_H P(S)
\]
With hidden neurons

Visible Neurons

Hidden Neurons

- We are interested in the marginal probabilities over visible bits
 - We want to learn to represent the visible bits
 - The hidden bits are the “latent” representation learned by the network

- $S = (V, H)$
 - $V =$ visible bits
 - $H =$ hidden bits

$$P(S) = \frac{\exp(-E(S))}{\sum_{S'} \exp(-E(S'))}$$

$$P(S) = P(V, H)$$

$$P(V) = \sum_H P(S)$$

Must train to maximize probability of desired patterns of visible bits
Training the network

\[E(S) = - \sum_{i<j} w_{ij} s_i s_j \]

\[
P(S) = \frac{\exp\left(\sum_{i<j} w_{ij} s_i s_j\right)}{\sum_{S'} \exp\left(\sum_{i<j} w_{ij} s'_i s'_j\right)}
\]

\[
P(V) = \sum_{H} \frac{\exp\left(\sum_{i<j} w_{ij} s_i s_j\right)}{\sum_{S', S} \exp\left(\sum_{i<j} w_{ij} s'_i s'_j\right)}
\]

- Must train the network to assign a desired probability distribution to visible states
- Probability of visible state sums over all hidden states
Maximum Likelihood Training

\[
\log(P(V)) = \log \left(\sum_H \exp \left(\sum_{i<j} w_{ij} s_i s_j \right) \right) - \log \left(\sum_{S'} \exp \left(\sum_{i<j} w_{ij} s'_i s'_j \right) \right).
\]

\[
\mathcal{L} = \frac{1}{N} \sum_{V \in \mathbf{V}} \log(P(V)) \quad \text{Average log likelihood of training vectors (to be maximized)}
\]

\[
= \frac{1}{N} \sum_{V \in \mathbf{V}} \log \left(\sum_H \exp \left(\sum_{i<j} w_{ij} s_i s_j \right) \right) - \log \left(\sum_{S'} \exp \left(\sum_{i<j} w_{ij} s'_i s'_j \right) \right).
\]

- Maximize the average log likelihood of all visible bits of “training” vectors \(\mathbf{V} = \{ V_1, V_2, ..., V_N \} \)
 - The first term also has the same format as the second term
 - Log of a sum
 - Derivatives of the first term will have the same form as for the second term
Maximum Likelihood Training

\[\mathcal{L} = \frac{1}{N} \sum_{V \in V} \log \left(\sum_{H} \exp \left(\sum_{i<j} w_{ij} s_i s_j \right) \right) - \log \left(\sum_{S'} \exp \left(\sum_{i<j} w_{ij} s_i s_j' \right) \right) \]

\[\frac{d \mathcal{L}}{dw_{ij}} = \frac{1}{N} \sum_{V \in V} \sum_{H} \frac{\exp \left(\sum_{k<l} w_{kl} s_k s_l \right)}{\sum_{H', \exp \left(\sum_{k<l} w_{kl} s_k' s_l' \right)} s_i s_j} - \sum_{S'} \frac{\exp \left(\sum_{k<l} w_{kl} s_k s_l' \right)}{\sum_{S'} \exp \left(\sum_{k<l} w_{ij} s_k s_l \right)} s_i' s_j' \]

\[\frac{d \mathcal{L}}{dw_{ij}} = \frac{1}{N} \sum_{V \in V} \sum_{H} P(S|V) s_i s_j - \sum_{S'} P(S') s_i' s_j' \]

- We’ve derived this math earlier
- But now both terms require summing over an exponential number of states
 - The first term fixes visible bits, and sums over all configurations of hidden states for each visible configuration in our training set
 - But the second term is summed over all states
The simulation solution

\[
\frac{d\mathcal{L}}{dw_{ij}} = \frac{1}{N} \sum_{V \in \mathcal{V}} \sum_{H} P(S|V) s_i s_j - \sum_{s'} P(S') s'_i s'_j
\]

\[
\sum_{H} P(S|V) s_i s_j \approx \frac{1}{K} \sum_{H \in H_{\text{simul}}} s_i s_j
\]

\[
\sum_{s'} P(S') s'_i s'_j \approx \frac{1}{M} \sum_{s' \in S_{\text{simul}}} s'_i s'_j
\]

- The first term is computed as the average sampled hidden state with the visible bits fixed.
- The second term in the derivative is computed as the average of sampled states when the network is running “freely”
More simulations

Maximizing the marginal probability of V requires summing over all values of H

- An exponential state space
- So we will use simulations again

$P(S) = \frac{\exp(-E(S))}{\sum_{S'} \exp(-E(S'))}$

$P(V) = \sum_{H} P(S)$
Step 1

- For each training pattern V_i
 - Fix the visible units to V_i
 - Let the hidden neurons evolve from a random initial point to generate H_i
 - Generate $S_i = [V_i, H_i]$
- Repeat K times to generate synthetic training
 $$S = \{S_{1,1}, S_{1,2}, \ldots, S_{1K}, S_{2,1}, \ldots, S_{N,K}\}$$
Step 2

• Now *unclamp* the visible units and let the entire network evolve several times to generate

\[S_{\text{simul}} = \{ S_{\text{simul},1}, S_{\text{simul},1=2}, \ldots, S_{\text{simul},M} \} \]
Gradients

\[\frac{d\langle \log(P(S)) \rangle}{dw_{ij}} = \frac{1}{NK} \sum_{s} s_i s_j - \frac{1}{M} \sum_{s_1 \in S_{simul}} s_i' s_j' \]

- Gradients are computed as before, except that the first term is now computed over the expanded training data.
Overall Training

- Initialize weights
- Run simulations to get clamped and unclamped training samples
- Compute gradient and update weights
- Iterate

\[
\frac{d\langle \log(P(S)) \rangle}{dw_{ij}} = \frac{1}{NK} \sum_s s_i s_j - \frac{1}{M} \sum_{s' \in S_{simul}} s'_i s'_j
\]

\[
w_{ij} = w_{ij} - \eta \frac{d\langle \log(P(S)) \rangle}{dw_{ij}}
\]
Boltzmann machines

• Stochastic extension of Hopfield nets
• Enables storage of many more patterns than Hopfield nets
• But also enables computation of probabilities of patterns, and completion of pattern
Boltzmann machines: Overall

Training: Given a set of training patterns
 - Which could be repeated to represent relative probabilities

- Initialize weights
- Run simulations to get clamped and unclamped training samples
- Compute gradient and update weights
- Iterate

\[z_i = \sum_j w_{ji} s_i + b_i \]

\[P(s_i = 1) = \frac{1}{1 + e^{-z_i}} \]

\[
\frac{d\langle \log(P(S)) \rangle}{dw_{ij}} = \frac{1}{NK} \sum_s s_i s_j - \frac{1}{M} \sum_{S \in S_{\text{simul}}} s'_i s'_j
\]

\[
w_{ij} = w_{ij} - \eta \frac{d\langle \log(P(S)) \rangle}{dw_{ij}}
\]
Boltzmann machines: Overall

- Running: Pattern completion
 - "Anchor" the known visible units
 - Let the network evolve
 - Sample the unknown visible units
 - Choose the most probable value
Applications

- Filling out patterns
- Denoising patterns
- *Computing conditional probabilities of patterns*
- *Classification!!*
 - How?
Boltzmann machines for classification

- **Training patterns:**
 - \([f_1, f_2, f_3, \ldots , \text{class}]\)
 - Features can have binarized or continuous valued representations
 - Classes have “one hot” representation

- **Classification:**
 - Given features, anchor features, estimate a posteriori probability distribution over classes
 - Or choose most likely class
Boltzmann machines: Issues

• Training takes for ever
• Doesn’t really work for large problems
 – A small number of training instances over a small number of bits
Solution: *Restricted* Boltzmann Machines

- Partition visible and hidden units
 - Visible units ONLY talk to hidden units
 - Hidden units ONLY talk to visible units

- Restricted Boltzmann machine..
 - *Originally proposed as “Harmonium Models” by Paul Smolensky*
Solution: *Restricted* Boltzmann Machines

Still obeys the same rules as a regular Boltzmann machine

But the modified structure adds a big benefit.

\[z_i = \sum_j w_{ji} s_i + b_i \]

\[P(s_i = 1) = \frac{1}{1 + e^{-z_i}} \]
Solution: *Restricted Boltzmann Machines*

\[
z_i = \sum_j w_{ji} v_i + b_i
\]

\[
P(h_i = 1) = \frac{1}{1 + e^{-z_i}}
\]

\[
y_i = \sum_j w_{ji} h_i + b_i
\]

\[
P(v_i = 1) = \frac{1}{1 + e^{-y_i}}
\]
Recap: Training full Boltzmann machines: Step 1

• For each training pattern V_i
 – Fix the visible units to V_i
 – Let the hidden neurons evolve from a random initial point to generate H_i
 – Generate $S_i = [V_i, H_i]$

• Repeat K times to generate synthetic training
 $S = \{S_{1,1}, S_{1,2}, ..., S_{1K}, S_{2,1}, ..., S_{N,K}\}$
Sampling: Restricted Boltzmann machine

- For each sample:
 - Anchor visible units
 - Sample from hidden units
 - No looping!!

\[z_i = \sum_j w_{ji} v_i + b_i \]

\[P(h_i = 1) = \frac{1}{1 + e^{-z_i}} \]
Recap: Training full Boltzmann machines: Step 2

- Now *unclamp* the visible units and let the entire network evolve several times to generate

\[S_{\text{simul}} = \{ S_{\text{simul},1}, S_{\text{simul},1=2}, \ldots, S_{\text{simul},M} \} \]
Sampling: Restricted Boltzmann machine

- For each sample:
 - Iteratively sample hidden and visible units for a long time
 - Draw final sample of both hidden and visible units

\[z_i = \sum_j w_{ji} v_i + b_i \]
\[P(h_i = 1) = \frac{1}{1 + e^{-z_i}} \]

\[y_i = \sum_j w_{ji} h_i + b_i \]
\[P(v_i = 1) = \frac{1}{1 + e^{-y_i}} \]
For each sample:
 – Initialize V_0 (visible) to training instance value
 – Iteratively generate hidden and visible units
 • For a very long time
Gradient (showing only one edge from visible node i to hidden node j)

$$\frac{\partial \log p(v)}{\partial w_{ij}} = \langle v_i h_j \rangle^0 - \langle v_i h_j \rangle^\infty$$

• $\langle v_i, h_j \rangle$ represents average over many generated training samples
Recall: Hopfield Networks

• Really no need to raise the entire surface, or even every valley

• Raise the *neighborhood* of each target memory
 – Sufficient to make the memory a valley
 – The broader the neighborhood considered, the broader the valley
A Shortcut: Contrastive Divergence

- Sufficient to run one iteration!
 \[
 \frac{\partial \log p(v)}{\partial w_{ij}} = <v_i h_j>^0 - <v_i h_j>^1
 \]

- This is sufficient to give you a good estimate of the gradient
Restricted Boltzmann Machines

• Excellent generative models for binary (or binarized) data
• Can also be extended to continuous-valued data
 — “Exponential Family Harmoniums with an Application to Information Retrieval”, Welling et al., 2004
• Useful for classification and regression
 — How?
 — More commonly used to pretrain models
Continuous-values RBMs

Hidden units may also be continuous values

\[
\begin{align*}
z_i &= \sum_j w_{ji} v_i + b_i \\
y_i &= \sum_j w_{ji} h_i + b_i
\end{align*}
\]

\[
P(h_i = 1) = \frac{1}{1 + e^{-z_i}}
\]

\[
P(v_i) = r(y_i) \exp(y_i)
\]
Other variants

• Left: “Deep” Boltzmann machines
• Right: Helmholtz machine
 – Trained by the “wake-sleep” algorithm
Topics missed..

• Other algorithms for Learning and Inference over RBMs
 – Mean field approximations
• RBMs as feature extractors
 – Pre training
• RBMs as generative models
• More structured DBMs
• ...