Recitation 13: Reinforcement Learning

Ken, Bhuvan
Reinforcement Learning

Learning Paradigms in Machine Learning:

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning
Reinforcement Learning

Learning to make decisions
Reinforcement Learning: Applications

- Games, Robotics, Control, Computer Vision, NLP ...
Markov Decision Process

- S: finite state space
- A: finite action space
- P: state transition model: \(p(s'|s, a) \)
- R: reward model: \(r(s, a, s') \)
Value Function, Q Function and Bellman Equation

What is a value function?

- Determines how valuable a given state is, for the agent.
- The value function depends on the policy using which the agent performs actions.
- The value at a particular state using a policy π is given by:

$$V^\pi(s) = \mathbb{E}\left[\sum_{i=1}^{T} \gamma^{i-1} r_i \right] \quad \forall s \in S$$

- Among all value-functions, there exists an optimal value function whose value is greater than other functions for all states. The optimal policy π^* corresponds to the optimal value

$$V^*(s) = \max_{\pi} V^\pi(s) \quad \forall s \in S \quad \pi^* = \arg \max_{\pi} V^\pi(s) \quad \forall s \in S$$
Value Function, Q Function and Bellman Equation

What is the Q-value function?

- Determines how valuable taking an action a is, from a given state s
- $V^*(s)$ can be obtained by finding the maximum over all possible $Q^*(s,a)$ values
- The $Q^*(s, a)$ is equal to the summation of immediate reward after performing action a while in state s and the discounted expected future reward after transition to a next state s'
- If we know the optimal Q-function we can extract the optimal policy by choosing the action that maximises Q for a state s
Value Function, Q Function and Bellman Equation

The Bellman Equation:

\[Q^*(s, a) = R(s, a) + \gamma \mathbb{E}_{s'} [V^*(s')] \]
\[Q^*(s, a) = R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) V^*(s') \]

Since,
\[V^*(S) = \max_a Q^*(s, a) \]
\[V^*(S) = \max_a \left[R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) V^*(s') \right] \]
Value Iteration

- Computed the optimal state value function by improving the value of $V(s)$ iteratively from a random start value.
- Repeatedly updates $Q(s,a)$ and $V(s)$ until convergence and it is guaranteed to converge to optimal values.

```
Initialize $V(s)$ to arbitrary values
Repeat
  For all $s \in S$
    For all $a \in A$
      $Q(s,a) = E[r|s,a] + \gamma \sum_{s' \in S} P(s'|s,a)V(s')$
      $V(s) \leftarrow \max_a Q(s,a)$
  Until $V(s)$ converge
```
Policy Iteration

- In value iteration, since the agent is optimising for the optimal policy, it might converge before value function.
- In Policy iteration, instead of repeatedly improving the value function, the policy is redefined at each step and the value is computed until convergence.

| Initialize a policy π' arbitrarily |
| Repeat |
| $\pi \leftarrow \pi'$ |
| Compute the values using π by solving the linear equations |
| $V^\pi(s) = E[r|s, \pi(s)] + \gamma \sum_{s' \in S} P(s'|s, \pi(s)) V^\pi(s')$ |
| Improve the policy at each state |
| $\pi'(s) = \text{arg max}_a (E[r|s,a] + \gamma \sum_{s' \in S} P(s'|s,a)V^\pi(s'))$ |
| Until $\pi = \pi'$ |
Q Learning

- Policy and Value iteration can be used when the agent has prior knowledge about the effects of its actions and the environment (offline planning).
- What if the agent only knows a set of possible states and actions and can observe the environment current state?
 - The agent must actively learn through its interactions with the environment.
- Q-Learning is a model-free learning algorithm that does not assume anything about the state-transition or rewards.
- Q-learning tries to approximate the Q value of state-action pairs from the samples of Q(s,a) that were observed during the interaction with the environment.
Deep Q Learning

Why deep Q learning?

- If the number of actions and states in an environment are huge, tabulation becomes cumbersome due to both memory and time constraints
- Neural models can be used to approximate Q-values instead
- The state is given as the input and the Q-value of all possible actions is generated as the output
Deep Q Learning

What happens in DQNs?

- The past experiences are stored in a memory buffer and the next action is predicted by the Q network.
- Loss is calculated as the mean squared error of the predicted Q value and a target Q value (Q^*).
- For calculating the target Q value we can use a separate target network that can reduce divergence.
- Target network has the same architecture as the Q-value prediction network but with the parameters frozen.
- For every x iterations we copy the parameters from the prediction network to the target network.
- This stabilizes training and reduces variability.
Deep Q Learning

DQN steps summarized:

- Collect transitions from the environment to train the DQN.
- Select an action using the Epsilon-Greedy policy, i.e., select a random action versus maximum Q value action with a probability epsilon.
- Perform the action in a state s and move to a new state s' and store this transition in the memory buffer $<s,a,r,s'>$.
- Sample a batch of transitions from the replay buffer and calculate the loss.
- Perform a gradient descent with respect to the actual network parameters to minimise the loss.
- After every x steps copy actual network weights to the target network weights and repeat this for M episodes.