Attention Networks

Ken, Yuying
What we could do with RNN so far

- "Many-to-One" Architecture
 - (HW3P1) Sequence Classification: sequence -> label

- Streaming "Many-to-Many" Architecture
 - (HW3P2) speech frame sequence -> phoneme sequence
 - Order-correspondence
 - Each output corresponds to a small segment of input sequence
How about these tasks?

Text → Translation of that text

Image → A caption describing the image

Document, Question → Answer selected from the document
“Generative” Architecture

- The output sequence can only be built after seeing the entire input sequence.
- The output is itself a sequence, generated from the input sequence.
Decoder = Conditional Generator

In Math:

\[P(y_t \mid x_1, \ldots, x_T, y_1, \ldots, y_{t-1}) \]

Each item in the output sequence must be conditioned on:

- The entire input sequence
- All the past output items

In Deep Learning:

The decoder must have access to:

- Some kind of encoding of the entire input sequence
- The past states of the decoder
How to encode the input sequence

Recall the “many-to-many” Architecture (HW3P2):

Trained with downstream task
How to encode the input sequence

Now remove the output targets:
Hidden states only encode information about the history of inputs
Ideally the last hidden state is an encoding of the entire input sequence
Let’s consider the last hidden state first
How to inform the decoder of the input encoding

- Pass the last hidden state of the input sequence at:
 - the first time step (to be forgotten later?)
 - every time step

- Pass a more flexible input encoding at every time step
 - How flexible? Determined by the current decoder state
Network Prototype 1

Produce an encoding of the entire input.

Repeatedly pass the encoding to the output network.
• Using one fixed vector to encode an entire sequence, hoping that the last hidden state could compress all the information
 • Hard to train. Input encoding vector is overloaded with information, and earlier inputs tends to get forgotten
 • Hard for the decoder to focus. Each time it’s seeing the same thing
How to inform the decoder of the input encoding

- Pass the last hidden state of the input sequence at:
 - the first time step (to be forgotten later?)
 - every time step

- Pass a more flexible input encoding at every time step
 - How flexible? Decided by the current decoder state
Let the decoder decide the input encoding

Intuition:
At each time step, the decoder focuses on a specific segment of the input sequence to produce the current output.

Formulation:
• Compute a time-varying input encoding that focuses on the part of input that matters to the current time step in the output.
• Therefore, this input encoding should be a function of:
 • The decoder hidden state at the current time step
 • The encoder hidden states at each input time step
General Attention Mechanism

• Construct a **query** q_i from the decoder state h_{dec}^i
 • Represents the decoder’s interest
• Construct a **key** k_j from the encoder state h_{enc}^j
• Calculate an **attention score** $\text{att}(q_i, k_j)$
 • Tells how much at output time step i the decoder should focus on the j-th input item
• Construct a **value** v_j from the encoder state h_{enc}^j
• Then construct the encoding by computing a weighted sum of values using attention scores as weights:
 • $\sum_{j=1}^{T} \text{att}(q_i, k_j) v_j$
Network Prototype 2

Encode each element of the input sequence into a vector. For each time step, generate a query, compute an attention on this sequence. Generate a linear combination of the input items using the computed attention values as weights. Pass this combination to the output RNN.
Variation: Dot Product Attention

- Query $q_i = h_{i}^{dec}$
- Key $k_j = h_{j}^{enc}$
- Value $v_j = h_{j}^{enc}$
- Attention score $\text{att}(q_i, k_j) = \text{softmax}(q_i \cdot k_j)$ (over all j)
 - Simplest similarity calculation (but works well in practice)
 - Does not introduce new parameters
Variation: Dot Product Attention

- **Query** \(q_i = h_i^{dec} \)
- **Key** \(k_j = h_j^{enc} \)
- **Value** \(v_j = h_j^{enc} \)

Attention score \(\text{att}(q_i, k_j) = \text{softmax}(q_i \cdot k_j) \) (over all \(j \))
 - Simplest similarity calculation (but works well in practice)
 - Does not introduce new parameters
Variation: Bilinear Attention

- **Query** $q_i = h_i^{dec}$
- **Key** $k_j = h_j^{enc}$
- **Value** $v_j = h_j^{enc}$

Attention score $\text{att}(q_i, k_j) = \text{softmax}(q_i^T W k_j)$ (over all j)
 - Queries and keys do not have to be in the same space
 - Introduces new parameters
Variation: Additive Attention

• Query $q_i = h_{i}^{dec}$

• Key $k_j = h_{j}^{enc}$

• Value $v_j = h_{j}^{enc}$

• **Attention score** $\text{att}(q_i, k_j) = \text{softmax}(W^T_a \tanh(W_q q_i + W_k k_j))$ (over all j)
Variation: Scaled Dot Product Attention

- **Query** $q_i = \text{MLP}_q(h^{dec}_i)$
- **Key** $k_j = \text{MLP}_k(h^{enc}_j)$
- **Value** $v_j = \text{MLP}_v(h^{enc}_j)$
- **Attention score** $\text{att}(q_i, k_j) = \text{softmax} \left(\frac{q_i \cdot k_j}{\sqrt{H}} \right)$ (over all j)
 - Use the dot product to calculate similarity for projected key value representation
 - Scaled by the sqrt of hidden size in order not to saturate the gradient of softmax
RNN-based Attention is great.. but

- Sequential nature of RNNs make them impossible to fully parallelize
 - Step-by-step computation relies on the output of the previous time-step
 - Cannot leverage those hard-core GPUs

- They struggle with long-term dependencies
 - What about LSTMs? Still can’t hold information across very long sequences..
 - In NLP tasks, the same word can mean very different things based on context
Maybe Attention is All You Need
Transformer Nets

- Revolutionary machine-translation (sequence to sequence) architecture from Google
- Forget about RNNs, capture dependencies across the sequences using attention
- This lets the encoder and decoder see the entire sequence at once
- Also allows more parallelism than RNNs

The dependency that the Transformer has to learn. Now the path length is independent of the length of the source and target sentences.
Multi-Head Attention

- Attention can be interpreted as a way of computing the relevance of a set of **values**, based on some **keys** and **queries**.
- Attention is applied multiple times to capture more complex input dependencies.
- Each attention ‘head’ has unique weights.
- Each ‘head’ can focus on different parts of the input sequence (and probably serves different purposes).

The Multi-Head Attention block
Encoder

- Contains multiple ‘blocks’ (~6 blocks)
- Residual connections between the multi-head attention blocks
- **Positional encodings explicitly encode the relative and absolute positions of the inputs as vectors**
- These encodings are then added to the input embeddings
- Without them the output for “I like 11-785 more than 10-707” would be identical to the output for “I like 10-707 more than 11-785”
Decoder

- Very similar to the encoder
- ‘Masked’ Multi-Head Attention block to hide future output values during training
- The query from the decoder is used with the keys/values from the encoder
- Final output probabilities are computed using a projection layer followed by a softmax
Big Picture

- Input sequence is used to compute the **keys** and **values** in the encoder
- Masked-attention blocks in the decoder transform the output sequence until the current time-step into the **queries**
- Multi-head attention in the decoder combines the keys, queries and values
- The result is projected into output probabilities for the current time step
More detailed explanation