Reinforcement Learning

11-785, Spring 2020
Defining MDPs, Planning
The story of Flider and Spy

• Flider the spider is at the far corner of the room, and Spy the fly is sleeping happily at the near corner
The story of Flider and Spy

- Flider only walks along edges
- She begins walking along one of the three edges at random
- She takes one minute to cover the distance from one corner to the other along any edge
- When she arrives at the new corner, she randomly chooses one of the three edges and continues walking (she may even turn back)
The story of Flider and Spy

• What is the life expectancy of Spy?
Let T_i be the life expectancy if Flider is at the i^{th} corner.
Flider and Spy

- $1 + T_i$ is the life expectancy if Flider the Spider begins walking towards the i^{th} corner
 - 1 minute to get to the corner plus the time taken to get from that corner to Spy the fly
- 8 Equations, 8 unknowns, trivial to solve
A little terminology

- Markov Process: Does not matter how you got here, only matters where you are
An interesting class of problems

• Is a move good?
 – You will not know until the end of the game
An interesting class of problems

- Is an investment plan good?
 - You will not know for a while
An interesting class of problems

• Do I
 – Change lane left?
 – Change lane right?
 – Accelerate?
 – Decelerate?
Reward-based problems

• And many others

• Common theme: These are control problems where
 – Your actions beget rewards
 • Win the game
 • Make money
 • Get home sooner
 – But not deterministically
 • A world out there that is not predictable

• From experience of *belated* rewards, you must learn to act rationally
General cartoon of the world

• Agent operates in an environment
 – Agent may be you..
 – Environment is the game, the market, the road..
General cartoon of the world

- Agent takes actions which affect the environment
General cartoon of the world

- Agent takes actions which affect the environment
- Which changes in a somewhat unpredictable way
Agent takes actions which affect the environment
Which changes in a somewhat unpredictable way
Which affects the agent’s situation
General cartoon of the world

• The agent also receives rewards..
 – Which may be apparent immediately
 – Or not apparent for a very long time
Challenge

- How must the agent behave to maximize its rewards
Let's formalize the system

• At each time t the agent:
 – Makes an observation O_t of the environment
 – Receives a reward R_t
 – Performs an action A_t
From the perspective of the Agent

• What the agent perceives..
• The following History:
 \[H_t = O_0, R_0, A_0, O_1, R_1, A_1, \ldots, O_t, R_t \]

• The total history at any time is the sequence of observations, rewards and actions
• We need to model this sequence such that at any time \(t \), the best \(A_t | H_t \) can be chosen
 – The Strategy that maximizes total reward \(R_0 + R_1 + \cdots + R_T \)
Let's formalize the system

- At each time t the agent:
 - Makes an observation O_t of the environment
 - Receives a reward R_t
 - Performs an action A_t

- At each time t the environment:
 - Receives an action A_t
 - Emits a reward R_{t+1}
 - Changes and produces an observation O_{t+1}
Can define an environment “state”

• Fully captures the “status” of the system
 – E.g., in an automobile: [position, velocity, acceleration]
 – In traffic: the position, velocity, acceleration of every vehicle on the road
 – In Chess: the state of the board + whose turn it is next
A brief trip to Nostalgia..

• Glider, Flider’s brother, never turns around during his wanderings
 – On arriving at any corner, he chooses one of the two “forward” paths randomly.
 • The future possibilities depend on the edge he arrived from
 – Is he Markovian?
Glider is a Markov dude!

- Any causal system can be viewed as Markov, with appropriately defined state
 - The *information state* S_t may differ from the *apparent* state s_t
 - Defining $S_t = s_1, s_2, \ldots, s_t$
 - $P(S_{t+1}|S_0, S_1, \ldots, S_t) = P(S_{t+1}|S_t)$
Markov property

- Assumption: The *information state* of the environment is Markov
 \[P(S_{t+1}|S_0, S_1, ..., S_t) = P(S_{t+1}|S_t) \]

- The environment’s future only depends on its present
To Maximize Reward

• The agent must *model* this environment process
 – Formulate its own model for the environment, which must ideally match the true values as closely as possible
 • Based only on what it observes

• Agent must formulate winning strategy based on model of environment
The Agent’s Side of the Story

• Agent has an internal representation of the environment state
 – May not match the true one at all

• May be defined in any manner
 – Formally the agent state $S_t = f(H_t)$ is some function of the history
 – The closer the agent’s model is to the true environment state, the better the agent will be able to strategize
Defining Agent State

• What is the outcome?
Defining Agent State

- Different definitions of state result in different predictions
- *True* environment state not really known
 - Would greatly improve prediction if known
The World as we model It

• Definition of Markov property:
 – The state of the system has a Markov property if the future only depends on the present
 \[P(S_{t+1}|S_0, S_1, ..., S_t) = P(S_{t+1}|S_t) \]

• States can be defined to have this property
A Markov Process

• A Markov process is a random process where the future is only determined by the present
 – Memoryless

• Is fully defined by the set of states S, and the state transition probabilities $P(s_i | s_j)$
 – Formally, the tuple $M = \langle S, P \rangle$.
 – S is the (possibly finite) set of states
 – P is the complete set of transition probabilities $P(s | s')$
 – Note $P(s | s')$ stands for $P(S_{t+1} = s | S_t = s')$ at any time t
 – Will use the shorthand $P_{s,s'}$
The transition probability

• For processes with a discrete, finite set of states, is generally arranged as transition probability matrix

\[P = \begin{bmatrix}
 P_{s_1,s_1} & P_{s_2,s_1} & \cdots & P_{s_N,s_1} \\
 P_{s_1,s_2} & P_{s_2,s_2} & \cdots & P_{s_N,s_2} \\
 \vdots & \vdots & \ddots & \vdots \\
 P_{s_1,s_N} & P_{s_2,s_N} & \cdots & P_{s_N,s_N}
\end{bmatrix} \]

• More generally (for continuous-state processes, e.g. the state of an automobile), it is modelled as a parametric distribution

\[P_{s,s_t} = f(s; \theta_{s_t}) \]
A Markov Reward Process

• A Markov Reward Process (MRP) is a Markov Process where states give you rewards

• At each state s, upon arriving at that state, you obtain a reward r, drawn from a distribution $P(r|s)$
Markov Reward Process

Reward: Upon arriving at any corner, the spider may catch a fly from the swarm hovering there.

Rewards are corner specific and probabilistic: Different corners have different sized swarms with flies of different sizes. The spider only has a probability of catching a fly, but may not always catch one.

• Flider and the Markov reward process!
Markov Reward Process

• Formally, a Markov Reward Process is the tuple $M = \langle S, \mathcal{P}, \mathcal{R}, \gamma \rangle$

 – S is the (possibly finite) set of states

 – \mathcal{P} is the complete set of transition probabilities $P_{s,s'}$

 – \mathcal{R} is a reward function, consisting of the distributions $P(r|s)$

 • Or alternately, the expected value $R_s = E[r|s]$

 – $\gamma \in [0,1]$ is a discount factor
Markov Reward Process

• Formally, a Markov Reward Process is the tuple $M = \langle S, P, R, \gamma \rangle$
 – S is the (possibly finite) set of states
 – P is the complete set of transition probabilities $P_{s,s'}$
 – R is a reward function, consisting of the distributions $P(r|s)$
 • Or alternately, the expected value $R_s = E[r|s]$
 – $\gamma \in [0,1]$ is a discount factor

What on earth is this?
Rewards and Expected rewards

- One step expected reward: R_1
 - Will this be greater if the spider heads to corner 2 or to corner 3?
Rewards and Expected Rewards

Note: Distinction between expected reward and sample reward.
Sample reward is what we actually get. Will represent by \(r \).
Expected reward is what we may expect to get. Will represent by \(R \).

• One step expected reward: \(R_1 \)
 – Will this greater if the spider heads to corner 2 or to corner 3?

No route to corner 4 except from corner 3.
Where should the spider be?

• Flider has the option of landing on corner 1, 2 or 3 before she begins wandering the room
 – Which is the better corner to land on?
Where should the spider be?

- Flider has the option of landing on corner 1, 2 or 3 before she begins wandering the room
 - Which is the better corner to land on?

Need to know the long-term consequences of landing in the two corners

Where can she expect to get more food in the long term?
Where should the spider be?

Practice

• Assume she is allowed to “practice” once from each corner
 – To plan her future strategy
Where should the spider be?

- Must use her “practice” turn to assign a “value” to each of the corners
 - Guess how much food she would get in the long term from that corner
Flider practices

- Starting from 3, she gets r_1, r_2, r_3...

- Is $r_1 + r_2 + r_3$... a realistic representation of what she’d get if she did it again?
Flider practices

\(r_1 \) is somewhat realistic – it is obtained from corner 3

\(r_2 \): she had a choice of 3 corners for her next stop and chose one randomly during practice. Unlikely she’ll go to the same corner in the next run (less representative)

\(r_3 \): she had 9 possible corners to choose from in 2 steps. \(r_3 \) is even less representative of future runs

And so on...

- Starting from 3, she gets \(r_1, r_2, r_3 \)....
- Is \(r_1 + r_2 + r_3 \) ... a realistic representation of what she’d get if she did it again?
Flider practices

\[r_1 \text{ is somewhat realistic – it is obtained from corner 3} \]

\[r_2: \text{ she had a choice of 3 corners for her next stop and chose one randomly during practice. Unlikely she’ll go to the same corner in the next run (less representative)} \]

\[r_3: \text{ she had 9 possible corners to choose from in 2 steps. } r_3 \text{ is even less representative of future runs} \]

And so on...

\[\text{A better guess for how good it is to land at “3”:} \]

\[r_1 + a_1 r_2 + a_2 r_3 + a_3 r_4 + \ldots \]

Where \(0 \leq a_i \leq 1 \)

(you “trust” the readings from farther in the future less)

- Is \(r_1 + r_2 + r_3 \ldots \) a realistic representation of what she’d get if she did it again?
Flider practices

\(r_1 \) is somewhat realistic – it is obtained from corner 3

\(r_2 \): she had a choice of 3 corners for her next stop and chose one randomly during practice. Unlikely she’ll go to the same corner in the next run (less representative)

\(r_3 \): she had 9 possible corners to choose from in 2 steps. \(r_3 \) is even less representative of future runs

And so on...

A better guess for how good it is to land at “3”:

\[r_1 + a_1 r_2 + a_2 r_3 + a_3 r_4 + \cdots \]

Where \(0 \leq a_i \leq 1 \)

(you “trust” the readings from farther in the future less)

\bullet \text{A “mathematically good” choice: } a_i = \gamma^i \text{ where } 0 \leq \gamma \leq 1 \]

that she’d get if she did it again?
The discounted return

\[G_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \]

• The return is the total future reward all the way to the end
• But each future step is slightly less “believable” and is hence discounted
 – We trust our own observations of the future less and less
 • The future is a fuzzy place

• The discount factor \(\gamma \) is our belief in the predictability of the future
 – \(\gamma = 0 \): The future is totally unpredictable, only trust what you see immediately ahead of you (myopic)
 – \(\gamma = 1 \): The future is clear; consider all of it (far sighted)

• Part of the Markov Reward Process model
Rewards

- Our spider goes wandering..
 \[r_1 = 1, r_2 = 2, r_3 = 0.7, r_4 = 1.2, r_5 = 0.5, \ldots \]

- Are these *sample rewards* or *expected rewards*?
• Our spider goes wandering..
 \[r_1 = 1, r_2 = 2, r_3 = 0.7, r_4 = 1.2, r_5 = 0.5, \ldots \]

• We decide the discounting factor \(\gamma = 1 \)
 – Really trusting the future

• What is the return \(G_t \) at \(t = 1 \)?
• Our spider goes wandering..
 \[r_1 = 1, r_2 = 2, r_3 = 0.7, r_4 = 1.2, r_5 = 0.5, \ldots \]

• We decide the discounting factor \(\gamma = 1 \)
 – Really trusting the future

• What is the return \(G_t \) at \(t = 1 \)?
• What is the return \(G_t \) at \(t = 7 \)?
• Our spider goes wandering..
 \[r_1 = 1, r_2 = 2, r_3 = 0.7, r_4 = 1.2, r_5 = 0.5, \ldots \]

• We decide the discounting factor \(\gamma = 1 \)
 – Really trusting the future

• What is the return \(G_t \) at \(t = 1 \)?

• What is the return \(G_t \) at \(t = 7 \)?

• Are these sample returns or expected returns?
Returns

• Discounted sample returns G_t by themselves carry a fuzzy meaning
 – Why should we discount something we already observed?

• However, they make sense as samples of the possible future when you are at any state
 – If you are at any state, what is the expected return $E[G_t]$
Introducing the “Value” function

• The “Value” of a state is the expected total discounted return, starting from that state

 \[V_s = E[G|S = s] \]

• This is not a function of time
 – i.e. it doesn’t matter *when* you arrive at \(s \), the expected return from that point on is \(V_s \)
The spider again

- The spider gains a reward of value 1 if she consumes the fly
- The spider has infinite patience
- What is the value of starting at each corner?
The spider again

- Regardless of which corner the spider starts at, she will eventually, randomly, nab the fly
- The expected return from any corner is 1!
- The value of being at any corner is 1 for all corners
The *hungry* spider

- The spider is hungry
- She gets a negative reward of -1 for every minute spent finding food
- What is the expected return if she starts at c_1
Posing the problem: There is a total reward/penalty associated with each corner
- -1 if the corner has no fly
 - Will definitely spend at least one more minute hunting
- 1 at the corner that has the fly (satisfied!)

Thus $r_{c_x} = -1$ for $c_1 \ldots c_7$

$r_{c_8} = 1$

Note: We could also assign costs/rewards to edges in addition to nodes, if we want more detail, but won’t do so for our lectures
The *hungry* spider

\[V_{c_1} = -1 + \frac{1}{3} V_{c_2} + \frac{1}{3} V_{c_3} + \frac{1}{3} V_{c_4} \]

\[V_{c_2} = -1 + \frac{1}{3} V_{c_1} + \frac{1}{3} V_{c_7} + \frac{1}{3} V_{c_8} \]

\[\vdots \]

\[V_{c_8} = 1 \]

• A familiar solution

• Assuming \(\gamma = 1 \)
 – A natural fit in this problem
More generally

\[V_{c_1} = R_{c_1} + \gamma \left(\frac{1}{3} V_{c_2} + \frac{1}{3} V_{c_3} + \frac{1}{3} V_{c_4} \right) \]

\[V_{c_2} = R_{c_2} + \gamma \left(\frac{1}{3} V_{c_1} + \frac{1}{3} V_{c_7} + \frac{1}{3} V_{c_8} \right) \]

\[\vdots \]

\[V_{c_8} = R_{c_8} + \gamma \left(\frac{1}{3} V_{c_2} + \frac{1}{3} V_{c_3} + \frac{1}{3} V_{c_6} \right) \]

• A familiar solution
The Bellman Expectation Equation

• The value function of a state is the *expected discounted return*, when the process begins at that state

\[G_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \]

\[V_S = E[G | S = s] \]

• The Bellman Expectation Equation:

\[V_S = R_S + \gamma \sum_{S'} P_{S',s} V_{S'} \]
Why discounted return?

- In processes with infinite horizon, which can go on for ever, the total undiscounted return will be infinite for every path: \(\sum_{k=0}^{\infty} r_{t+k+1} \) will be infinite for every path.
 - For finite horizon processes, a discount factor \(\gamma = 1 \) is good. It lets us talk in terms of actual total return.
 - For infinite horizon processes, discounting \(\gamma < 1 \) is required for meaningful mathematical analysis: \(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \)
The Bellman Expectation Equation

\[V_s = R_s + \gamma \sum_{s'} P_{s,s'} V_{s'} \]

\[
\begin{bmatrix}
V_{s_1} \\
V_{s_2} \\
\vdots \\
V_{s_N}
\end{bmatrix}
=
\begin{bmatrix}
R_{s_1} \\
R_{s_2} \\
\vdots \\
R_{s_N}
\end{bmatrix}
+ \gamma
\begin{bmatrix}
P_{s_1,s_1} & P_{s_2,s_1} & \cdots & P_{s_N,s_1} \\
P_{s_1,s_2} & P_{s_2,s_2} & \cdots & P_{s_N,s_2} \\
\vdots & \vdots & \ddots & \vdots \\
P_{s_1,s_N} & P_{s_2,s_N} & \cdots & P_{s_N,s_N}
\end{bmatrix}
\begin{bmatrix}
V_{s_1} \\
V_{s_2} \\
\vdots \\
V_{s_N}
\end{bmatrix}
\]

\[\mathcal{V} = \mathcal{R} + \gamma \mathcal{P} \mathcal{V} \]

- Bellman expectation equation in matrix form
The Bellman Expectation Equation

\[V = R + \gamma PV \]

• Given the MRP \(M = \langle S, P, R, \gamma \rangle \)
 • I.e. the expected rewards at every state, and the transition probability matrix,
 – the value functions for all states can be easily computed through matrix inversion

\[V = (I - \gamma P)^{-1}R \]

• Finding the values of states is a key problem in planning and reinforcement learning

• Unfortunately, for very large state spaces, the above matrix inversion is not tractable
 – Also not invertible for small state spaces if \(\gamma = 1 \)
 • Inversion cannot be used to find \(V \) even when it is finite (e.g. our fly problem), if \(\gamma = 1 \)

• Much of what we will deal with is how to tackle this problem
Moving on..

• Up next ... Markov *Decision* Processes
We have assumed so far that the agent behaves randomly
- The agent has no agency
- Let’s make the agent more intelligent..
A more realistic problem

• The spider actively chooses which way to move
 – The agent *takes action*
 – Ideally, it would move in the general direction of the fly

• However, each time the spider moves, the fly jumps up and settles at another corner
 – The agent’s action changes the environment!

How do we model this system?
Redefining the problem

• Each time the spider moves in any direction, the fly randomly jumps
• The fly arrives at a new state but ..
 – The state it arrives in depends on where the fly jumped
 – Which depends on which direction the Spider moved
• The spider’s action *modifies the state transition probabilities!!*
What is $P_{S,S'}^a$?

- Each time the spider moves in any direction, the fly randomly jumps.
- The fly arrives at a new state but..
 - The state it arrives in depends on where the fly jumped.
 - Which depends on which direction the Spider moved.
- The spider’s action *modifies the state transition probabilities!!*
What is \(P_{S,S'}^a \)

- Each time the spider moves in any direction, the fly randomly jumps.
- The fly arrives at a new state but ..
 - The state it arrives in depends on where the fly jumped
 - Which depends on which direction the Spider moved
- The spider’s action *modifies the state transition probabilities!!*
Trick Question: Redefining the States

- There are, in fact, only four states, not eight
 - Manhattan distance between fly and spider = 0 (s_0)
 - Distance between fly and spider = 1 (s_1)
 - Distance between fly and spider = 2 (s_2)
 - Distance between fly and spider = 3 (s_3)
- Can, in fact, redefine the MRP entirely in terms of these 4 states
- There are two actions $a+$ and $a-$
- Need an idea of the behavior of the fly
The Fly Markov Reward Process

- There are, in fact, only four states, not eight
 - Manhattan distance between fly and spider = 0 (s₀)
 - Distance between fly and spider = 1 (s₁)
 - Distance between fly and spider = 2 (s₂)
 - Distance between fly and spider = 3 (s₃)
- Can, in fact, redefine the MRP entirely in terms of these 4 states
The Markov *Decision* Process: Defining Actions

- Two types of actions:
 - \(a_+ \): Increases distance to fly by 1
 - \(a_- \): Decreases distance to fly by 1
The behavior of the fly:

- If the spider is moving *away from it*, it does nothing
- If the spider is moving *towards* it, it randomly hops to a different adjacent corner
 - 2/3 of the time, it increases the distance to the fly by 1
 - 1/3 of the time, it *decreases* the distance to the fly by 1
The Fly Markov Decision Process
Redefining the problem

• Each time the spider moves in any direction, the fly randomly jumps.

Note: This is a simile for many problems in life, e.g. driving, stock market, advertising, etc.

The agents actions modifies how the environment behaves

 – Which depends on which direction the spider moved

• The spider’s action modifies the state transition probabilities!!
The Markov Decision Process

- A *Markov Decision Process* is a Markov Reward Process, where the agent has the ability to decide its actions!
 - We will represent individual actions as a
 - We will represent the action at time t as A_t

- The agent’s actions affect the environment’s behavior
 - The transitions made by the environment are functions of the action
 - The rewards returned are functions of the action
The Markov Decision Process

- Formally, a Markov Decision Process is the tuple $M = \langle S, P, \mathcal{A}, R, \gamma \rangle$
 - S is a (possibly finite) set of states: $S = \{s\}$
 - \mathcal{A} is a (possibly finite) set of actions: $\mathcal{A} = \{a\}$
 - P is the set of action conditioned transition probabilities $P_{s,s'}^a = P(S_{t+1} = s|S_t = s', A_t = a)$
 - R is an action conditioned reward function $R_s^a = E[r|S = s, A = a]$
 - $\gamma \in [0,1]$ is a discount factor
Introducing: Policy

• The policy is the probability distribution over actions that the agent may take at any state

\[\pi(a|s) = P(A_t = a|S_t = s) \]

– What are the preferred actions of the spider at any state

• The policy may be deterministic, i.e.

\[\pi(a|s) = 1 \text{ for } a = a_s; \quad 0 \text{ for } a \neq a_s \]

– where \(a_s \) is the preferred action in state \(s \)
An example of a policy

- Assuming the fly does not move
 - This example is not a particularly good policy for the spider
An example of a policy

- What are the (action dependent) transition probabilities of the states here?
An example of a policy

The transition probabilities depend on actions, but not on policy

• What are the (action dependent) transition probabilities of the states here?
An example of a policy

• Assuming the fly does not move
 – This is a different *optimal* policy
 – What are the transition probabilities here?
The value function of an MDP

• The *expected return* from any state depends on the policy you follow
The Fly MDP: Policy 1

\[V_{s_1} = R_{s_1} + \gamma V_{s_1} \]

\[V_{s_2} = R_{s_2} + \gamma \left(\frac{1}{3} V_{s_0} + \frac{2}{3} V_{s_2} \right) \]

\[V_{s_3} = R_{s_3} + \gamma \left(\frac{2}{3} V_{s_1} + \frac{1}{3} V_{s_3} \right) \]
The Fly MDP: Policy 2 (optimal)

\[V_{s_1} = R_{s_1} + \gamma V_{s_2} \]

\[V_{s_2} = R_{s_2} + \gamma \left(\frac{1}{3} V_{s_0} + \frac{2}{3} V_{s_2} \right) \]

\[V_{s_3} = R_{s_3} + \gamma \left(\frac{2}{3} V_{s_1} + \frac{1}{3} V_{s_3} \right) \]
The Fly MDP: Stochastic Policy
The Fly MDP: Stochastic Policy

\[V_{s_1} = \frac{2}{3} (R_{s_1} + \gamma V_{s_2}) + \frac{1}{3} (R_{s_1} + \gamma V_{s_1}) \]

\[V_{s_2} = \frac{1}{3} (R_{s_2} + \gamma V_{s_3}) + \frac{2}{3} \left(R_{s_2} + \gamma \left(\frac{1}{3} V_{s_0} + \frac{2}{3} V_{s_2} \right) \right) \]

\[V_{s_3} = R_{s_3} + \gamma \left(\frac{2}{3} V_{s_1} + \frac{1}{3} V_{s_3} \right) \]
The **state value** function of an MDP

- The *expected return* from any state depends on the policy you follow.
- We will index the value of any state by the policy to indicate this.

\[
\nu_\pi(s) = \sum_{a \in A} \pi(a|s) \left(R_s^a + \gamma \sum_{s'} P_{s,s'}^a \nu_\pi(s') \right)
\]

Bellman Expectation Equation for State Value Functions of an MDP

Note: Although reward was not dependent on action for the fly example, more generally it will be.
The action value function of an MDP

- There are different value equations associated with different actions.
- So we can actually associate value to **state action pairs**.
- **Note:** The LHS in the equation is the action-specific value at the source state, but the RHS is the overall value of the target states.
The action value function of an MDP

- The expected return from any state under a given policy, when you follow a specific action

$$q_\pi(s, a) = R_s^a + \gamma \sum_{s'} P_{s,s',\nu_\pi(s')}$$

Bellman Expectation Equation for Action Value Functions of an MDP
All together now

• The Bellman expectation equation for state value function

\[v_\pi(s) = \sum_{a \in A} \pi(a|s) \left(R_s^a + \gamma \sum_{s'} P_{s,s'}^a v_\pi(s') \right) \]

• For action value function

\[q_\pi(s, a) = R_s^a + \gamma \sum_{s'} P_{s,s'}^a v_\pi(s') \]

• Giving you (obviously)

\[v_\pi(s) = \sum_{a \in A} \pi(a|s) q_\pi(s, a) \]

• And

\[q_\pi(s, a) = R_s^a + \gamma \sum_{s'} P_{s,s'}^a \sum_{a' \in A} \pi(a'|s') q_\pi(s', a') \]
The Bellman Expectation Equations

- The Bellman expectation equation for state value function

\[\nu_\pi(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(R_s^a + \gamma \sum_{s'} P_{s,s'}^a \nu_\pi(s') \right) \]

- The Bellman expectation equation for action value function

\[q_\pi(s, a) = R_s^a + \gamma \sum_{s'} P_{s,s'}^a \sum_{a' \in \mathcal{A}} \pi(a'|s') q_\pi(s', a') \]
“Computing” the MDP

• Finding the state and/or action value functions for the MDP:
 – Given complete MDP (all transition probabilities $P_{s,s'}^a$, expected rewards R_s^a, and discount γ)
 – and a policy π
 – find all value terms $v_\pi(s)$ and/or $q_\pi(s,a)$

• The Bellman expectation equations are simultaneous equations that can be solved for the value functions
 – Although this will be computationally intractable for very large state spaces
Computing the MDP

\[\mathcal{V}_\pi = \mathcal{R}_\pi + \gamma \mathcal{P}_\pi \mathcal{V}_\pi \]

• Given the expected rewards at every state, the transition probability matrix, the discount factor and the policy:

\[\mathcal{V}_\pi = (I - \gamma \mathcal{P}_\pi)^{-1} \mathcal{R}_\pi \]

• Matrix inversion \(O(N^3) \); intractable for large state spaces
Optimal Policies

• Different policies can result in different value functions

• What is the optimal policy?

• The optimal policy is the policy that will maximize the expected total discounted reward at every state:

\[
E[G_t | S_t = s]
\]

\[
= E \left[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | S_t = s \right]
\]
Optimal Policies

• Different policies can result in different value functions

• What is the optimal policy?

• The optimal policy is the policy that will maximize the expected total discounted reward at every state:

\[E[G_t | S_t = s] \]

\[= E \left[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | S_t = s \right] \]

– Recall: why do we consider the discounted return, rather than the actual return \(\sum_{k=0}^{\infty} r_{t+k+1} \)?
Policy Ordering Definition

• A policy π is “better” than a policy π' if the value function under π is greater than or equal to the value function under π' at all states

$$\pi \geq \pi' \Rightarrow \nu_\pi(s) \geq \nu_{\pi'}(s) \ \forall s$$

• Under the better policy, you will expect better overall outcome no matter what the current state
The optimal policy theorem

• **Theorem**: For any MDP there exists an optimal policy π_* that is better than or equal to every other policy:
 \[\pi_* \geq \pi \quad \forall \pi \]

• **Corollary**: If there are *multiple* optimal policies $\pi_{opt1}, \pi_{opt2}, \ldots$ all of them achieve the same value function
 \[v_{\pi_{opti}}(s) = v_*(s) \quad \forall s \]

• All optimal policies achieve the same action value function
 \[q_{\pi_{opti}}(s, a) = q_*(s, a) \quad \forall s, a \]
How to find the optimal policy

• For the optimal policy:

\[\pi_*(a|s) = \begin{cases}
1 & \text{for} \quad \arg \max_{a'} q_*(s, a') \\
0 & \text{otherwise}
\end{cases} \]

• Easy to prove
 – For any other policy \(\pi \), \(q_\pi(s, a) \leq q_*(s, a) \)

• Knowing the optimal action value function \(q_*(s, a) \) \(\forall s, a \) is sufficient to find the optimal policy
The optimal value function

\[\pi_*(a|s) = \begin{cases}
1 & \text{for } \arg\max_{a'} q_*(s, a') \\
0 & \text{otherwise}
\end{cases} \]

• Which gives us

\[\nu_*(s) = \max_a q_*(s, a) \]
Pictorially

Figures from Sutton

\[v_*(s) = \max_a q_*(s, a) \]

- Blank circles are states, filled dots are state-action pairs
The optimal value function

\[\pi_*(a|s) = \begin{cases}
1 & \text{for } \arg\max_{a'} q_*(s, a') \\
0 & \text{otherwise}
\end{cases} \]

- Which gives us
 \[\nu_*(s) = \max_a q_*(s, a) \]
- But, for the optimal policy we also have
 \[q_*(s, a) = R_s^a + \gamma \sum_{s'} P_{s,s'}^a \nu_*(s') \]
Backup Diagram

Figures from Sutton

\[v_*(s) = \max_a q_*(s, a) \]

\[q_*(s, a) = R_s^a + \gamma \sum_{s'} p_{s,s'}^a v_*(s') \]
$v_*(s) = \max_a R_s^a + \gamma \sum_{s'} P_{s,s'}^a v_*(s')$
Backup Diagram

Figures from Sutton

\[q_*(s, a) = R_s^a + \gamma \sum_{s'} P_{s,s'}^a v_*(s') \]
$q_*(s, a) = R_s^a + \gamma \sum_{s'} P_{s,s'}^a v_*(s')$

$v_*(s') = \max_{a'} q_*(s', a')$
Backup Diagram

Figures from Sutton

\[q^*(s, a) = R_s^a + \gamma \sum_{s', a'} P_{s,s'}^a \max_{a'} q^*(s', a') \]
Bellman Optimality Equations

• Optimal value function equation

\[v_*(s) = \max_a R_s^a + \gamma \sum_{s'} P_{s,s'} v_*(s') \]

• Optimal action value equation

\[q_*(s, a) = R_s^a + \gamma \sum_{s', a'} P_{s,s'} \max_{a'} q_*(s', a') \]
Optimality Relationships

• Given the MDP: \(\langle S, P, A, R, \gamma \rangle \)
• Given the optimal action value functions, the optimal value function can be found

\[
v_*(s) = \max_a q_*(s, a)
\]

• Given the optimal value function, the optimal action value function can be found

\[
q_*(s, a) = R_s + \gamma \sum_{s'} P_{s,s'}^a v_*(s')
\]

• Given the optimal action value function, the optimal policy can be found

\[
\pi_*(a|s) = \begin{cases}
1 & \text{for } \arg\max_{a'} q_*(s, a') \\
0 & \text{otherwise}
\end{cases}
\]
“Solving” the MDP

• Solving the MDP equates to finding the optimal policy $\pi_*(a|s)$

• Which is equivalent to finding the optimal value function $v_*(s)$

• Or finding the optimal action value function $q_*(s,a)$

• Various solutions will estimate one or the other
 – Value based solutions solve for $v_*(s)$ and $q_*(s,a)$ and derive the optimal policy from them
 – Policy based solutions directly estimate $\pi_*(a|s)$
Solving the Bellman Optimality Equation

• No closed form solutions

• Solutions are iterative

• Given the MDP (Planning):
 – Value iterations
 – Policy iterations

• Not given the MDP (Reinforcement Learning):
 – Q-learning
 – SARSA
QUESTIONS before we dive?