Reinforcement Learning

11-785, Spring 2020

Defining MDPs, Planning
Recap

• Markov Decision Processes model processes where agents interact with stochastic environments and received delayed rewards

• The entire model comprises a set of states, actions, a stochastic action-dependent set of state transition probabilities, a policy, and a discounting factor

• The values of states and state-action pairs can be computed using the Bellman expectation equations
 – These values depend on the policy

• Problem: Finding the best policy to maximize returns
Planning with an MDP

• Problem:
 – **Given:** an MDP \(\langle S, P, A, R, \gamma \rangle \)
 – **Find:** Optimal policy \(\pi_\star \)

• Can either
 – **Value-based Solution:** Find optimal value (or action value) function, and derive policy from it, OR
 – **Policy-based Solution:** Find optimal policy directly
Value-based Planning

• “Value”-based solution

• Breakdown:
 – **Prediction:** Given *any* policy π find value function $\nu_\pi(s)$
 – **Control:** Find the optimal policy
Value-based Planning

• “Value”-based solution

• Breakdown:
 – Prediction: Given any policy π find value function $v_{\pi}(s)$
 – Control: Find the optimal policy
Preliminaries

• How do we represent the value function?

• Table:
 – Value function
 • \(s \rightarrow v_\pi(s) \)
 • For a process with \(N \) discrete states, must store/compute \(N \) unique values

 – Action value functions
 • \(s, a \rightarrow q_\pi(s, a) \)
 • For a process with \(N \) discrete states and \(M \) discrete actions, must store/compute \(NM \) unique values

• Later we will see how to represent these when the number of states/actions is too large or continuous
The Bellman Expectation Equation for the value function

\[\nu_\pi(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(R_s^a + \gamma \sum_{s'} P_{s,s'}^a \nu_\pi(s') \right) \]

- In vector form

\[
\begin{bmatrix}
\nu_\pi(s_1) \\
\nu_\pi(s_2) \\
\vdots \\
\nu_\pi(s_N)
\end{bmatrix}
= \begin{bmatrix}
R_{s_1} \\
R_{s_2} \\
\vdots \\
R_{s_N}
\end{bmatrix}
+ \gamma \begin{bmatrix}
P_{s_1,s_1} & P_{s_2,s_1} & \cdots & P_{s_N,s_1} \\
P_{s_1,s_2} & P_{s_2,s_2} & \cdots & P_{s_N,s_2} \\
\vdots & \vdots & \ddots & \vdots \\
P_{s_1,s_N} & P_{s_2,s_N} & \cdots & P_{s_N,s_N}
\end{bmatrix}
\begin{bmatrix}
\nu_\pi(s_1) \\
\nu_\pi(s_2) \\
\vdots \\
\nu_\pi(s_N)
\end{bmatrix}
\]

- Where

- \(R_s = \sum_{a \in \mathcal{A}} \pi(a|s) R_s^a \)
- \(P_{s_1,s} = \sum_{a \in \mathcal{A}} \pi(a|s) P_{s_1,s}^a \)
The Bellman Expectation Equation for the value function

\[v_\pi(s) = \sum_{a \in A} \pi(a|s) \left(R_s^a + \gamma \sum_{s'} P_{s,s'}^a v_\pi(s') \right) \]

- In vector form

\[
\begin{bmatrix}
 v_\pi(s_1) \\
v_\pi(s_2) \\
 \vdots \\
v_\pi(s_N)
\end{bmatrix} =
\begin{bmatrix}
 R_{s_1} \\
 R_{s_2} \\
 \vdots \\
 R_{s_N}
\end{bmatrix} + \gamma
\begin{bmatrix}
 P_{s_1,s_1} & P_{s_1,s_2} & \cdots & P_{s_1,s_N} \\
 P_{s_2,s_1} & P_{s_2,s_2} & \cdots & P_{s_2,s_N} \\
 \vdots & \vdots & \ddots & \vdots \\
 P_{s_N,s_1} & P_{s_N,s_2} & \cdots & P_{s_N,s_N}
\end{bmatrix}
\begin{bmatrix}
 v_\pi(s_1) \\
v_\pi(s_2) \\
 \vdots \\
v_\pi(s_N)
\end{bmatrix}
\]

- Where

\[R_s = \sum_{a \in A} \pi(a|s) R_s^a \]

\[P_{s,s'} = \sum_{a \in A} \pi(a|s) \sum_{s''} P_{s,s''}^a \]
Solving the MDP

\[V_\pi = R_\pi + \gamma P_\pi V_\pi \]

• Given the expected rewards at every state, the transition probability matrix, the discount factor and the policy:

\[V_\pi = (I - \gamma P_\pi)^{-1} R_\pi \]

• Easy for processes with a small number of states
• Matrix inversion \(O(N^3) \); intractable for large state spaces
What about the action value function?

- The Bellman expectation equation for action value function

\[q_\pi(s, a) = R_s^a + \gamma \sum_{s'} P_{s,s'}^a \sum_{a' \in A} \pi(a|s')q_\pi(s', a') \]

\[Q_\pi = R_{\pi, Q} + \gamma P_{\pi, Q} Q_\pi \]

Even worse!!
So how do we solve these

• The equations are too large, how do we solve them?

• First, a little lesson – from middle school...
What they never taught you in school

• Consider the following equation:
 \[ax = b \]

• Where \(0 < a < 2 \)

• Trivial solution: \(x = a^{-1} b = \frac{b}{a} \)

• But my CPU does not permit division..
 – How do I solve this?
What they never taught you in school

• Must solve the following without division
 \[ax = b \]
 – where \(0 < a < 2 \)

• Rewrite as follows
 \[x = (1 - a)x + b \]

• The following iteration solves the problem:
 \[x^{(k+1)} = (1 - a)x^{(k)} + b \]

• Can start with any \(x^{(0)} \)

• Proof??
What they never taught you in school

• Must solve the following without division
 \[ax = b \]
 where \(0 < a < 2 \)

• Rewrite as follows
 \[x = (1 - a)x + b \]

• The following iteration solves the problem:
 \[x^{(k+1)} = (1 - a)x^{(k)} + b \]

• Can start with any \(x^{(0)} \)

• Proof?? \[\textbf{Hint: } 0 < a < 2 \Rightarrow |1 - a| < 1 \]
What they never taught you in school

• Consider any vector equation

\[\mathbf{x} = A\mathbf{x} + \mathbf{b} \]

 – Where all Eigen values \(|\lambda(A)| \leq 1 \)

 • And some extra criteria...

 – The square submatrix of \((I - A)\) corresponding to non-zero entries of \(\mathbf{b}\) is full rank

 – The square submatrix of \((I - A)\) corresponding to zero entries of \(\mathbf{b}\) is an identity matrix

• The following iteration solves the problem:

\[\mathbf{x}^{(k+1)} = A\mathbf{x}^{(k)} + \mathbf{b} \]
Eigen values of a probability matrix

• For any Markov transition probability matrix \mathcal{P}, all Eigenvalues have magnitude less than or equal to 1

$$|\lambda(\mathcal{P})| \leq 1$$
Solving for the value function

\[V_\pi = R_\pi + \gamma P_\pi V_\pi \]

• This can be solved by following iteration starting from any initial vector

\[V^{(k+1)}_\pi = R_\pi + \gamma P_\pi V^{(k)}_\pi \]
Solving for the value function

\[\mathcal{V}_\pi = R_\pi + \gamma P_\pi \mathcal{V}_\pi \]

• This can be solved by following iteration starting from any initial vector

\[\mathcal{V}_{\pi}^{(k+1)} = R_\pi + \gamma P_\pi \mathcal{V}_{\pi}^{(k)} \]

• But how did that help if we need infinite iterations to converge?
Solving for the value function

\[V_\pi = R_\pi + \gamma P_\pi V_\pi \]

• This can be solved by following iteration starting from any initial vector

\[V^{(k+1)}_\pi = R_\pi + \gamma P_\pi V^{(k)}_\pi \]

• But how did that help if we need infinite iterations to converge?
 – Solution: Stop when the changes becomes small

\[|V^{(k+1)}_\pi - V^{(k+1)}_\pi| < \varepsilon \]
Actual Implementation

• Initialize $v_\pi^{(0)}(s)$ for all states

• Update

$$v_\pi^{(k+1)}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(R_s^a + \gamma \sum_{s'} P_{s,s'}^a v_\pi^{(k)}(s') \right)$$

• Update may be in batch mode
 – Keep sweep through all states to compute $v_\pi^{(k+1)}(s)$
 – Update $k = k + 1$

• Or incremental
 – Sweep through all the states performing

$$v_\pi(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(R_s^a + \gamma \sum_{s'} P_{s,s'}^a v_\pi(s') \right)$$
Actual Implementation

• Initialize $\nu^{(0)}_\pi(s)$ for all states

• Update

$$
\nu^{(k+1)}_\pi(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(R^a_s + \gamma \sum_{s'} P^a_{s,s'} \nu^{(k)}_\pi(s') \right)
$$

• This is an instance of *dynamic programming*:

dynamic programming (also known as *dynamic optimization*) is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions. The next time the same subproblem occurs, instead of recomputing its solution, one simply looks up the previously computed solution, thereby saving computation time at the expense of a (hopefully) modest expenditure in storage space. (Each of the subproblem solutions is indexed in some way, typically based on the values of its input parameters, so as to facilitate its lookup.) (from wikipedia)
• All squares, except shaded square have reward -1, shaded square has reward 0
• **Policy:** Random – can step in any of the four directions with equal probability
 – If you run into a wall, you just return to the square
• Find the value of being in each square
The Gridworld Example

- Actual iterations use random policy
- Right column shows greedy policy according to current value function
The Gridworld Example

- Iterations use random policy
- Greedy policy converges to optimal long before value function of random policy converges!
Value-based Planning

• “Value”-based solution

• Breakdown:
 – Prediction: Given \(\text{any} \) policy \(\pi \) find value function \(\nu_\pi(s) \)
 – Control: Find the optimal policy
Revisit the gridworld

Example from Sutton

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

$R = -1$
on all transitions
Revisit the gridworld

• Actual iterations use random policy
• Right column shows greedy policy according to current value function
Revisit the gridworld

- Iterations use random policy
- Greedy policy converges to optimal long before value function of random policy converges!
Finding an optimal policy

• Start with any policy, e.g. random policy $\pi^{(0)}$
• Iterate ($k = 0$... convergence):
 – Use prediction DP to find the value function $v_{\pi^{(k)}}(s)$
 – Compute action value function $\forall s, a$:
 \[
 q_{\pi^{(k)}}(s, a) = R_s^a + \gamma \sum_{s'} P_{s,s'}^a v_{\pi^{(k)}}(s')
 \]
 – Find the greedy policy
 \[
 \pi^{(k+1)}(a|s) = \begin{cases}
 1 & \text{for } a = \arg\max_{a'} q_{\pi^{(k)}}(s, a') \\
 0 & \text{otherwise}
 \end{cases}
 \]
Finding an optimal policy: Compact

• Start with any policy $\pi^{(0)}$
• Iterate ($k = 0 \ldots$ convergence):
 – Use prediction DP to find the value function $\nu_{\pi^{(k)}}(s)$
 – Find the greedy policy

\[
\pi^{(k+1)}(a|s) = \begin{cases}
1 & \text{for } a = \operatorname{argmax}_{a'} R_s^{a'} + \gamma \sum_{s'} P_{s,s'}^{a'} \nu_{\pi^{(k)}}(s') \\
0 & \text{otherwise}
\end{cases}
\]
Finding an optimal policy: Shorthand

• Start with any policy $\pi^{(0)}$
• Iterate ($k = 0 \ldots$ convergence):
 – Use prediction DP to find the value function $\nu_{\pi^{(k)}}(s)$
 – Find the greedy policy
 \[
 \pi^{(k+1)}(s) = \text{greedy} \left(\nu_{\pi^{(k)}}(s) \right)
 \]

THIS IS KNOWN AS POLICY ITERATION
In each iteration, we find a policy, and then find its value
Policy Iteration

• Start with any policy $\pi^{(0)}$

• Iterate ($k = 0 \ldots$ convergence):
 – Use prediction DP to find the value function $v_{\pi^{(k)}}(s)$
 – Find the greedy policy
 $$\pi^{(k+1)}(s) = greedy\left(v_{\pi^{(k)}}(s)\right)$$

• This will provably converge to the optimal policy π_*
• In the Gridworld example this converged in one iteration
• More generally, it will take several iterations
 – Convergence when policy no longer changes
Generalized Policy Iteration

• Start with any policy $\pi^{(0)}$

• Iterate ($k = 0$... convergence):
 – Use *any algorithm* to find the value function $v_{\pi^{(k)}}(s)$
 – Use *any algorithm* to find an update policy

$$
\pi^{(k+1)}(s) = \text{algorithm} \left(v_{\pi^{(k)}}(s) \right)
$$

Such that $\pi^{(k+1)}(s) \geq \pi^{(k)}(s)$

• Guaranteed to converge to the optimal policy
Generalized Policy Iteration

- Start with any policy $\pi^{(0)}$

- Guaranteed to converge to the optimal policy
Optimality theorem

• All states will hit their optimal value together

• Theorem:
 A policy $\pi(a|s)$ has optimal value
 \[v_\pi(s) = v_*(s) \]
 in any state s if and only if for every state s' reachable from s,
 \[v_\pi(s') = v_*(s') \]
Policy Iteration

• Start with any policy $\pi^{(0)}$

• Iterate ($k = 0 \ldots$ convergence):
 – Use prediction DP to find the value function $v_{\pi^{(k)}}(s)$
 – Find the greedy policy
 \[
 \pi^{(k+1)}(s) = \text{greedy}(v_{\pi^{(k)}}(s))
 \]

• This will provably converge to the optimal policy π_*
• In the Gridworld example this converged in one iteration
• More generally, it will take several iterations
 – Convergence when policy no longer changes
Policy Iteration

• Start with any policy $\pi^{(0)}$

• Iterate ($k = 0$... convergence):
 – Use prediction DP to find the value function $v_{\pi^{(k)}}(s)$
 – Find the greedy policy

 In the gridworld example we didn’t even need to run this to convergence
 The optimal policy was found long before the actual value function converged even in the first upper iteration

• This will provably converge to the optimal policy π_*
• In the Gridworld example this converged in one iteration
• More generally, it will take several iterations
 – Convergence when policy no longer changes
Revisit the gridworld

• Iterations use random policy
• Greedy policy converges to optimal long before value function of random policy converges!
Policy Iteration

• Start with any policy $\pi^{(0)}$

• Iterate ($k = 0$... convergence):
 – Use prediction DP to find the value function $v_{\pi^{(k)}}(s)$
 – Find the greedy policy
 \[\pi^{(k+1)}(s) = \text{greedy} \left(v_{\pi^{(k)}}(s) \right) \]

 In the gridworld example we didn’t even need to run this to convergence

• The optimal policy was found long before the actual value function converged even in the first upper iteration

• More generally, it will take several iterations
 – Convergence when policy no longer changes
Optimal policy estimation

- Start with any policy $\pi^{(0)}$

- Iterate ($k = 0$... convergence):
 - Use L iterations of prediction DP to find the value function $v_{\pi^{(k)}}(s)$
 - Find the greedy policy

\[
\pi^{(k+1)}(s) = \text{greedy}\left(v_{\pi^{(k)}}(s)\right)
\]

- This will provably converge to the optimal policy π_*
Optimal policy estimation

• Start with any policy $\pi^{(0)}$

• Iterate ($k = 0 \ldots$ convergence):
 – Use 1 iterations of prediction DP to find the value function $v_{\pi^{(k)}}(s)$
 – Find the greedy policy

$$\pi^{(k+1)}(s) = greedy\left(v_{\pi^{(k)}}(s)\right)$$
Optimal policy estimation

• Start with any policy $\pi^{(0)}$

• Iterate ($k = 0 \ldots$ convergence):
 – Use 1 iterations of prediction DP to find the value function $v_{\pi^{(k)}}(s)$
 \[
 v_{\pi^{(k)}}(s) = \sum_{a \in \mathcal{A}} \pi^{(k)}(a|s) \left(R_s^a + \gamma \sum_{s'} P_{s,s'} v_{\pi^{(k)}}(s') \right)
 \]
 – Find the greedy policy
 \[
 \pi^{(k+1)}(s) = \arg\max_a R_s^a + \gamma \sum_{s'} P_{s,s'} v_{\pi^{(k)}}(s')
 \]
Optimal policy estimation

• Start with any policy \(\pi^{(0)} \)

• Iterate \((k = 0 \ldots \text{convergence}) \):

 - Use 1 iterations of prediction DP to find the value function \(v_{\pi^{(k)}}(s) \)

 \[
 v_{\pi^{(k)}}(s) = \sum_{a \in \mathcal{A}} \pi^{(k)}(a|s) \left(R_{s} + \sum_{s'} P_{s,s'}^{a} v_{\pi^{(k)}}(s') \right)
 \]

 - Find the greedy policy

 \[
 \pi^{(k+1)}(s) = \arg\max_{a} R_{s}^{a} + \sum_{s'} P_{s,s'}^{a} v_{\pi^{(k)}}(s')
 \]
Reordering and writing carefully

• Start with any initial value function $v_{\pi(0)}(s)$

• Iterate ($k = 1 \ldots$ convergence):
 – Find the greedy policy

$$\pi^{(k)}(a|s) = \begin{cases}
1 & \text{for } a = \arg\max_{a'} R^{a'}_s + \gamma \sum_{s'} P^{a'}_{s,s'} v_{\pi^{(k-1)}}(s') \\
0 & \text{otherwise}
\end{cases}$$
 – Use 1 iterations of prediction DP to find the value function $v_{\pi^{(k)}}(s)$

$$v_{\pi^{(k)}}(s) = \sum_{a \in \mathcal{A}} \pi^{(k)}(a|s) \left(R^a_s + \gamma \sum_{s'} P^a_{s,s'} v_{\pi^{(k-1)}}(s') \right)$$
Merging

• Start with any initial value function $v_{\pi(0)}(s)$

• Iterate ($k = 1 \ldots$ convergence):
 – Update the value function

\[
v_{\pi(k)}(s) = \max_a R_s^a + \gamma \sum_{s'} p_{s,s'}^a v_{\pi(k-1)}(s')
\]

• Note: no explicit policy estimation
 – Directly learns value
 – The subscript π is a misnomer
Value Iteration

• Start with any initial value function $v^{(0)}_*(s)$

• Iterate ($k = 1 \ldots$ convergence):
 - Update the value function

$$v^{(k)}_*(s) = \max_a R^a_s + \gamma \sum_{s'} P_{s,s'} v^{(k-1)}_*(s')$$

• Note: no explicit policy estimation
• Directly learning optimal value function
• Guaranteed to give you optimal value function at convergence
 - But intermediate value function estimates may not represent any policy
Value iteration

\[\nu^{(k)}_*(s) = \max_a R^a_s + \gamma \sum_{s'} P^a_{s,s'} \nu^{(k-1)}_*(s') \]

- Each state simply inherits the cost of its best neighbour state
 - Cost of neighbor is the value of the neighbour plus cost of getting there
Value Iteration Example

- Target: Find the shortest path
- Every step costs -1
Practical Issues

• Updates can be batch mode
 – Explicitly compute $v_*^{(k+1)}(s)$ from $v_*^{(k)}(s)$ for all states
 – Set $k = k+1$

• Or asynchronous
 – Compute $v_*(s)$ in place while we sweep over states
 – $v_*(s) \leftarrow \max_a R_s^a + \gamma \sum_{s'} P_{s,s'}^a v_*(s')$
Recap

• Learned about *prediction*
 – Estimating value function given MDP and policy

• Learned *Policy* iteration
 – Iterate prediction and policy estimation

• Learned about *Value* iteration
 – Directly estimate optimal value function
Alternate strategy

• Worked with *Value function*
 – For N states, estimates N terms

• Could alternately work with *action-value function*
 – For M actions, must estimate MN terms
 • Much more expensive
 • But more useful in some scenarios
Next Up

• We’ve worked so far with planning
 – Someone gave us the MDP

• Next: Reinforcement Learning
 – MDP unknown..
Problem so far

• *Given all details of the MDP*
 – Compute optimal value function
 – Compute optimal action value function
 – *Compute optimal policy*

• This is the problem of *planning*

• **Problem:** In real life, nobody gives you the MDP
 – How do we plan???
Model-Free Methods

• AKA model-free reinforcement learning

• How do you find the value of a policy, without knowing the underlying MDP?
 – Model-free prediction

• How do you find the optimal policy, without knowing the underlying MDP?
 – Model-free control
Model-Free Methods

• AKA model-free reinforcement learning

• How do you find the value of a policy, without knowing the underlying MDP?
 – Model-free prediction

• How do you find the optimal policy, without knowing the underlying MDP?
 – Model-free control

• Assumption: We can identify the states, know the actions, and measure rewards, but have no knowledge of the system dynamics
 – The key knowledge required to “solve” for the best policy
 – A reasonable assumption in many discrete-state scenarios
 – Can be generalized to other scenarios with infinite or unknowable state
Model-Free Assumption

- Can see the fly
- Know the distance to the fly
- Know possible actions (get closer/farther)
- But have no idea of how the fly will respond
 - Will it move, and if so, to what corner
Model-Free Methods

• AKA model-free reinforcement learning

• How do you find the value of a policy, without knowing the underlying MDP?
 – Model-free prediction

• How do you find the optimal policy, without knowing the underlying MDP?
 – Model-free control
Model-Free Assumption

- Can see the fly and distance to the fly
- But have no idea of how the fly will respond to actions
 - Will it move, and if so, to what corner
- But will always try to reduce distance to fly (have a known, fixed, policy)
- What is the value of being a distance D from the fly?
Methods

• *Monte-Carlo* Learning

• *Temporal-Difference* Learning
 – $TD(1)$
 – $TD(K)$
 – $TD(\lambda)$
Monte-Carlo learning to learn the value of a policy π

- Just “let the system run” while following the policy π and learn the value of different states

- Procedure: Record several episodes of the following
 - Take actions according to policy π
 - Note states visited and rewards obtained as a result
 - Record entire sequence:
 - $S_1, A_1, R_2, S_2, A_2, R_3, ..., S_T$
 - Assumption: Each “episode” ends at some time

- Estimate value functions based on observations by counting
Monte-Carlo Value Estimation

• Objective: Estimate value function $v_\pi(s)$ for every state s, given recordings of the kind:
 $S_1, A_1, R_2, S_2, A_2, R_3, ..., S_T$

• Recall, the value function is the expected return:
 $$v_\pi(s) = E[G_t|S_t = s]$$
 $$= E[R_{t+1} + \gamma R_{t+2} + ... + \gamma^{T-t-1} R_T|S_t = s]$$

• To estimate this, we replace the statistical expectation $E[G_t|S_t = s]$ by the empirical average $avg[G_t|S_t = s]$
A bit of notation

• We actually record many episodes
 – \textit{episode}(1) = S_{11}, A_{11}, R_{12}, S_{12}, A_{12}, R_{13}, \ldots, S_{1T_1}
 – \textit{episode}(2) = S_{21}, A_{21}, R_{22}, S_{22}, A_{22}, R_{23}, \ldots, S_{2T_2}
 – \ldots
 – Different episodes may be different lengths
Counting Returns

• For each episode, we count the returns at all times:

 \[S_{11}, A_{11}, R_{12}, S_{12}, A_{12}, R_{13}, S_{13}, A_{13}, R_{14}, \ldots, S_{1T_1} \]

• Return at time \(t \)

 \[G_{1,1} = R_{12} + \gamma R_{13} + \ldots + \gamma^{T_1-2} R_{1T_1} \]
Counting Returns

• For each episode, we count the returns at all times:
 \[S_{11}, A_{11}, R_{12}, S_{12}, A_{12}, R_{13}, S_{13}, A_{13}, R_{14}, \ldots, S_{1T_1} \]

• Return at time \(t \)
 \[G_{1,1} = R_{12} + \gamma R_{13} + \cdots + \gamma^{T_1-2} R_{1T_1} \]
 \[G_{1,2} = R_{13} + \gamma R_{14} + \cdots + \gamma^{T_1-3} R_{1T_1} \]
Counting Returns

• For each episode, we count the returns at all times:
 - $S_{11}, A_{11}, R_{12}, S_{12}, A_{12}, R_{13}, S_{13}, A_{13}, R_{14}, \ldots, S_{1T_1}$

• Return at time t
 - $G_{1,1} = R_{12} + \gamma R_{13} + \cdots + \gamma^{T_1-2} R_{1T_1}$
 - $G_{1,2} = R_{13} + \gamma R_{14} + \cdots + \gamma^{T_1-3} R_{1T_1}$
 - \ldots
 - $G_{1,t} = R_{1,t+1} + \gamma R_{1,t+2} + \cdots + \gamma^{T_1-t-1} R_{1T_1}$
Estimating the Value of a State

• To estimate the value of any state, identify the instances of that state in the episodes:

\[S_{11}, A_{11}, R_{12}, S_{12}, A_{12}, R_{13}, S_{13}, A_{13}, R_{14}, ..., S_{1T_1} \]

\[s_a \quad s_b \quad s_a \quad \ldots \]

• Compute the average return from those instances

\[\nu_\pi(s_a) = \text{avg}(G_{1,1}, G_{1,3}, \ldots) \]
Estimating the Value of a State

• For every state s
 – Initialize: Count $N(s) = 0$, Total return $v_\pi(s) = 0$
 – For every episode e
 • For every time $t = 1 \ldots T_e$
 – Compute G_t
 – If $(S_t == s)$
 » $N(s) = N(s) + 1$
 » $v_\pi(s) = v_\pi(s) + G_t$
 – $v_\pi(s) = v_\pi(s)/N(s)$

• Can be done more efficiently..
Online Version

- For all s Initialize: Count $N(s) = 0$, Total return $\text{tot}v_\pi(s) = 0$

- For every episode e
 - For every time $t = 1 \ldots T_e$
 - Compute G_t
 - $N(S_t) = N(S_t) + 1$
 - $\text{tot}v_\pi(S_t) = \text{tot}v_\pi(S_t) + G_t$
 - For every state s : $v_\pi(s) = \text{tot}v_\pi(s)/N(s)$

- Updating values at the end of each episode
- Can be done more efficiently
Monte Carlo estimation

• Learning from experience explicitly

• After a sufficiently large number of episodes, in which all states have been visited a sufficiently large number of times, we will obtain good estimates of the value functions of all states

• Easily extended to evaluating *action value functions*
Estimating the Action Value function

- To estimate the value of any state-action pair, identify the instances of that state-action pair in the episodes:
 \[S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \ldots, S_T \]
 \[s_a \ a_x \ s_b \ a_y \ s_a \ a_y \ \ldots \]

- Compute the average return from those instances
 \[q_\pi(s_a, a_x) = avg(G_{1,1}, \ldots) \]
Online Version

• For all s, a Initialize: Count $N(s, a) = 0$, Total value $\text{tot}q_\pi(s, a) = 0$

• For every episode e
 – For every time $t = 1 \ldots T_e$
 • Compute G_t
 • $N(S_t, A_t) = N(S_t, A_t) + 1$
 • $\text{tot}q_\pi(S_t, A_t) = \text{tot}q_\pi(S_t, A_t) + G_t$
 – For every $s, a : q(s, a) = \text{tot}q_\pi(s, a)/N(s, a)$

• Updating values at the end of each episode
Monte Carlo: Good and Bad

• Good:
 – Will eventually get to the right answer
 – Unbiased estimate

• Bad:
 – Cannot update anything until the end of an episode
 • Which may last for ever
 – High variance! Each return adds many random values
 – Slow to converge
Online methods for estimating the value of a policy: Temporal Difference Learning (TD)

• Idea: Update your value estimates after every observation

\[S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \ldots, S_T \]

- Do not actually wait until the end of the episode
Incremental Update of Averages

• Given a sequence x_1, x_2, x_3, \ldots, a running estimate of their average can be computed as

$$\mu_k = \frac{1}{k} \sum_{i=1}^{k} x_i$$

• This can be rewritten as:

$$\mu_k = \frac{(k - 1)\mu_{k-1} + x_k}{k}$$

• And further refined to

$$\mu_k = \mu_{k-1} + \frac{1}{k} (x_k - \mu_{k-1})$$
Incremental Update of Averages

• Given a sequence \(x_1, x_2, x_3, \ldots\) a running estimate of their average can be computed as

\[
\mu_k = \mu_{k-1} + \frac{1}{k} (x_k - \mu_{k-1})
\]

• Or more generally as

\[
\mu_k = \mu_{k-1} + \alpha (x_k - \mu_{k-1})
\]

• The latter is particularly useful for non-stationary environments

• For stationary environments \(\alpha\) must shrink with iterations, but not too fast

\[- \sum_k \alpha_k^2 < C, \quad \sum_k \alpha_k = \infty, \quad \alpha_k \geq 0\]
Incremental Updates

\[\mu_k = \mu_{k-1} + \frac{1}{k}(x_k - \mu_{k-1}) \]

- Example of running average of a uniform random variable
Incremental Updates

- Correct equation is *unbiased* and converges to true value
- Equation with α is *biased* (early estimates can be expected to be wrong) but converges to true value

\[\mu_k = \mu_{k-1} + \frac{1}{k}(x_k - \mu_{k-1}) \]

\[\mu_k = \mu_{k-1} + \alpha(x_k - \mu_{k-1}) \]
Updating Value Function Incrementally

• Actual update

\[\nu_\pi(s) = \frac{1}{N(s)} \sum_{i=1}^{N(s)} G_{t(i)} \]

• \(N(s) \) is the total number of visits to state \(s \) across all episodes

• \(G_{t(i)} \) is the discounted return at the time instant of the i-th visit to state \(s \)
Online update

• Given any episode
 \[S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \ldots, S_T \]

• Update the value of each state visited
 \[N(S_t) = N(S_t) + 1 \]
 \[\nu_\pi(S_t) = \nu_\pi(S_t) + \frac{1}{N(S_t)}(G_t - \nu_\pi(S_t)) \]

• Incremental version
 \[\nu_\pi(S_t) = \nu_\pi(S_t) + \alpha(G_t - \nu_\pi(S_t)) \]

• Still an unrealistic rule
 • Requires the entire track until the end of the episode to compute \(G_t \)
Online update

• Given any episode

\[S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \ldots, S_T \]

• Update the value of each state visited

\[N(S_t) = N(S_t) + 1 \]

\[\nu_\pi(S_t) = \nu_\pi(S_t) + \frac{1}{N(S_t)} (G_t - \nu_\pi(S_t)) \]

• Incremental version

\[\nu_\pi(S_t) = \nu_\pi(S_t) + \alpha (G_t - \nu_\pi(S_t)) \]

• Still an unrealistic rule
 • Requires the entire track until the end of the episode to compute \(G_t \)
TD solution

\[\nu_\pi(S_t) = \nu_\pi(S_t) + \alpha (G_t - \nu_\pi(S_t)) \]

- But

\[G_t = R_{t+1} + \gamma G_{t+1} \]

- We can approximate \(G_{t+1} \) by the expected return at the next state \(S_{t+1} \)
Counting Returns

- For each episode, we count the returns at all times:
 - \(S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \ldots, S_T \)

- Return at time \(t \)
 - \(G_1 = R_2 + \gamma R_3 + \ldots + \gamma^{T-2} R_T \)
 - \(G_2 = R_3 + \gamma R_4 + \ldots + \gamma^{T-3} R_T \)
 - \(\ldots \)
 - \(G_t = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{T-t-2} R_T \)

- Can rewrite as
 - \(G_1 = R_2 + \gamma G_2 \)

- Or
 - \(G_1 = R_2 + \gamma R_3 + \gamma^2 G_3 \)
 - \(\ldots \)
 - \(G_t = R_{t+1} + \sum_{i=1}^{N} \gamma^i R_{t+1+i} + \gamma^{N+1} G_{t+1+N} \)
We can approximate \(G_t \) by the expected return at the next state \(S_{t+1} \approx \nu_\pi(S_{t+1}) \)

\[
G_t \approx R_{t+1} + \gamma \nu_\pi(S_{t+1})
\]

We don’t know the real value of \(\nu_\pi(S_{t+1}) \) but we can “bootstrap” it by its current estimate
TD(1) true online update

\[v_\pi(S_t) = v_\pi(S_t) + \alpha(G_t - v_\pi(S_t)) \]

- Where

\[G_t \approx R_{t+1} + \gamma v_\pi(S_{t+1}) \]

- Giving us

\[-v_\pi(S_t) = v_\pi(S_t) + \alpha(R_{t+1} + \gamma v_\pi(S_{t+1}) - v_\pi(S_t)) \]
TD(1) true online update

\[\nu_{\pi}(S_t) = \nu_{\pi}(S_t) + \alpha \delta_t \]

- Where

\[\delta_t = R_{t+1} + \gamma \nu_{\pi}(S_{t+1}) - \nu_{\pi}(S_t) \]

- \(\delta_t \) is the TD error
 - The error between an (estimated) observation of \(G_t \) and the current estimate \(\nu_{\pi}(S_t) \)
TD(1) true online update

- For all s Initialize: $\nu_\pi(s) = 0$
- For every episode e
 - For every time $t = 1 \ldots T_e$
 - $\nu_\pi(S_t) = \nu_\pi(S_t) + \alpha (R_{t+1} + \gamma \nu_\pi(S_{t+1}) - \nu_\pi(S_t))$

- There’s a “lookahead” of one state, to know which state the process arrives at at the next time
- But is otherwise online, with continuous updates
TD(1)

• Updates continuously – improve estimates as soon as you observe a state (and its successor)

• Can work even with *infinitely long* processes that never terminate

• Guaranteed to converge to the true values eventually
 – Although initial values will be biased as seen before
 – Is actually lower variance than MC!!
 • Only incorporates one RV at any time

• TD can give correct answers when MC goes wrong
 – Particularly when TD is allowed to *loop* over all learning episodes
What are \(v(A) \) and \(v(B) \)

- Using MC

- Using TD(1), where you are allowed to repeatedly go over the data
TD – look ahead further?

• TD(1) has a look ahead of 1 time step
 \[G_t \approx R_{t+1} + \gamma v_\pi(S_{t+1}) \]

• But we can look ahead further out
 - \[G_t(2) = R_{t+1} + \gamma R_{t+2} + \gamma^2 v_\pi(S_{t+2}) \]
 - \[\ldots \]
 - \[G_t(N) = R_{t+1} \sum_{i=1}^{N} \gamma^i R_{t+1+i} + \gamma^{N+1} v_\pi(S_{t+N}) \]
TD(N) with lookahead

\[\nu_\pi(S_t) = \nu_\pi(S_t) + \alpha \delta_t(N) \]

- Where

\[\delta_t(N) = R_{t+1} + \sum_{i=1}^{N} \gamma^i R_{t+1+i} + \gamma^{N+1} \nu_\pi(S_{t+N}) - \nu_\pi(S_t) \]

- \(\delta_t(N) \) is the TD error with N step lookahead
Lookahead is good

• Good: The further you look ahead, the better your estimates get

• Problems:
 – But you also get more variance
 – At infinite lookahead, you’re back at MC

• Also, you have to wait to update your estimates
 – A lag between observation and estimate

• So how much lookahead must you use
Looking Into The Future

- Let TD target look n steps into the future

- How much various TDs look into the future
- Which do we use?
Solution: Why choose?

- Each lookahead provides an estimate of G_t
- Why not just combine the lot with discounting?
TD(\(\lambda\))

\[G_t^\lambda = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t(n) \]

- Combine the predictions from all lookaheads with an exponentially falling weight
 - Weights sum to 1.0

\[V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^\lambda - V(S_t) \right) \]
Something magical just happened

• TD(\(\lambda\)) looks into the infinite future
 – I.e. we must have all the rewards of the future to compute our updates
 – How does that help?
The contribution of future rewards to the present update

- All future rewards contribute to the update of the value of the current state

\[S_t \]

\[R_{t+1}, (1 - \lambda) \]

\[R_{t+2}, (1 - \lambda)\lambda \gamma \]

\[R_{t+3}, (1 - \lambda)\lambda^2 \gamma^2 \]

\[R_{t+4}, (1 - \lambda)\lambda^3 \gamma^3 \]

\[R_{t+5}, (1 - \lambda)\lambda^4 \gamma^4 \]

\[R_{t+6}, (1 - \lambda)\lambda^5 \gamma^5 \]

\[R_{t+7}, (1 - \lambda)\lambda^6 \gamma^6 \]

\(\gamma \) is from the discounting
\(\lambda \) is from the look-ahead weight
The contribution of current reward to \textit{past} states

- All current reward contributes to the update of the value of all past states!
• **TD(\(\lambda\)) backward view**

Add these weights to compute contribution to red state.

\[
\begin{align*}
(1 - \lambda)\lambda^2 & \\
(1 - \lambda)\lambda^3 & \\
(1 - \lambda)\lambda^4 & \\
(1 - \lambda)\lambda^5 & \\
(1 - \lambda)\lambda^6 & \\
\end{align*}
\]

\(1 - \lambda\)

\(R_t\)

• **The Eligibility trace:**

 – Keeps track of *total* weight for any state

 • Which may have occurred at multiple times in the past
$TD(\lambda)$

- Maintain an eligibility trace for every state

$$E_0(s) = 0$$
$$E_t(s) = \lambda \gamma E_{t-1}(s) + 1(S_t = s)$$

- Computes total weight for the state until the present time
TD(\(\lambda\))

- At every time, update the value of *every state* according to its eligibility trace

\[
\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)
\]

\[
V(s) \leftarrow V(s) + \alpha \delta_t E_t(s)
\]

- Any state that was visited will be updated
 - Those that were not will not be, though
The magic of TD(λ)

- Managed to get the effect of infinite lookahead, by performing infinite *lookbehind*
 - Or at least look behind to the beginning

- Every reward updates the value of *all states* leading to the reward!
 - E.g., in a chess game, if we win, we want to increase the value of all game states we visited, not just the final move
 - But early states/moves must gain much less than later moves

- When $\lambda = 1$ this is exactly equivalent to MC
Story so far

• Want to compute the values of all states, given a policy, but no knowledge of dynamics

• Have seen monte-carlo and temporal difference solutions
 – TD is quicker to update, and in many situations the better solution
 – TD(\(\lambda\)) actually emulates an infinite lookahead
 • But we must choose good values of \(\alpha\) and \(\lambda\)
Optimal Policy: Control

• We learned how to estimate the state value functions for an MDP whose transition probabilities are unknown \textit{for a given policy}

• \textit{How do we find the optimal policy?}
Value vs. Action Value

• The solution we saw so far only computes the *value functions* of states

• Not sufficient – to compute the optimal policy from value functions alone, we will need extra information, namely transition probabilities
 – Which we do not have

• Instead, we can use the same method to compute *action value* functions
 – Optimal policy in any state: Choose the action that has the largest *optimal* action value
Value vs. Action value

• Given only value functions, the optimal policy must be estimated as:

\[\pi'(s) = \arg\max_{a \in \mathcal{A}} R^a_s + P^a_{ss'} V(s') \]

– Needs knowledge of transition probabilities

• Given action value functions, we can find it as:

\[\pi'(s) = \arg\max_{a \in \mathcal{A}} Q(s, a) \]

• This is model free (no need for knowledge of model parameters)
Problem of optimal control

• From a series of episodes of the kind:
 \[S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \ldots, S_T \]

• Find the optimal action value function \(q^*(s, a) \)
 – The optimal policy can be found from it

• Ideally do this online
 – So that we can continuously improve our policy from ongoing experience
Exploration vs. Exploitation

• Optimal policy search happens while gathering experience *while following a policy*

• For fastest learning, we will follow an estimate of the optimal policy

• Risk: We run the risk of positive feedback
 – Only learn to evaluate our current policy
 – Will never learn about alternate policies that may turn out to be better

• Solution: We will follow our current optimal policy 1 — ε of the time
 – But choose a random action ε of the time
 – The “epsilon-greedy” policy
GLIE Monte Carlo

- **Greedy in the limit with infinite exploration**
- Start with some random initial policy π
- Start the process at the initial state, and follow an action according to initial policy π
- Produce the episode $S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, ..., S_T$
- Process the episode using the following online update rules:
 \[
 N(S_t, A_t) \leftarrow N(S_t, A_t) + 1
 \]
 \[
 Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)} (G_t - Q(S_t, A_t))
 \]
- Compute the ϵ-greedy policy for each state
 \[
 \pi(a|s) = \begin{cases}
 1 - \epsilon & \text{for } a = \arg\max_{a'} Q(s, a') \\
 \frac{\epsilon}{N_a - 1} & \text{otherwise}
 \end{cases}
 \]
- Repeat
GLIE Monte Carlo

- **Greedy in the limit with infinite exploration**
- Start with some random initial policy π
- Start the process at the initial state, and follow an action according to initial policy π
- Produce the episode $S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, ..., S_T$
- Process the episode using the following online update rules:

$$
N(S_t, A_t) \leftarrow N(S_t, A_t) + 1
$$

$$
Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)} (G_t - Q(S_t, A_t))
$$

- Compute the ϵ-greedy policy for each state

$$
\pi(a|s) = \begin{cases}
1 - \epsilon & \text{for } a = \arg\max_{a'} Q(s, a') \\
\frac{\epsilon}{N_a - 1} & \text{otherwise}
\end{cases}
$$

- Repeat
On-line version of GLIE: SARSA

- Replace G_t with an estimate
- TD(1) or TD(λ)
 - Just as in the prediction problem

- TD(1) \rightarrow SARSA

\[
Q(S, A) \leftarrow Q(S, A) + \alpha (R + \gamma Q(S', A') - Q(S, A))
\]
SARSA

- Initialize $Q(s, a)$ for all s, a
- Start at initial state S_1
- Select an initial action A_1
- For $t = 1..$ Terminate
 - Get reward R_t
 - Let system transition to new state S_{t+1}
 - Draw A_{t+1} according to ϵ-greedy policy

$$
\pi(a|s) = \begin{cases}
1 - \epsilon & \text{for } a = \arg\max_{a'} Q(s, a') \\
\frac{\epsilon}{N_a - 1} & \text{otherwise}
\end{cases}
$$

- Update
$$
Q(S_t, A_t) = Q(S_t, A_t) + \alpha (R_t + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))
$$
SARSA(\(\lambda\))

- Again, the TD(1) estimate can be replaced by a TD(\(\lambda\)) estimate.
- Maintain an eligibility trace for every state-action pair:

 \[
 E_0(s, a) = 0 \\
 E_t(s, a) = \lambda \gamma E_{t-1}(s, a) + 1(S_t = s, A_t = a)
 \]

- Update every state-action pair visited so far:

 \[
 \delta_t = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \\
 Q(s, a) \leftarrow Q(s, a) + \alpha \delta_t E_t(s, a)
 \]
SARSA(λ)

- For all s, a initialize $Q(s, a)$
- For each episode e
 - For all s, a initialize $E(s, a) = 0$
 - Initialize S_1, A_1
 - For $t = 1$... Termination
 - Observe R_{t+1}, S_{t+1}
 - Choose action A_{t+1} using policy obtained from Q
 - $\delta = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)$
 - $E(S_t, A_t) += 1$
 - For all s, a
 - $Q(s, a) = Q(s, a) + \alpha \delta E(s, a)$
 - $E(s, a) = \gamma \lambda E(s, a)$
On-policy vs. Off-policy

• SARSA assumes you’re following the same policy that you’re learning
• It’s possible to follow one policy, while learning from others
 – E.g. learning by observation
• The policy for learning is the whatif policy
 \[S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \ldots, S_T \]
 \[\hat{A}_2 \]
 \[\hat{A}_3 \]
 hypothetical
• Modifies learning rule
 \[Q(S_t, A_t) = Q(S_t, A_t) + \alpha (R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)) \]
• to
 \[Q(S_t, A_t) = Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma Q(S_{t+1}, \hat{A}_{t+1}) - Q(S_t, A_t) \right) \]
• Q will actually represent the action value function of the hypothetical policy
SARSA: Suboptimality

- **SARSA:** From any state-action \((S, A)\), accept reward \((R)\), transition to next state \((S')\), choose next action \((A')\)

- Use TD rules to update:
 \[
 \delta = R + \gamma Q(S', A') - Q(S, A)
 \]

- **Problem:** which policy do we use to choose \(A'\)
SARSA: Suboptimality

• SARSA: From any state-action \((S, A)\), accept reward \((R)\), transition to next state \((S')\), choose next action \((A')\)

• Problem: which policy do we use to choose \(A'\)

• If we choose the current judgment of the best action at \(S'\) we will become too greedy
 – Never explore

• If we choose a sub-optimal policy to follow, we will never find the best policy
Solution: Off-policy learning

• The policy for learning is the whatif policy
 \[S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \ldots, S_T \]
 \[\hat{A}_2 \quad \hat{A}_3 \quad \text{hypothetical} \]

• Use the \textit{best} action for \(S_{t+1} \) as your hypothetical off-policy action

• But actually follow an \textit{epsilon-greedy} action
 – The hypothetical action is guaranteed to be better than the one you actually took
 – But you still explore (non-greedy)
Q-Learning

• From any state-action pair S, A
 – Accept reward R
 – Transition to S'
 – Find the best action A' for S'
 – Use it to update $Q(S, A)$
 – But then actually perform an epsilon-greedy action A'' from S'
Q-Learning (TD(1) version)

• For all s, a initialize $Q(s, a)$
• For each episode e
 – Initialize S_1, A_1
 – For $t = 1$... *Termination*
 • Observe R_{t+1}, S_{t+1}
 • Choose action A_{t+1} at S_{t+1} using epsilon-greedy policy obtained from Q
 • Choose action \hat{A}_{t+1} at S_{t+1} as $\hat{A}_{t+1} = \arg\max_a Q(S_{t+1}, a)$
 • $\delta = R_{t+1} + \gamma Q(S_{t+1}, \hat{A}_{t+1}) - Q(S_t, A_t)$
 • $Q(S_t, A_t) = Q(S_t, A_t) + \alpha \delta$
Q-Learning (TD(\(\lambda\)) version)

- For all \(s, a\) initialize \(Q(s, a)\)
- For each episode \(e\)
 - For all \(s, a\) initialize \(E(s, a) = 0\)
 - Initialize \(S_1, A_1\)
 - For \(t = 1 \ldots \text{Termination}\)
 - Observe \(R_{t+1}, S_{t+1}\)
 - Choose action \(A_{t+1}\) at \(S_{t+1}\) using epsilon-greedy policy obtained from \(Q\)
 - Choose action \(\hat{A}_{t+1}\) at \(S_{t+1}\) as \(\hat{A}_{t+1} = \underset{a}{\text{argmax}} Q(S_{t+1}, a)\)
 - \(\delta = R_{t+1} + \gamma Q(S_{t+1}, \hat{A}_{t+1}) - Q(S_t, A_t)\)
 - \(E(S_t, A_t) += 1\)
 - For all \(s, a\)
 - \(Q(s, a) = Q(s, a) + \alpha \delta E(s, a)\)
 - \(E(s, a) = \gamma \lambda E(s,a)\)
What about the actual policy?

- Optimal greedy policy:
 \[\pi(a|s) = \begin{cases}
 1 & \text{for } a = \arg \max_{a'} Q(s, a') \\
 0 & \text{otherwise}
\end{cases} \]

- Exploration policy
 \[\pi(a|s) = \begin{cases}
 1 - \epsilon & \text{for } a = \arg \max_{a'} Q(s, a') \\
 \frac{\epsilon}{N_a - 1} & \text{otherwise}
\end{cases} \]

- Ideally \(\epsilon \) should decrease with time
Q-Learning

• Currently most-popular RL algorithm
• Topics not covered:
 – Value function approximation
 – Continuous state spaces
 – Deep-Q learning
 – Action replay
 – Application to real problem..