Neural Networks: Optimization Part 1

Intro to Deep Learning, Spring 2020
Story so far

• Neural networks are universal approximators
 – Can model any odd thing
 – Provided they have the right architecture
• We must *train* them to approximate any function
 – Specify the architecture
 – Learn their weights and biases
• Networks are trained to minimize total “loss” on a training set
 – We do so through empirical risk minimization
• We use variants of gradient descent to do so
• The gradient of the error with respect to network parameters is computed through backpropagation
Recap: Gradient Descent Algorithm

- In order to minimize any function $f(x)$ w.r.t. x

- Initialize:
 - x^0
 - $k = 0$

- Do
 - $k = k + 1$
 - $x^{k+1} = x^k - \eta \nabla_x f^T$

- while $|f(x^k) - f(x^{k-1})| > \varepsilon$
Training Neural Nets by Gradient Descent

Total training error:

\[
Loss = \frac{1}{T} \sum_t Div(Y_t, d_t; W_1, W_2, \ldots, W_K)
\]

- Gradient descent algorithm:
- Initialize weights \(W_k\) for every layer \(k = 1 \ldots K\)
- Do:
 - For every layer \(k = 1 \ldots K\) compute:
 - \(\nabla_{W_k} Loss = \frac{1}{T} \sum_t \nabla_{W_k} Div(Y_t, d_t)\)
 - \(W_k = W_k - \eta \nabla_{W_k} Loss^T\)
- Until \(Loss\) has converged
Training Neural Nets by Gradient Descent

Total training error:

\[\text{Loss} = \frac{1}{T} \sum_t \text{Div}(Y_t, d_t; W_1, W_2, ..., W_K) \]

- Gradient descent algorithm:
- Initialize all weights \(W_1, W_2, ..., W_K \)
- Do:
 - For every layer \(k \), compute:
 - \(\nabla_{W_k} \text{Loss} = \frac{1}{T} \sum_t \nabla_{W_k} \text{Div}(Y_t, d_t) \)
 - \(W_k = W_k - \eta \nabla_{W_k} \text{Loss}^T \)
- Until \(\text{Loss} \) has converged
Vector formulation

- Arrange all inputs to the network in a vector \mathbf{x}
- Arrange the inputs to neurons of the kth layer as a vector \mathbf{z}_k
- Arrange the outputs of neurons in the kth layer as a vector \mathbf{y}_k
- Arrange the weights to any layer as a matrix \mathbf{W}_k
 - Similarly with biases

\[
\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_D \end{bmatrix}, \quad \mathbf{z}_k = \begin{bmatrix} z_1^{(k)} \\ z_2^{(k)} \\ \vdots \\ z_{D_k}^{(k)} \end{bmatrix}, \quad \mathbf{y}_k = \begin{bmatrix} y_1^{(k)} \\ y_2^{(k)} \\ \vdots \\ y_{D_k}^{(k)} \end{bmatrix}, \quad \mathbf{W}_k = \begin{bmatrix} w_{11}^{(k)} & w_{12}^{(k)} & \cdots & w_{1D_k}^{(k)} \\ w_{21}^{(k)} & w_{22}^{(k)} & \cdots & w_{2D_k}^{(k)} \\ \vdots & \vdots & \ddots & \vdots \\ w_{D_11}^{(k)} & w_{D_12}^{(k)} & \cdots & w_{D_1D_k}^{(k)} \end{bmatrix}, \quad \mathbf{b}_k = \begin{bmatrix} b_1^{(k)} \\ b_2^{(k)} \\ \vdots \\ b_{D_{k+1}}^{(k)} \end{bmatrix}
\]
The computation of a single layer is easily expressed in matrix notation as (setting $y_0 = x$):

$$z_k = W_k y_{k-1} + b_k$$

$$y_k = f_k(z_k)$$
Forward pass:

Initialize

For $k = 1$ to N:

$$z_k = W_k y_{k-1} + b_k$$

$$y_k = f_k(z_k)$$

Output

$$Y = y_N$$
The Forward Pass

• Set $y_0 = x$

• Recursion through layers
 — For layer $k = 1$ to N:

 $$z_k = W_k y_{k-1} + b_k$$
 $$y_k = f_k(z_k)$$

• Output:

 $Y = y_N$
Backward pass

Div(Y, d) → Div
\[\nabla_{yN} Div = \nabla_Y Div \]
Backward pass

\[\nabla_{z_N} \text{Div} = \nabla_Y \text{Div} \cdot J_{y_N}(z_N) \]
Backward pass

$\nabla_{y_{N-1}} \text{Div} = \nabla_Y \text{Div} \cdot J_{y_N}(z_N) \cdot W_N$
\[\nabla_{y_{N-1}} \text{Div} = \nabla_{y} \text{Div} \cdot J_{y_{N}}(z_{N}) \cdot W_{N} \]

\[\nabla_{w_{k}} \text{Div} = y_{k-1} \nabla_{z_{k}} \text{Div} \]
\[\nabla_{b_{k}} \text{Div} = \nabla_{z_{k}} \text{Div} \]
\[\nabla_{z_{N-1}} \text{Div} = \nabla_Y \text{Div} \cdot J_{y_N}(z_N) \cdot W_N \cdot J_{y_{N-1}}(z_{N-1}) \]
Backward pass:

Initialize: \(y_N = Y \) \(y_0 = x \) \(\nabla_{y_N} \text{Div} = \nabla_Y \text{Div} \)

For \(k = N \) downto 1:

\(\nabla_{z_k} \text{Div} = \nabla_{y_k} \text{Div} J_{y_k}(z_k) \)
\(\nabla_{y_{k-1}} \text{Div} = \nabla_{z_k} \text{Div} W_k \)
\(\nabla_{W_k} \text{Div} = y_{k-1} \nabla_{z_k} \text{Div} \)
\(\nabla_{b_k} \text{Div} = \nabla_{z_k} \text{Div} \)
The Backward Pass

• Set $y_N = Y$, $y_0 = x$

• Initialize: Compute $\nabla_{y_N} Div = \nabla_Y Div$

• For layer $k = N$ downto 1:
 – Compute $J_{y_k}(z_k)$
 • Will require intermediate values computed in the forward pass
 – Recursion:
 \[
 \nabla_{z_k} Div = \nabla_{y_k} Div J_{y_k}(z_k)
 \]
 \[
 \nabla_{y_{k-1}} Div = \nabla_{z_k} Div W_k
 \]
 – Gradient computation:
 \[
 \nabla_{W_k} Div = y_{k-1} \nabla_{z_k} Div
 \]
 \[
 \nabla_{b_k} Div = \nabla_{z_k} Div
 \]
Neural network training algorithm

• Initialize all weights and biases \((W_1, b_1, W_2, b_2, ..., W_N, b_N)\)

• Do:

 – \(Loss = 0\)
 – For all \(k\), initialize \(\nabla_{W_k} Loss = 0, \nabla_{b_k} Loss = 0\)
 – For all \(t = 1:T\)

 • Forward pass: Compute

 – Output \(Y(X_t)\)
 – Divergence \(Div(Y_t, d_t)\)
 – \(Loss + = Div(Y_t, d_t)\)

 • Backward pass: For all \(k\) compute:

 – \(\nabla_{y_k} Div = \nabla_{z_{k+1}} Div W_k\)
 – \(\nabla_{z_k} Div = \nabla_{y_k} Div J_{y_k}(z_k)\)
 – \(\nabla_{W_k} Div(Y_t, d_t); \nabla_{b_k} Div(Y_t, d_t)\)
 – \(\nabla_{W_k} Loss + = \nabla_{W_k} Div(Y_t, d_t); \nabla_{b_k} Loss + = \nabla_{b_k} Div(Y_t, d_t)\)

 – For all \(k\), update:

 \[W_k = W_k - \frac{\eta}{T} (\nabla_{W_k} Loss)^T; \]
 \[b_k = b_k - \frac{\eta}{T} (\nabla_{W_k} Err)^T\]

• Until \(Err\) has converged
Setting up for digit recognition

- Simple Problem: Recognizing “2” or “not 2”
- Single output with sigmoid activation
 - $Y \in (0, 1)$
 - d is either 0 or 1
- Use KL divergence
- Backpropagation to learn network parameters
Recognizing the digit

<table>
<thead>
<tr>
<th>Training data</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(5, 5)</td>
<td>(2, 2)</td>
<td></td>
</tr>
<tr>
<td>(2, 2)</td>
<td>(4, 3)</td>
<td></td>
</tr>
<tr>
<td>(0, 0)</td>
<td>(2, 2)</td>
<td></td>
</tr>
</tbody>
</table>

- More complex problem: Recognizing digit
- Network with 10 outputs
- Softmax output layer:
 - Ideal output: One of the outputs goes to 1, the others go to 0
- Backpropagation with KL divergence to learn network
Issues

• Convergence: How well does it learn
 – And how can we improve it
• How well will it generalize (outside training data)
• What does the output really mean?
• Etc..
Onward
Onward

• Does backprop always work?
• Convergence of gradient descent
 – Rates, restrictions,
 – Hessians
 – Acceleration and Nestorov
 – Alternate approaches
• Modifying the approach: Stochastic gradients
• Speedup extensions: RMSprop, Adagrad
Does backprop do the right thing?

• **Is backprop always right?**
 – Assuming it actually finds the global minimum of the divergence function?
Does backprop do the right thing?

• **Is backprop always right?**
 – Assuming it actually finds the global minimum of the divergence function?

• In classification problems, the classification error is a non-differentiable function of weights

• The divergence function minimized is only a *proxy* for classification error

• Minimizing divergence may not minimize classification error
Backprop fails to separate where perceptron succeeds

- Brady, Raghavan, Slawny, ’89
- Simple problem, 3 training instances, single neuron
- Perceptron training rule trivially find a perfect solution
• Back propagation using logistic function and L_2 divergence ($Div = (y - d)^2$)
• Unique minimum trivially proved to exist, backprop finds it
Unique solution exists

- Let \(u = f^{-1}(1 - \varepsilon) \)
 - E.g. \(u = f^{-1}(0.99) \) representing a 99% confidence in the class
- From the three points we get three independent equations:
 \[
 \begin{align*}
 w_x \cdot 1 + w_y \cdot 0 + b &= u \\
 w_x \cdot 0 + w_y \cdot 1 + b &= u \\
 w_x \cdot -1 + w_y \cdot 0 + b &= -u
 \end{align*}
 \]
- Unique solution \((w_x = u, w_x = u, b = 0)\) exists
 - represents a unique line regardless of the value of \(u \)
Backprop vs. Perceptron

- Now add a fourth point
- \(t \) is very large (point near \(-\infty\))
- Perceptron trivially finds a solution (may take \(t^2 \) iterations)
Backprop

Notation:
y = σ(z) = logistic activation

• Consider backprop:
• Contribution of fourth point to derivative of L_2 error:

$$div_4 = \left(1 - \varepsilon - \sigma(-w_y t + b)\right)^2$$

$$\frac{d div_4}{dw_y} = 2 \left(1 - \varepsilon - \sigma(-w_y t + b)\right) \sigma'(-w_y t + b)t$$

$$\frac{d div_4}{db} = -2 \left(1 - \varepsilon - \sigma(-w_y t + b)\right) \sigma'(-w_y t + b)$$

1-ε is the actual achievable value
Backprop

Notation:
\(y = \sigma(z) = \text{logistic activation} \)
\[
div_4 = \left(1 - \varepsilon - \sigma(-w_y t + b)\right)^2
\]
\[
\frac{d \ div_4}{dw_y} = 2 \left(1 - \varepsilon - \sigma(-w_y t + b)\right) \sigma'(-w_y t + b) t
\]
\[
\frac{d \ div_4}{db} = 2 \left(1 - \sigma(-w_y t + b)\right) \sigma'(-w_y t + b) t
\]

- For very large positive \(t, |w_y| > \varepsilon \) (where \(w = [w_x, w_y, b] \))
- \(\left(1 - \varepsilon - \sigma(-w_y t + b)\right) \to 1 \) as \(t \to \infty \)
- \(\sigma'(-w_y t + b) \to 0 \) exponentially as \(t \to \infty \)
- Therefore, for very large positive \(t \)

\[
\frac{d \ div_4}{dw_y} = \frac{d \ div_4}{db} = 0
\]
• The fourth point at \((0, -t)\) does not change the gradient of the \(L_2\) divergence near the optimal solution for 3 points
• The optimum solution for 3 points is also a broad *local* minimum (0 gradient) for the 4-point problem!
 – Will be trivially found by backprop nearly all the time
 • Although the global minimum with unbounded weights will separate the classes correctly
Backprop

- Local optimum solution found by backprop
- Does not separate the points even though the points are linearly separable!
• Solution found by backprop
• Does not separate the points even though the points are linearly separable!
• Compare to the perceptron: Backpropagation fails to separate where the perceptron succeeds
Backprop fails to separate where perceptron succeeds

• Brady, Raghavan, Slawny, ’89
• Several linearly separable training examples
• Simple setup: both backprop and perceptron algorithms find solutions
A more complex problem

• Adding a “spoiler” (or a small number of spoilers)
 – Perceptron finds the linear separator,
A more complex problem

- Adding a “spoiler” (or a small number of spoilers)
 - Perceptron finds the linear separator,
 - Backprop does not find a separator
 - A single additional input does not change the loss function significantly
 - Assuming weights are constrained to be bounded
A more complex problem

• Adding a “spoiler” (or a small number of spoilers)
 – Perceptron finds the linear separator,
 – For bounded w, backprop does not find a separator
 • A single additional input does not change the loss function significantly
A more complex problem

- Adding a “spoiler” (or a small number of spoilers)
 - Perceptron finds the linear separator,
 - For bounded w, backprop does not find a separator
 - A single additional input does not change the loss function significantly
A more complex problem

- Adding a “spoiler” (or a small number of spoilers)
 - Perceptron finds the linear separator,
 - For bounded w, Backprop does not find a separator
 - A single additional input does not change the loss function significantly
So what is happening here?

• The perceptron may change greatly upon adding just a single new training instance
 – But it fits the training data well
 – The perceptron rule has *low bias*
 • Makes no errors if possible
 – But high variance
 • Swings wildly in response to small changes to input

• Backprop is minimally changed by new training instances
 – Prefers consistency over perfection
 – It is a *low-variance* estimator, at the potential cost of bias
Backprop fails to separate even when possible

• This is not restricted to single perceptrons
• In an MLP the lower layers “learn a representation” that enables linear separation by higher layers
 – More on this later
• Adding a few “spoilers” will not change their behavior
Backprop fails to separate even when possible

• This is not restricted to single perceptrons

• In an MLP the lower layers “learn a representation” that enables linear separation by higher layers
 – More on this later

• Adding a few “spoilers” will not change their behavior
Backpropagation

- Backpropagation will often not find a separating solution even though the solution is within the class of functions learnable by the network.

- This is because the separating solution is not a feasible optimum for the loss function.

- One resulting benefit is that a backprop-trained neural network classifier has lower variance than an optimal classifier for the training data.
Variance and Depth

- Dark figures show desired decision boundary (2D)
 - 1000 training points, 660 hidden neurons
 - Network heavily overdesigned even for shallow nets

- **Anecdotal: Variance decreases with**
 - Depth
 - Data
The Loss Surface

• The example (and statements) earlier assumed the loss objective had a single global optimum that could be found
 – Statement about variance is assuming global optimum

• What about local optima
The Loss Surface

- **Popular hypothesis:**
 - In large networks, saddle points are far more common than local minima
 - Frequency of occurrence exponential in network size
 - Most local minima are equivalent
 - And close to global minimum
 - This is not true for small networks

- **Saddle point:** A point where
 - The slope is zero
 - The surface increases in some directions, but decreases in others
 - Some of the Eigenvalues of the Hessian are positive; others are negative
 - Gradient descent algorithms often get “stuck” in saddle points
The Controversial Loss Surface

- **Baldi and Hornik (89),** "Neural Networks and Principal Component Analysis: Learning from Examples Without Local Minima" : An MLP with a single hidden layer has only saddle points and no local Minima

- **Dauphin et. al (2015),** "Identifying and attacking the saddle point problem in high-dimensional non-convex optimization" : An exponential number of saddle points in large networks

- **Chomoranksa et. al (2015),** "The loss surface of multilayer networks" : For large networks, most local minima lie in a band and are equivalent
 - Based on analysis of spin glass models

- **Swirszc et. al. (2016),** "Local minima in training of deep networks", In networks of finite size, trained on finite data, you can have horrible local minima

- Watch this space...
Story so far

• Neural nets can be trained via gradient descent that minimizes a loss function

• Backpropagation can be used to derive the derivatives of the loss

• Backprop is not guaranteed to find a “true” solution, even if it exists, and lies within the capacity of the network to model
 – The optimum for the loss function may not be the “true” solution

• For large networks, the loss function may have a large number of unpleasant saddle points
 – Which backpropagation may find
Convergence

• In the discussion so far we have assumed the training arrives at a local minimum

• Does it always converge?
• How long does it take?

• Hard to analyze for an MLP, but we can look at the problem through the lens of convex optimization
A quick tour of (convex) optimization

The streetlight effect is a type of observational bias where people only look for whatever they are searching by looking where it is easiest.

“I’m searching for my keys.”
Convex Loss Functions

• A surface is “convex” if it is continuously curving upward
 – We can connect any two points above the surface without intersecting it
 – Many mathematical definitions that are equivalent

• Caveat: Neural network loss surface is generally not convex
 – Streetlight effect
Convergence of gradient descent

• An iterative algorithm is said to \textit{converge} to a solution if the value updates arrive at a fixed point
 – Where the gradient is 0 and further updates do not change the estimate

• The algorithm may not actually converge
 – It may jitter around the local minimum
 – It may even diverge

• Conditions for convergence?
Convergence and convergence rate

- Convergence rate: How fast the iterations arrive at the solution

- Generally quantified as

\[
R = \frac{|f(x^{(k+1)}) - f(x^*)|}{|f(x^{(k)}) - f(x^*)|}
\]

- \(x^{(k+1)}\) is the k-th iteration
- \(x^*\) is the optimal value of \(x\)

- If \(R\) is a constant (or upper bounded), the convergence is *linear*
 - In reality, its arriving at the solution exponentially fast

\[
|f(x^{(k)}) - f(x^*)| = c^k |f(x^{(0)}) - f(x^*)|
\]
Convergence for quadratic surfaces

Minimize $E = \frac{1}{2}aw^2 + bw + c$

$$w^{(k+1)} = w^{(k)} - \eta \frac{dE(w^{(k)})}{dw}$$

Gradient descent with fixed step size η to estimate scalar parameter w

- Gradient descent to find the optimum of a quadratic, starting from $w^{(k)}$
- Assuming fixed step size η
- What is the optimal step size η to get there fastest?
Convergence for quadratic surfaces

- Any quadratic objective can be written as
 \[E(w) = E(w^{(k)}) + E'(w^{(k)})(w - w^{(k)}) + \frac{1}{2} E''(w^{(k)})(w - w^{(k)})^2 \]

 - Taylor expansion

- Minimizing w.r.t \(w \), we get (Newton’s method)
 \[w_{min} = w^{(k)} - E''(w^{(k)})^{-1} E'(w^{(k)}) \]

- Note:
 \[\frac{dE(w^{(k)})}{dw} = E'(w^{(k)}) \]

- Comparing to the gradient descent rule, we see that we can arrive at the optimum in a single step using the optimum step size
 \[\eta_{opt} = E'''(w^{(k)})^{-1} = \alpha^{-1} \]
With non-optimal step size

$$w^{(k+1)} = w^{(k)} - \eta \frac{dE(w^{(k)})}{dw}$$

Gradient descent with fixed step size η to estimate scalar parameter w.

- For $\eta < \eta_{opt}$ the algorithm will converge monotonically.
- For $2\eta_{opt} > \eta > \eta_{opt}$ we have oscillating convergence.
- For $\eta > 2\eta_{opt}$ we get divergence.
For generic differentiable convex objectives

- Any differentiable convex objective $E(w)$ can be approximated as

$$E \approx E(w^{(k)}) + (w - w^{(k)}) \frac{dE(w^{(k)})}{dw} + \frac{1}{2} (w - w^{(k)})^2 \frac{d^2E(w^{(k)})}{dw^2} + \ldots$$

 – Taylor expansion

- Using the same logic as before, we get (Newton’s method)

$$\eta_{\text{opt}} = \left(\frac{d^2E(w^{(k)})}{dw^2}\right)^{-1}$$

- We can get divergence if $\eta \geq 2\eta_{\text{opt}}$
For functions of multivariate inputs

\[E = g(w), \ w \text{ is a vector } w = [w_1, w_2, ..., w_N] \]

- Consider a simple quadratic convex (paraboloid) function
 \[E = \frac{1}{2} w^T A w + w^T b + c \]
 - Since \(E^T = E \) (\(E \) is scalar), \(A \) can always be made symmetric
 - For \textbf{convex} \(E \), \(A \) is always positive definite, and has positive eigenvalues

- When \(A \) is diagonal:
 \[E = \frac{1}{2} \sum_i (a_{ii} w_i^2 + b_i w_i) + c \]
 - The \(w_i \)s are \textit{uncoupled}
 - For \textbf{convex} (paraboloid) \(E \), the \(a_{ii} \) values are all positive
 - Just an sum of \(N \) independent quadratic functions
Multivariate Quadratic with Diagonal A

$$E = \frac{1}{2} \mathbf{w}^T \mathbf{A} \mathbf{w} + \mathbf{w}^T \mathbf{b} + c = \frac{1}{2} \sum_i (a_{ii}w_i^2 + b_iw_i) + c$$

- Equal-value contours will be parallel to the axis
Multivariate Quadratic with Diagonal A

$$E = \frac{1}{2} w^T A w + w^T b + c = \frac{1}{2} \sum_i (a_{ii} w_i^2 + b_i w_i) + c$$

- Equal-value contours will be parallel to the axis
 - All “slices” parallel to an axis are shifted versions of one another

$$E = \frac{1}{2} a_{ii} w_i^2 + b_i w_i + c + C(\neg w_i)$$
Multivariate Quadratic with Diagonal A

\[E = \frac{1}{2} w^T A w + w^T b + c = \frac{1}{2} \sum_i \left(a_{ii} w_i^2 + b_i w_i \right) + c \]

• Equal-value contours will be parallel to the axis
 – All “slices” parallel to an axis are shifted versions of one another

\[E = \frac{1}{2} a_{ii} w_i^2 + b_i w_i + c + C(-w_i) \]
“Descents” are uncoupled

- The optimum of each coordinate is not affected by the other coordinates
 - i.e. we could optimize each coordinate independently
- Note: Optimal learning rate is different for the different coordinates

\[E = \frac{1}{2} a_{11} w_1^2 + b_1 w_1 + c + C(-w_1) \]
\[\eta_{1, opt} = a_{11}^{-1} \]

\[E = \frac{1}{2} a_{22} w_2^2 + b_2 w_2 + c + C(-w_2) \]
\[\eta_{2, opt} = a_{22}^{-1} \]
Conventional vector update rules for gradient descent: update entire vector against direction of gradient

- Note: Gradient is perpendicular to equal value contour
- The same learning rate is applied to all components
Problem with vector update rule

\[w^{(k+1)} \leftarrow w^{(k)} - \eta \nabla_w E^T \]

\[w_i^{(k+1)} = w_i^{(k)} - \eta \frac{dE(w_i^{(k)})}{dw} \]

\[\eta_{i, \text{opt}} = \left(\frac{d^2 E(w_i^{(k)})}{dw_i^2} \right)^{-1} = a_{ii}^{-1} \]

- The learning rate must be lower than twice the smallest optimal learning rate for any component
 \[\eta < 2 \min_i \eta_{i, \text{opt}} \]
 - Otherwise the learning will diverge
- This, however, makes the learning very slow
 - And will oscillate in all directions where \(\eta_{i, \text{opt}} \leq \eta < 2\eta_{i, \text{opt}} \)
Dependence on learning rate

- $\eta_{1,\text{opt}} = 1; \eta_{2,\text{opt}} = 0.33$
- $\eta = 2.1\eta_{2,\text{opt}}$
- $\eta = 2\eta_{2,\text{opt}}$
- $\eta = 1.5\eta_{2,\text{opt}}$
- $\eta = \eta_{2,\text{opt}}$
- $\eta = 0.75\eta_{2,\text{opt}}$
Dependence on learning rate

- $\eta_{1,opt} = 1; \eta_{2,opt} = 0.91; \quad \eta = 1.9 \eta_{2,opt}$
Convergence

• Convergence behaviors become increasingly unpredictable as dimensions increase

• For the fastest convergence, ideally, the learning rate η must be close to both, the largest $\eta_{i,\text{opt}}$ and the smallest $\eta_{i,\text{opt}}$
 – To ensure convergence in every direction
 – Generally infeasible

• Convergence is particularly slow if $\frac{\max_i \eta_{i,\text{opt}}}{\min_i \eta_{i,\text{opt}}}$ is large
 – The “condition” number is small
Comments on the quadratic

• Why are we talking about quadratics?
 – Quadratic functions form some kind of benchmark
 – Convergence of gradient descent is linear
 • Meaning it converges to solution exponentially fast

• The convergence for other kinds of functions can be viewed against this benchmark

• Actual losses will not be quadratic, but may locally have other structure
 – Local between current location and nearest local minimum

• Some examples in the following slides..
 – Strong convexity
 – Lifschitz continuity
 – Lifschitz smoothness
 – ..and how they affect convergence of gradient descent
Quadratic convexity

- A quadratic function has the form $\frac{1}{2} w^T A w + w^T b + c$
 - Every “slice” is a quadratic bowl
- In some sense, the “standard” for gradient-descent based optimization
 - Others convex functions will be steeper in some regions, but flatter in others
- Gradient descent solution will have linear convergence
 - Take $O(\log 1/\varepsilon)$ steps to get within ε of the optimal solution
Strong convexity

- A strongly convex function is *at least* quadratic in its convexity
 - Has a lower bound to its second derivative
- The function sits within a quadratic bowl
 - At any location, you can draw a quadratic bowl of fixed convexity (quadratic constant equal to lower bound of 2nd derivative) touching the function at that point, which contains it
- Convergence of gradient descent algorithms at least as good as that of the enclosing quadratic
Strong convexity

- A strongly convex function is *at least* quadratic in its convexity
 - Has a lower bound to its second derivative
- The function sits within a quadratic bowl
 - At any location, you can draw a quadratic bowl of fixed convexity (quadratic constant equal to lower bound of 2nd derivative) touching the function at that point, which contains it
- Convergence of gradient descent algorithms at least as good as that of the enclosing quadratic
Types of continuity

- Most functions are not strongly convex (if they are convex)
- Instead we will talk in terms of Lifschitz smoothness
- But first: a definition
- **Lifschitz continuous**: The function always lies outside a cone
 - The slope of the outer surface is the Lifschitz constant
 - $|f(x) - f(y)| \leq L|x - y|$
Lifschitz smoothness

- Lifschitz smooth: The function’s derivative is Lifschitz continuous
 - Need not be convex (or even differentiable)
 - Has an upper bound on second derivative (if it exists)
- Can always place a quadratic bowl of a fixed curvature within the function
 - Minimum curvature of quadratic must be \geq upper bound of second derivative of function (if it exists)
Lifschitz smoothness

• Lifschitz smooth: The function’s derivative is Lifschitz continuous
 – Need not be convex (or even differentiable)
 – Has an upper bound on second derivative (if it exists)
• Can always place a quadratic bowl of a fixed curvature within the function
 – Minimum curvature of quadratic must be \geq upper bound of second derivative of function (if it exists)
Types of smoothness

• A function can be both strongly convex and Lipschitz smooth
 – Second derivative has upper and lower bounds
 – Convergence depends on curvature of strong convexity (at least linear)

• A function can be convex and Lipschitz smooth, but not strongly convex
 – Convex, but upper bound on second derivative
 – Weaker convergence guarantees, if any (at best linear)
 – This is often a reasonable assumption for the local structure of your loss function
Types of smoothness

• A function can be both strongly convex and Lipschitz smooth
 – Second derivative has upper and lower bounds
 – Convergence depends on curvature of strong convexity (at least linear)

• A function can be convex and Lipschitz smooth, but not strongly convex
 – Convex, but upper bound on second derivative
 – Weaker convergence guarantees, if any (at best linear)
 – This is often a reasonable assumption for the local structure of your loss function
Convergence Problems

• For quadratic (strongly) convex functions, gradient descent is exponentially fast
 – Linear convergence
 • Assuming learning rate is non-divergent

• For generic (Lifschitz Smooth) convex functions however, it is very slow
 \[|f(w^{(k)}) - f(w^*)| \propto \frac{1}{k} |f(w^{(0)}) - f(w^*)| \]
 – And inversely proportional to learning rate
 \[|f(w^{(k)}) - f(w^*)| \leq \frac{1}{2\eta k} |w^{(0)} - w^*| \]
 – Takes \(O(1/\epsilon)\) iterations to get to within \(\epsilon\) of the solution
 – An inappropriate learning rate will destroy your happiness

• Second order methods will \(locally\) convert the loss function to quadratic
 – Convergence behavior will still depend on the nature of the original function

• Continuing with the quadratic-based explanation...
Convergence

• Convergence behaviors become increasingly unpredictable as dimensions increase

• For the fastest convergence, ideally, the learning rate η must be close to both, the largest $\eta_{i,\text{opt}}$ and the smallest $\eta_{i,\text{opt}}$
 – To ensure convergence in every direction
 – Generally infeasible

• Convergence is particularly slow if $\frac{\max_i \eta_{i,\text{opt}}}{\min_i \eta_{i,\text{opt}}}$ is large
 – The “condition” number is small
One reason for the problem

- The objective function has different eccentricities in different directions
 - Resulting in different optimal learning rates for different directions
 - The problem is more difficult when the ellipsoid is not axis aligned: the steps along the two directions are coupled! Moving in one direction changes the gradient along the other

- Solution: *Normalize* the objective to have identical eccentricity in all directions
 - Then all of them will have identical optimal learning rates
 - Easier to find a working learning rate
Solution: Scale the axes

• Scale (and rotate) the axes, such that all of them have identical (identity) “spread”
 – Equal-value contours are circular
 – Movement along the coordinate axes become independent

• **Note:** equation of a quadratic surface with circular equal-value contours can be written as

\[E = \frac{1}{2} \hat{\mathbf{w}}^T \hat{\mathbf{w}} + \mathbf{b}^T \hat{\mathbf{w}} + c \]
Scaling the axes

• Original equation:

\[E = \frac{1}{2} \mathbf{w}^T \mathbf{A} \mathbf{w} + \mathbf{b}^T \mathbf{w} + c \]

• We want to find a (diagonal) scaling matrix \(S \) such that

\[S = \begin{bmatrix} s_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & s_N \end{bmatrix}, \quad \hat{\mathbf{w}} = S \mathbf{w} \]

• And

\[E = \frac{1}{2} \hat{\mathbf{w}}^T \hat{\mathbf{w}} + \hat{\mathbf{b}}^T \hat{\mathbf{w}} + c \]
Scaling the axes

• Original equation:

\[E = \frac{1}{2} \mathbf{w}^T \mathbf{A} \mathbf{w} + \mathbf{b}^T \mathbf{w} + c \]

• We want to find a (diagonal) scaling matrix \(\mathbf{S} \) such that

\[\mathbf{S} = \begin{bmatrix} s_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & s_N \end{bmatrix}, \quad \hat{\mathbf{w}} = \mathbf{S} \mathbf{w} \]

• And

\[E = \frac{1}{2} \hat{\mathbf{w}}^T \hat{\mathbf{w}} + \hat{\mathbf{b}}^T \hat{\mathbf{w}} + c \]

By inspection:

\[\mathbf{S} = \mathbf{A}^{0.5} \]
Scaling the axes

• We have

\[E = \frac{1}{2} w^T A w + b^T w + c \]
\[\hat{w} = Sw \]

\[E = \frac{1}{2} \hat{w}^T \hat{w} + \hat{b}^T \hat{w} + c \]

\[= \frac{1}{2} w^T S^T S w + \hat{b}^T S w + c \]

• Equating linear and quadratic coefficients, we get

\[S^T S = A, \quad \hat{b}^T S = b^T \]

• Solving:

\[S = A^{0.5}, \quad \hat{b} = A^{-0.5} b \]
Scaling the axes

• We have

\[E = \frac{1}{2} w^T A w + b^T w + c \]

\[\hat{w} = S w \]

\[E = \frac{1}{2} \hat{w}^T \hat{w} + \hat{b}^T \hat{w} + c \]

• Solving for \(S \) we get

\[\hat{w} = A^{0.5} w, \quad \hat{b} = A^{-0.5} b \]
Scaling the axes

• We have

\[E = \frac{1}{2} \mathbf{w}^T A \mathbf{w} + \mathbf{b}^T \mathbf{w} + c \]

\[\hat{\mathbf{w}} = S \mathbf{w} \]

\[E = \frac{1}{2} \hat{\mathbf{w}}^T \hat{\mathbf{w}} + \hat{\mathbf{b}}^T \hat{\mathbf{w}} + c \]

• Solving for \(S \) we get

\[\hat{\mathbf{w}} = A^{0.5} \mathbf{w}, \quad \hat{\mathbf{b}} = A^{-0.5} \mathbf{b} \]
The Inverse Square Root of A

• For any positive definite A, we can write

 $A = E\Lambda E^T$

 – Eigen decomposition
 – E is an orthogonal matrix
 – Λ is a diagonal matrix of non-zero diagonal entries

• Defining $A^{0.5} = E\Lambda^{0.5}E^T$
 – Check $(A^{0.5})^T A^{0.5} = E\Lambda E^T = A$

• Defining $A^{-0.5} = E\Lambda^{-0.5}E^T$
 – Check: $(A^{-0.5})^T A^{-0.5} = E\Lambda^{-1}E^T = A^{-1}$
Returning to our problem

\[E = \frac{1}{2} \mathbf{\hat{w}}^T \mathbf{\hat{w}} + \mathbf{\hat{b}}^T \mathbf{\hat{w}} + c \]

- Computing the gradient, and noting that \(\mathbf{A}^{0.5} \) is symmetric, we can relate \(\nabla_{\mathbf{\hat{w}}} E \) and \(\nabla_{\mathbf{w}} E \):

\[
\nabla_{\mathbf{\hat{w}}} E = \mathbf{\hat{w}}^T + \mathbf{\hat{b}}^T \\
= \mathbf{w}^T \mathbf{A}^{0.5} + \mathbf{b}^T \mathbf{A}^{-0.5} \\
= (\mathbf{w}^T \mathbf{A} + \mathbf{b}^T) \mathbf{A}^{-0.5} \\
= \nabla_{\mathbf{w}} E \cdot \mathbf{A}^{-0.5}
\]
Returning to our problem

\[E = \frac{1}{2} \hat{\mathbf{w}}^T \hat{\mathbf{w}} + \hat{\mathbf{b}}^T \hat{\mathbf{w}} + c \]

• Gradient descent rule:

\[\hat{\mathbf{w}}^{(k+1)} = \hat{\mathbf{w}}^{(k)} - \eta \nabla_{\hat{\mathbf{w}}} E(\hat{\mathbf{w}}^{(k)})^T \]

– Learning rate is now independent of direction

• Using \(\hat{\mathbf{w}} = A^{0.5} \mathbf{w} \), and \(\nabla_{\hat{\mathbf{w}}} E(\hat{\mathbf{w}})^T = A^{-0.5} \nabla_{\mathbf{w}} E(\mathbf{w})^T \)

\[
\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta A^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T
\]
Modified update rule

- $\hat{w} = A^{0.5}w$

- $E = \frac{1}{2}w^T A w + b^T w + c$

- $\hat{w}^{(k+1)} = \hat{w}^{(k)} - \eta \nabla_{\hat{w}} E(\hat{w}^{(k)})^T$

- Leads to the modified gradient descent rule

- $w^{(k+1)} = w^{(k)} - \eta A^{-1} \nabla_w E(w^{(k)})^T$
For non-axis-aligned quadratics..

\[E = \frac{1}{2} \mathbf{w}^T \mathbf{A} \mathbf{w} + \mathbf{w}^T \mathbf{b} + c \]

\[E = \frac{1}{2} \sum_i a_{ii} w_i^2 + \sum_{i \neq j} a_{ij} w_i w_j + \sum_i b_i w_i + c \]

- If \(\mathbf{A} \) is not diagonal, the contours are not axis-aligned
 - Because of the cross-terms \(a_{ij} w_i w_j \)
 - The major axes of the ellipsoids are the Eigenvectors of \(\mathbf{A} \), and their diameters are proportional to the Eigen values of \(\mathbf{A} \)

- But this does not affect the discussion
 - This is merely a rotation of the space from the axis-aligned case
 - The component-wise optimal learning rates along the major and minor axes of the equal-contour ellipsoids will be different, causing problems
 - The optimal rates along the axes are Inversely proportional to the eigenvalues of \(\mathbf{A} \)
For non-axis-aligned quadratics..

- The component-wise optimal learning rates along the major and minor axes of the contour ellipsoids will differ, causing problems
 - Inversely proportional to the eigenvalues of \mathbf{A}

- This can be fixed as before by rotating and resizing the different directions to obtain the same normalized update rule as before:
 \[
 \mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta \mathbf{A}^{-1} \mathbf{b}
 \]
Generic differentiable *multivariate* convex functions

- Taylor expansion

\[E(w) \approx E(w^{(k)}) + \nabla_w E(w^{(k)})(w - w^{(k)}) + \frac{1}{2} (w - w^{(k)})^T H_E(w^{(k)})(w - w^{(k)}) + \ldots \]
Generic differentiable multivariate convex functions

- Taylor expansion

\[E(w) \approx E(w^{(k)}) + \nabla_w E(w^{(k)})(w - w^{(k)}) + \frac{1}{2} (w - w^{(k)})^T H_E(w^{(k)})(w - w^{(k)}) + \cdots \]

- Note that this has the form \(\frac{1}{2} w^T A w + w^T b + c \)

- Using the same logic as before, we get the normalized update rule

\[w^{(k+1)} = w^{(k)} - \eta H_E(w^{(k)})^{-1} \nabla_w E(w^{(k)})^T \]

- For a quadratic function, the optimal \(\eta \) is 1 (which is exactly Newton’s method)

 - And should not be greater than 2!
Minimization by Newton’s method ($\eta = 1$)

• Iterated localized optimization with quadratic approximations

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$

$- \eta = 1$
Minimization by Newton’s method $(\eta = 1)$

- Iterated localized optimization with quadratic approximations

\[
\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_w E(\mathbf{w}^{(k)})^T
- \eta = 1
\]
Minimization by Newton’s method ($\eta = 1$)

- Iterated localized optimization with quadratic approximations

\[w^{(k+1)} = w^{(k)} - \eta H_E(w^{(k)})^{-1} \nabla_w E(w^{(k)})^T \]

- $\eta = 1$
Minimization by Newton’s method \((\eta = 1)\)

- Iterated localized optimization with quadratic approximations

\[
\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_w E(\mathbf{w}^{(k)})^T
\]

\(- \eta = 1\)
Minimization by Newton’s method

- Iterated localized optimization with quadratic approximations

\[
\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T
\]

- \(\eta = 1 \)
Minimization by Newton’s method

- Iterated localized optimization with quadratic approximations

\[\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_w E(\mathbf{w}^{(k)})^T \]

\(- \eta = 1\)
Minimization by Newton’s method

- Iterated localized optimization with quadratic approximations

\[\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_w E(\mathbf{w}^{(k)})^T \]

\[- \eta = 1 \]
Minimization by Newton’s method

- Iterated localized optimization with quadratic approximations

\[
\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_w E(\mathbf{w}^{(k)})^T
\]

- \(\eta = 1 \)
Minimization by Newton’s method

- Iterated localized optimization with quadratic approximations

\[\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_{E}(\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T \]

- \(\eta = 1 \)
Minimization by Newton’s method

- Iterated localized optimization with quadratic approximations

\[\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T \]

- \(\eta = 1 \)
Minimization by Newton’s method

- Iterated localized optimization with quadratic approximations

\[\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_w E(\mathbf{w}^{(k)})^T \]

- \(\eta = 1 \)
Issues: 1. The Hessian

- Normalized update rule
 \[\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T \]

- For complex models such as neural networks, with a very large number of parameters, the Hessian \(H_E(\mathbf{w}^{(k)}) \) is extremely difficult to compute
 - For a network with only 100,000 parameters, the Hessian will have \(10^{10} \) cross-derivative terms
 - And its even harder to invert, since it will be enormous
Issues: 1. The Hessian

- For non-convex functions, the Hessian may not be positive semi-definite, in which case the algorithm can **diverge**
 - Goes away from, rather than towards the minimum
Issues: 1. The Hessian

• For non-convex functions, the Hessian may not be positive semi-definite, in which case the algorithm can diverge
 – Goes away from, rather than towards the minimum
 – Now requires additional checks to avoid movement in directions corresponding to –ve Eigenvalues of the Hessian
• A great many approaches have been proposed in the literature to approximate the Hessian in a number of ways and improve its positive definiteness
 – Boyden-Fletcher-Goldfarb-Shanno (BFGS)
 • And “low-memory” BFGS (L-BFGS)
 • Estimate Hessian from finite differences
 – Levenberg-Marquardt
 • Estimate Hessian from Jacobians
 • Diagonal load it to ensure positive definiteness
 – Other “Quasi-newton” methods
• Hessian estimates may even be local to a set of variables
• Not particularly popular anymore for large neural networks..
Issues: 2. The learning rate

- Much of the analysis we just saw was based on trying to ensure that the step size was not so large as to cause divergence within a convex region
 \[\eta < 2\eta_{opt} \]
Issues: 2. The learning rate

- For complex models such as neural networks the loss function is often not convex
 - Having $\eta > 2\eta_{opt}$ can actually help escape local optima
- However always having $\eta > 2\eta_{opt}$ will ensure that you never ever actually find a solution
Decaying learning rate

• Start with a large learning rate
 – Greater than 2 (assuming Hessian normalization)
 – Gradually reduce it with iterations

Note: this is actually a reduced step size
Decaying learning rate

• Typical decay schedules

 – Linear decay: \(\eta_k = \frac{\eta_0}{k+1} \)

 – Quadratic decay: \(\eta_k = \frac{\eta_0}{(k+1)^2} \)

 – Exponential decay: \(\eta_k = \eta_0 e^{-\beta k} \), where \(\beta > 0 \)

• A common approach (for nnets):
 1. Train with a fixed learning rate \(\eta \) until loss (or performance on a held-out data set) stagnates
 2. \(\eta \leftarrow \alpha \eta \), where \(\alpha < 1 \) (typically 0.1)
 3. Return to step 1 and continue training from where we left off
• Gradient descent can miss obvious answers
 – And this may be a *good* thing

• Convergence issues abound
 – The loss surface has many saddle points
 • Although, perhaps, not so many bad local minima
 • Gradient descent can stagnate on saddle points
 – Vanilla gradient descent may not converge, or may converge tooooooo slowly
 • The optimal learning rate for one component may be too high or too low for others
Second-order methods “normalize” the variation along the components to mitigate the problem of different optimal learning rates for different components

- But this requires computation of inverses of second-order derivative matrices
- Computationally infeasible
- Not stable in non-convex regions of the loss surface
- Approximate methods address these issues, but simpler solutions may be better
Story so far: Learning rate

• Divergence-causing learning rates may not be a bad thing
 – Particularly for ugly loss functions
• Decaying learning rates provide good compromise between escaping poor local minima and convergence

• Many of the convergence issues arise because we force the same learning rate on all parameters
Let's take a step back

- Problems arise because of requiring a fixed step size across all dimensions
 — Because step size are "tied" to the gradient
- Let's try releasing this requirement

\[
\mathbf{w}^{(k+1)} \leftarrow \mathbf{w}^{(k)} - \eta (\nabla_w E)^T
\]

\[
 w_{i}^{(k+1)} = w_{i}^{(k)} - \eta \frac{dE}{dw} (w_{i}^{(k)})
\]
Derivative-inspired algorithms

• Algorithms that use derivative information for trends, but do not follow them absolutely

• Rprop
• Quick prop
RProp

- *Resilient* propagation
- Simple algorithm, to be followed *independently* for each component
 - I.e. steps in different directions are not coupled

- At each time
 - If the derivative at the current location recommends continuing in the same direction as before (i.e. has not changed sign from earlier):
 - *increase* the step, and continue in the same direction
 - If the derivative has changed sign (i.e. we’ve overshot a minimum)
 - *reduce* the step and reverse direction
• Select an initial value \hat{w} and compute the derivative

 – Take an initial step Δw against the derivative

 • In the direction that reduces the function

 $\Delta w = \text{sign} \left(\frac{dE(\hat{w})}{dw} \right) \Delta w$

 $\hat{w} = \hat{w} - \Delta w$
• Compute the derivative in the new location
 – If the derivative has not changed sign from the previous location, increase the step size and take a longer step

\[\alpha > 1 \]

• \[\Delta w = \alpha \Delta w \]

• \[\hat{w} = \hat{w} - \Delta w \]
• Compute the derivative in the new location
 – If the derivative has not changed sign from the previous location, increase the step size and take a step

\[\alpha > 1 \]

• \(\Delta \hat{w} = \alpha \Delta w \)
• \(\hat{w} = \hat{w} - \Delta w \)
• Compute the derivative in the new location
 – If the derivative has changed sign

Orange arrow shows direction of derivative, i.e. direction of increasing $E(w)$
Rprop

- Compute the derivative in the new location
 - If the derivative has changed sign
 - Return to the previous location

• \(\hat{w} = \hat{w} + \Delta w \)
Rprop

- Compute the derivative in the new location
 - If the derivative has changed sign
 - Return to the previous location
 - \(\hat{w} = \hat{w} + \Delta w \)
 - Shrink the step
 - \(\Delta w = \beta \Delta w \)

Orange arrow shows direction of derivative, i.e. direction of increasing \(E(w) \)
Rprop

• Compute the derivative in the new location
 – If the derivative has changed sign
 – Return to the previous location
 • \(\hat{w} = \hat{w} + \Delta w \)
 – Shrink the step
 • \(\Delta w = \beta \Delta w \)
 – Take the smaller step forward
 • \(\hat{w} = \hat{w} - \Delta w \)

Orange arrow shows direction of derivative, i.e. direction of increasing \(E(w) \)
Rprop (simplified)

• Set $\alpha = 1.2$, $\beta = 0.5$

• For each layer l, for each i, j:
 – Initialize $w_{l,i,j}$, $\Delta w_{l,i,j} > 0$,
 – $\text{prevD}(l, i, j) = \frac{d\text{Err}(w_{l,i,j})}{dw_{l,i,j}}$
 – $\Delta w_{l,i,j} = \text{sign}(\text{prevD}(l, i, j))\Delta w_{l,i,j}$
 – While not converged:
 • $w_{l,i,j} = w_{l,i,j} - \Delta w_{l,i,j}$
 • $D(l, i, j) = \frac{d\text{Err}(w_{l,i,j})}{dw_{l,i,j}}$
 • If $\text{sign}(\text{prevD}(l, i, j)) == \text{sign}(D(l, i, j))$:
 – $\Delta w_{l,i,j} = \min(\alpha \Delta w_{l,i,j}, \Delta_{\text{max}})$
 – $\text{prevD}(l, i, j) = D(l, i, j)$
 • else:
 – $w_{l,i,j} = w_{l,i,j} + \Delta w_{l,i,j}$
 – $\Delta w_{l,i,j} = \max(\beta \Delta w_{l,i,j}, \Delta_{\text{min}})$
Rprop (simplified)

- Set $\alpha = 1.2$, $\beta = 0.5$
- For each layer l, for each i, j:
 - Initialize $w_{l,i,j}, \Delta w_{l,i,j} > 0$,
 - $prevD(l, i, j) = \frac{d\text{Err}(w_{l,i,j})}{dw_{l,i,j}}$
 - $\Delta w_{l,i,j} = \text{sign}(prevD(l, i, j))\Delta w_{l,i,j}$
 - While not converged:
 - $w_{l,i,j} = w_{l,i,j} - \Delta w_{l,i,j}$
 - $D(l, i, j) = \frac{d\text{Err}(w_{l,i,j})}{dw_{l,i,j}}$
 - If $\text{sign}(prevD(l, i, j)) = \text{sign}(D(l, i, j))$:
 - $\Delta w_{l,i,j} = \alpha \Delta w_{l,i,j}$
 - $prevD(l, i, j) = D(l, i, j)$
 - else:
 - $w_{l,i,j} = w_{l,i,j} + \Delta w_{l,i,j}$
 - $\Delta w_{l,i,j} = \beta \Delta w_{l,i,j}$

Obtained via backprop

Note: Different parameters updated independently
RProp

• A remarkably simple first-order algorithm, that is frequently much more efficient than gradient descent.
 – And can even be competitive against some of the more advanced second-order methods

• Only makes minimal assumptions about the loss function
 – No convexity assumption
QuickProp

- Quickprop employs the Newton updates with two modifications

\[\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E \left(\mathbf{w}^{(k)} \right)^{-1} \nabla_w E \left(\mathbf{w}^{(k)} \right)^T \]

- But with two modifications
QuickProp: Modification 1

• It treats each dimension independently
• For $i = 1: N$

$$w_i^{k+1} = w_i^k - E''(w_i^k | w_j^k, j \neq i)^{-1} E'(w_i^k | w_j^k, j \neq i)$$

• This eliminates the need to compute and invert expensive Hessians
QuickProp: Modification 2

- It approximates the second derivative through finite differences
- For $i = 1: N$
 \[w_i^{k+1} = w_i^k - D(w_i^k, w_i^{k-1})^{-1} E'(w_i^k | w_j^k, j \neq i) \]
- This eliminates the need to compute expensive double derivatives
QuickProp

\[w^{(k+1)} = w^{(k)} - \left(\frac{E'(w^{(k)}) - E'(w^{(k-1)})}{\Delta w^{(k-1)}} \right)^{-1} E'(w^{(k)}) \]

Finite-difference approximation to double derivative obtained assuming a quadratic \(E() \)

- Updates are independent for every parameter
- For every layer \(l \), for every connection from node \(i \) in the \((l-1)\)th layer to node \(j \) in the \(l\)th layer:

\[\Delta w_{l,ij}^{(k)} = \frac{\Delta w_{l,ij}^{(k-1)}}{\text{Err}'(w_{l,ij}^{(k)}) - \text{Err}'(w_{l,ij}^{(k-1)})} \text{Err}'(w_{l,ij}^{(k)}) \]

\[w_{l,ij}^{(k+1)} = w_{l,ij}^{(k)} - \Delta w_{l,ij}^{(k)} \]
QuickProp

\[w^{(k+1)} = w^{(k)} - \left(\frac{E'(w^{(k)}) - E'(w^{(k-1)})}{\Delta w^{(k-1)}} \right)^{-1} E'(w^{(k)}) \]

Finite-difference approximation to double derivative obtained assuming a quadratic \(E() \)

- Updates are independent for every parameter
- For every layer \(l \), for every connection from node \(i \) in the \((l-1)\)th layer to node \(j \) in the \(l\)th layer:

\[\Delta w^{(k)}_{l,ij} = \frac{\Delta w^{(k-1)}_{l,ij}}{Err' \left(w^{(k)}_{l,ij} \right) - Err' \left(w^{(k-1)}_{l,ij} \right)} \]

\[w_{l,ij}^{(k+1)} = w_{l,ij}^{(k)} - \Delta w_{l,ij}^{(k)} \]

Computed using backprop
Quickprop

• Employs Newton updates with empirically derived derivatives

• Prone to some instability for non-convex objective functions

• But is still one of the fastest training algorithms for many problems
Story so far : Convergence

• Gradient descent can miss obvious answers
 – And this may be a *good* thing

• Vanilla gradient descent may be too slow or unstable due to the differences between the dimensions

• Second order methods can normalize the variation across dimensions, but are complex

• Adaptive or decaying learning rates can improve convergence

• Methods that decouple the dimensions can improve convergence
A closer look at the convergence problem

• With dimension-independent learning rates, the solution will converge smoothly in some directions, but oscillate or diverge in others
A closer look at the convergence problem

• With dimension-independent learning rates, the solution will converge smoothly in some directions, but oscillate or diverge in others

• **Proposal:**
 – Keep track of oscillations
 – Emphasize steps in directions that converge smoothly
 – Shrink steps in directions that bounce around..
The momentum methods

• Maintain a running average of all past steps
 – In directions in which the convergence is smooth, the average will have a large value
 – In directions in which the estimate swings, the positive and negative swings will cancel out in the average

• Update with the running average, rather than the current gradient
Momentum Update

- The momentum method maintains a running average of all gradients until the current step
 \[
 \Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_w \text{Loss}(W^{(k-1)})^T
 \]
 \[
 W^{(k)} = W^{(k-1)} + \Delta W^{(k)}
 \]
 - Typical β value is 0.9

- The running average steps
 - Get longer in directions where gradient stays in the same sign
 - Become shorter in directions where the sign keeps flipping
Training by gradient descent

• Initialize all weights \(W_1, W_2, \ldots, W_K \)

• Do:

 – For all \(i, j, k \), initialize \(\nabla_{W_k} \text{Loss} = 0 \)

 – For all \(t = 1 : T \)

 • For every layer \(k \):

 – Compute \(\nabla_{W_k} \text{Div}(Y_t, d_t) \)

 – Compute \(\nabla_{W_k} \text{Loss} += \frac{1}{T} \nabla_{W_k} \text{Div}(Y_t, d_t) \)

 – For every layer \(k \):

 \[W_k = W_k - \eta (\nabla_{W_k} \text{Loss})^T \]

• Until \textit{Loss} has converged
Training with momentum

- Initialize all weights W_1, W_2, \ldots, W_K
- Do:
 - For all layers k, initialize $\nabla_{W_k} Loss = 0, \Delta W_k = 0$
 - For all $t = 1: T$
 - For every layer k
 - Compute gradient $\nabla_{W_k} Div(Y_t, d_t)$
 - $\nabla_{W_k} Loss + = \frac{1}{T} \nabla_{W_k} Div(Y_t, d_t)$
 - For every layer k
 - $\Delta W_k = \beta \Delta W_k - \eta (\nabla_{W_k} Loss)^T$
 - $W_k = W_k + \Delta W_k$
- Until $Loss$ has converged
Momentum Update

• The momentum method

\[\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Loss(W^{(k-1)})^T \]

• At any iteration, to compute the current step:
Momentum Update

• The momentum method
\[\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W \text{Loss}(W^{(k-1)})^T \]

• At any iteration, to compute the current step:
 – First computes the gradient step at the current location
Momentum Update

• The momentum method
 \[\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla W \text{Loss}(W^{(k-1)})^T \]

• At any iteration, to compute the current step:
 – First computes the gradient step at the current location
 – Then adds in the scaled previous step
 • Which is actually a running average
Momentum Update

- The momentum method
 \[\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_w Loss(W^{(k-1)})^T \]

- At any iteration, to compute the current step:
 - First computes the gradient step at the current location
 - Then adds in the scaled *previous* step
 - Which is actually a running average
 - To get the final step
Momentum update

• Takes a step along the past running average after walking along the gradient

• The procedure can be made more optimal by reversing the order of operations..
Nestorov’s Accelerated Gradient

• Change the order of operations

• At any iteration, to compute the current step:
Nestorov’s Accelerated Gradient

- Change the order of operations
- At any iteration, to compute the current step:
 - First extend the previous step
Nestorov’s Accelerated Gradient

- Change the order of operations
- At any iteration, to compute the current step:
 - First extend the previous step
 - Then compute the gradient step at the resultant position
Nestorov’s Accelerated Gradient

- Change the order of operations
- At any iteration, to compute the current step:
 - First extend the previous step
 - Then compute the gradient step at the resultant position
 - Add the two to obtain the final step
Nestorov’s Accelerated Gradient

- Nestorov’s method

\[\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W \text{Loss} \left(W^{(k-1)} + \beta \Delta W^{(k-1)} \right)^T \]

\[W^{(k)} = W^{(k-1)} + \Delta W^{(k)} \]
Nestorov’s Accelerated Gradient

• Comparison with momentum (example from Hinton)
• Converges much faster
Training with Nestorov

- Initialize all weights W_1, W_2, \ldots, W_K
- Do:
 - For all layers k, initialize $\nabla_{W_k} \text{Loss} = 0, \Delta W_k = 0$
 - For every layer k
 $$W_k = W_k + \beta \Delta W_k$$
 - For all $t = 1: T$
 - For every layer k:
 - Compute gradient $\nabla_{W_k} \text{Div}(Y_t, d_t)$
 - $\nabla_{W_k} \text{Loss} += \frac{1}{T} \nabla_{W_k} \text{Div}(Y_t, d_t)$
 - For every layer k
 $$W_k = W_k - \eta (\nabla_{W_k} \text{Loss})^T$$
 $$\Delta W_k = \beta \Delta W_k - \eta (\nabla_{W_k} \text{Loss})^T$$
- Until Loss has converged
Momentum and trend-based methods..

• We will return to this topic again, very soon..
Story so far: Convergence

- Gradient descent can miss obvious answers
 - And this may be a *good* thing

- Vanilla gradient descent may be too slow or unstable due to the differences between the dimensions

- Second order methods can normalize the variation across dimensions, but are complex

- Adaptive or decaying learning rates can improve convergence

- Methods that decouple the dimensions can improve convergence

- Momentum methods which emphasize directions of steady improvement are demonstrably superior to other methods
Coming up

• Incremental updates
• Revisiting “trend” algorithms
• Generalization
• Tricks of the trade
 – Divergences..
 – Activations
 – Normalizations