GAN Recitation

Hira Dhamyal, Simral Chaudhary, William Hu
Topics for today

- Introduction of GAN
- Types of GANs
- Earth Mover Distance
- Wasserstein Gan
- Example of GAN implementation
What are GAN

- GAN are a way of generative modelling
- A machine that tries to understand what is the distribution of training samples given some observations from the distribution
- Observes training data and is able to generate more samples from the distribution learnt from the training data
Adversarial Training

- In Generative adversarial network, adversarial training refers to training a neural network to generate adversarial examples by training on adversarial examples.
- Adversarial training includes two players.
- In Generative adversarial network, both players are neural networks.
- In worst case, the training sample is generated by one of the players.
Adversarial Network Framework

(taken from Ian Goodfellow’s slides)
DCGan (ICLR 2016)

Paper can be found here;
https://arxiv.org/abs/1511.06434
DcGans Application

- Image generation
- Face generation
- Scene modeling
Pix2pix (2018)

Paper can be found here:

- Image-to-Image Translation
- Conditions the output on an image sample x

Nice article here:
https://towardsdatascience.com/pix2pix-gan-in-tensorflow-2-0-fe0ab475c713
https://phillipi.github.io/pix2pix/
Pix2pix

Generator architecture
Pix2Pix Gan Applications

- Image coloring
- Image operations like background masking (http://www.k4ai.com/imageops/index.html)
- Video processing - removes the background in the video
- And many more ...
Cool Results

Fake faces generated using GANs
AI uses a “512 dimensional vector” to generate a new facial image.

Probability theory behind Generative models

- Unknown distribution P_r (r for real)
- Known distribution P_θ (θ parameterised)
- Two approaches:
 - Optimise P_θ to estimate P_r
 - Learn a function $g_\theta(Z)$ which transforms Z into P_θ
Approach 1: Optimise P_θ to estimate P_r

- How?
 - Maximum Likelihood Estimation (MLE)
 \[\max_{\theta \in \mathbb{R}^d} \frac{1}{m} \sum_{i=1}^{m} \log P_\theta(x^{(i)}) \]

- Equivalent to minimizing the KL-divergence $KL(P_r \parallel P_\theta)$

- Issue: Exploding of KL-divergence for zero values of P_θ
 - Fix: Add random noise to P_θ
 - Why go through all the trouble?
Approach 2: Learn a function $g_\theta(Z)$ which transforms Z into P_θ

- Z is a known distribution s.a Uniform or Gaussian distribution
- We learn a generator function which will transform this Z into P_θ
- How to train g_θ (and eventually P_θ)?
 - Minimize distance between g_θ and P_r
- Distance metrics
- Loss function: $d(P_r, P_\theta)$
Distance Metrics

- **Total Variation (TV) distance**
 \[\delta(P_r, P_g) = \sup_A |P_r(A) - P_g(A)| \]

- **Kullback-Leibler (KL) divergence**
 \[KL(P_r \| P_g) = \int_x \log \left(\frac{P_r(x)}{P_g(x)} \right) P_r(x) \, dx \]

- **Jensen-Shannon (JS) divergence**
 \[JS(P_r, P_g) = \frac{1}{2} KL(P_r \| P_m) + \frac{1}{2} KL(P_g \| P_m) \]

- **Earth Mover (EM) or Wasserstein distance:**
 \[W(P_r, P_g) = \inf_{\gamma \in \Pi(P_r, P_g)} \mathbb{E}_{(x,y) \sim \gamma} \left[\|x - y\| \right] \]

Let \(\Pi(P_r, P_g) \) be the set of all joint distributions \(\gamma \) whose marginal distributions are \(P_r \) and \(P_g \).
Earth Mover distance (Wasserstein distance)

- **Earth Mover’s distance**: the minimum energy cost of moving and transforming a pile of dirt in the shape of one probability distribution to the shape of the other distribution.
- The cost is quantified by: the amount of dirt moved * the moving distance.
- **Example 1**:
 - P, Q: 4 piles of dirt made up of 10 shovelfuls of dirt present in each.
 - The numbers of shovelfuls in each dirt pile are assigned as follows:
 - P: P\(_1\) = 3, P\(_2\) = 2, P\(_3\) = 1, P\(_4\) = 4
 - Q: Q\(_1\) = 1, Q\(_2\) = 2, Q\(_3\) = 4, Q\(_4\) = 3
 - W=\(\sum |\delta_i|\) = 5

- **Example 2**:
 - \(\Pi(Pr, Pg)\) is the set of all possible joint probability distributions between Pr and Pg
 - \(\gamma \in \Pi(Pr, Pg)\): one dirt transport plan
 - \(\sum_{x,y} \gamma(x, y)||x - y|| = \mathbb{E}_{x,y\sim\gamma} ||x - y||\)

Source: [Link](#)
Wasserstein GAN

- Use Wasserstein distance as GAN loss function
- The “discriminator” model does not play as a direct critic but a helper for estimating the Wasserstein metric between real and generated data distribution.
- Still not perfect :(WGAN still suffers from unstable training and other convergence issues.