Recurrent Neural Networks

Deep Learning - Recitation (2/16/2018)
Table of Contents

- What is an RNN
- The Backpropagation Through Time (BTT) Algorithm
- Different Recurrent Neural Network (RNN) paradigms
- How Layering RNNs works
- Popular Types of RNN Cells
- Common Pitfalls of RNNs
What is an RNN

An RNN is a type of artificial neural network in where the weights form a directed cycle

Let’s take a step back to a typical feedforward NN to explain what this means…
What is an RNN

An RNN is a type of artificial neural network in where the weights form a directed cycle.
An RNN is a type of artificial neural network in which the weights form a directed cycle.

These Weights Are The Same
Backpropagation Through Time

Note: This is handwavy

We can already back propagate error through this...
Backpropagation Through Time

Note: This is handwavy

What does this look like?
Backpropagation Through Time

Note: This is handwavy

What if we rearrange some things?

This just looks like a feedforward network with some strange connections...

Note that we dropped Hidden_0

Note that we dropped Hidden_2
Backpropagation Through Time

Note: This is handwavy

These two can be trained in exactly the same way!

Regular Backprop!
Backpropagation Through Time

Note: This is handwavy

“Unroll” your network

Calculate the gradients for all of these weights
Backpropagation Through Time

Note: This is handwavy

"Unroll" your network

Because all these weights are tied update them at the same time... Just like tied weights in a CNN
Different problems are more suited for different RNN paradigms.
RNN Paradigms

Given a single input predict a single output

This is just a simple feedforward neural network

Different problems are more suited for different RNN paradigms
RNN Paradigms

Different problems are more suited for different RNN paradigms.

Given a single input predict a sequence of outputs

Ex. Image Captioning
Given an image describe the image textually
RNN Paradigms

Given a single input predict a sequence of outputs

Ex. Sentiment Analysis
Given text predict positive or negative sentiment

Different problems are more suited for different RNN paradigms
RNN Paradigms

Given a sequence of inputs predict a sequence of outputs (of potentially different length)

Ex. Machine Translation
Given text in language A, translate it to language B

Different problems are more suited for different RNN paradigms
RNN Paradigms

Given a sequence of inputs predict a sequence of outputs (of the same length)

Ex. Part of Speech Tagging
Given a sequence of words, label each word with its part of speech (Noun, Verb, etc)

Different problems are more suited for different RNN paradigms
How Layering RNNs Work

You just stack them like this… Nothing special

You can change the order or the direction

You can change the granularity as well (Hierarchical Networks)

The world is your oyster
Common Types of RNN Cells

Different cells are better for different problems

You aren’t limited to the above 3 layer structure, any feedforward style neural network architecture could work

To calculate the output, simply perform the traditional feedforward network calculation

Different cells are better for different problems

Note, depending on the implementation “Output” and “Hidden₁” may be the same thing
Common Types of RNN Cells

Gated Recurrent Unit (GRU) Cell

Where are the gates???

The gates are the neural nets

Different cells are better for different problems

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Common Types of RNN Cells

Gated Recurrent Unit (GRU) Cell Mathematics

\[z_t = \sigma \left(W_z \cdot [h_{t-1}, x_t] \right) \]

\[r_t = \sigma \left(W_r \cdot [h_{t-1}, x_t] \right) \]

\[\tilde{h}_t = \tanh \left(W \cdot [r_t \ast h_{t-1}, x_t] \right) \]

\[h_t = (1 - z_t) \ast h_{t-1} + z_t \ast \tilde{h}_t \]

Different cells are better for different problems

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Common Types of RNN Cells

Long Short Term Memory (LSTM) Cell

Different cells are better for different problems

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Common Types of RNN Cells

Long Short Term Memory (LSTM) Cell Mathematics

Forget Gate

$$f_t = \sigma (W_f [h_{t-1}, x_t] + b_f)$$

Input Gate

$$i_t = \sigma (W_i [h_{t-1}, x_t] + b_i)$$
$$\tilde{C}_t = \tanh (W_C [h_{t-1}, x_t] + b_C)$$

Cell State Output

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Output Gate

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Different cells are better for different problems

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Common Pitfalls of RNNs

- These models can overfit incredibly easily.
 - Start with an incredibly simple model, with small gates and few layers, then expand.

- Vanishing/Exploding Gradients
 - Depending on your data, BTT can cause your gradients to become incredibly small (vanish) or become incredibly large (explode)
 - Gated cells can mitigate this to an extent, but not entirely.
 - Be sure to regularize and keep an eye on your gradients to see how they are doing
Conclusion

Any Questions?

This is your machine learning system?

Yup! You pour the data into this big pile of linear algebra, then collect the answers on the other side.

What if the answers are wrong?

Just stir the pile until they start looking right.