READINGS IN DEEP LEARNING

3 Sep 2014
ADMINISTRIVIA

• Lab assignment 1 to be up today
 – Due 2 weeks from now

• Still waiting to sort waitlist issues
 – We may have to change room
Next 2 Classes (Week of Sep 8)

- Monday, Sep 8
 - Organization of behavior
 - Donald Hebb
 - About the Hebbian learning rule
 - Srivats will present
 - Widrow Hoff learning rule
 - Widrow and Hoff
 - Key rule which is still applied to many learning algorithms
 - Zhiyong Chen will present
Next 2 Classes (Week of Sep 8)

- Wednesday, Sep 10
 - A Simplified Neuron Model as PCA
 - Erkki Oja
 - Shows that the Hebbian learning rule learns principal components
 - Haohan Wang will present
 - Backpropagation
 - Paul Werbos
 - The fundamental learning rule that enabled further research in neural nets and is still being used
 - Tina Liu will present
Week of Sep 15

• Monday, Sep 15
 – Kohonen Maps
 • Teuvo Kohonen
 • The first paper to show how to “chart manifolds” of data
 – Using neural networks!
 • Need a volunteer
 – Hopfield Nets
 • John Hopfield
 • Content addressable memory
 – Hypothesizing how the brain stored memories
 – Led directly to Boltzmann machines and RBMs
 • Need a volunteer
Week of Sep 15

• Wednesday, Sep 17
 – Boltzmann Machines
 • Geoff Hinton
 • Better content addressible memories
 – And how to train them
 • Suyoung Kim will present

 – Restricted Boltzmann machines
 • Paul Smolensky
 • The basic unit of deep networks of today
 • Need a volunteer
Notices

• Success of course depends on good presentations
• Please send in your slides 1-2 days before the presentations
 – So that we can ensure they are OK

• You are encouraged to discuss your papers with us/your classmates while preparing for them
 – We will have a google group at the end of this week
 – Use the google group for discussion
The story so far

• Alexander Bain proposed neural network models
 – Complete with the following ideas
 • That neurons connected to neurons
 • Neurons could have many inputs and a single output
 • The connections determined what the network would do
 • The same network could generate different outputs for different inputs
 • All by 1879!!

 – His work was forgotten..
 • Even by himself!
Today

• McCulloch and Pitts: Simranjit Kohli

• Walter Pitts
 – Homeless hobo
 • Ran away from home at 15 and never returned
 – Cybernetician, Computational Neuroscientist

• Warren Sturgis McCulloch:
 – Neurophysiologist
 – Psychologist,
 – Famous for his work on the mind
 – Founder of American Society of Cybernetics
 – Wrote poetry
 – Took in homeless hobo Pitts into his home in 42..
Today: McCullough and Pitts

• Fundamental problem – how does the physical body produce the abstract mind?
 – Hypothesis: Structure embodies propositional inference
 • Structure of the brain
 – Mind == thought, ideas, *propositions*
 – Generation, acceptance, and rejection of propositions hidden in the structure of the brain
Today: McCullough and Pitts

• “A logical calculus of ideas immanent in nervous activity”
 – Tries to model a logical calculus using a network of neurons
 – “immanent” – logical propositions are within the activity patterns of neurons(!!)

• Didn’t actually intend to explain neurons; but to show how a neuron-like structure could do things like the brain

• Proposes a model based on Boolean logic
 – Instead of more conventional continuous-valued physics
 – Inspired by Turing in this, though he doesn’t cite him.
Today: McCullough and Pitts

• Problems:
 – Given a net, explain its behavior
 – Given a behavior, design a net

• Behavior of a neuron can be defined in terms of the afferent neurons feeding input into it
 – What is the logical expression for each neuron

• Networks can be designed based on units
 – Had units for and, or, and-not, delay
 • Anything can be constructed with it

• Can explain complex percepts with nets
 – Heat-cold example

• First reference of neural networks and *computation*
• NOT Turing machines, since even with loops
 – Though McCulloch thought so
Today: Perceptron

• The perceptron: A probabilistic model for information storage and organization in the brain (presented by Volkan Cirik)

• Frank Rosenblatt
 – Psychologist!
 – Neurophysiologist
 – Cybernetist
 – Astronomer
 – “New Navy Device Learns By Doing”
Today: Perceptron

• The perceptron: A probabilistic model for information storage and organization in the brain
 – Not really about the logistic perceptron, more about the probabilistic interpretation of learning in connectionist networks
 – Sensing, storage and processing of information in the brain
 – Information stored in connections
 – Uses probabilities vs symbolic logic
Today: Perceptron

• Built on earlier works by Hebb etc
 – Neural connections unique to an individual
 – Develop from a plastic base through exposure to stimuli
 • Positive and negative stimuli
 – Is a *hypothetical* model, not claimed to be true biology
 – Rejects Boolean logic
 – Is a testable model of biological learning
Today: Perceptron

• Model
 – Learning by trial and error
 • Random initialization, learns from input and desired response
 • Verifiable via simulation/hardware
 • Proposes multiple learning rules
 • No formal proofs of any kind, though

• Thought he’d solved it all
 – Till Minsky and Papert showed the models limitations
 • And set back research in neural networks by two decades!