ADMINISTRIVIA

• Will start a mailing list today
 – You will get a notice

• A blog page to discuss papers

• Labs are up
 – Ignore the dates and text on pdfs
 – Were created by Anders Oland last year

• Papers for weeks of 22 Sep and 29 Sep will be sent out
 – Please volunteer
 – 13 registered students who are yet to volunteer
The story so far

• Bain’s model:
 – The brain comprises nerve groupings
 – Learning = learning the interconnections between nerves
 – Co-occurrence ➔ co-excitation ➔ Increased connectivity between neurons
The story so far

• McCulloch and Pitts model
 – Neural connections can give you logic circuits
 – Can include excitation and inhibition
 – Threshold logic
 – Simple threshold logic can give you simple boolean relations
 – Complex threshold logic requires hierarchical threshold / McCulloch pitt neurons

• Did NOT specify learning rule
Story so far: Rosenblatt’s Perceptron

- Defining the modern Neural Network structure
 - Defining the perceptron: Rosenblatt 1958
 - Introduces the computational paradigm that the memory *is* the program
 - Biologically motivated, computational model
 - Based on McCulloch and Pitts
 - Also motivated by Hebb
 - Clearly delineates inputs, hidden units, output units
 - With different nomenclature..
 - Learns about *generalization* of learned patterns: one of the earliest use of NNet as a prediction/classification scheme
Today: Learning Rules

• Hebbian Learning..
 – The Hebbian learning rule 1949
 – The cell-assembly theory
 – Develops the theory of associationism
 • If X and Y fire together \rightarrow Connection(X,Y) upgraded
 • Not presented as equations though
 – Unstable
 – Also one of the earliest uses of “connectionism”
 – *Srivaths Ranganathan*
Today: Hebbian Rule

• Hebbian rule
 – If X and Y fire together \(\rightarrow \) Connection(X,Y) upgraded
 – \(W_{k+1} = W_k + \alpha xy \)
 – \(W_k' = W_k + \alpha xy; \quad W_{k+1} = \lambda W_k' + (1-\lambda)W_k \)
 – Binary 0/1 values
 – Unstable
• The perceptron learning rule?

\[W_{k+1} = W_k + \gamma e_k X_k \]

\[e_k = d_k - y_k \]

– Takes value -1, 0 or 1 since \(d \) and \(y \) are binary

• Guaranteed to converge if inputs are linearly separable

– And to oscillate otherwise
More on learning rules: The LMS rule

- \(\alpha \)-LMS: \(W_{k+1} = W_k + \alpha e_k \frac{X_k}{\|X_k\|^2} \) “error correction”

- \(\mu \)-LMS: \(W_{k+1} = W_k + \mu e_k X_k \) “steepest descent”

Unlike perceptron rule, \(y \) is a continuous function of \(X \)
- May not give correct solution even if input are separable
Adalines and Madalines (Widrow)

A Madaline is a cascade of “Adaline”s
How do we train the Adalines in the Madalines?
 – Widrow and Lehr

Precursor to backprop
General principle of minimum interference
Zhiyong Chen will present
On Wednesday the 10th

• Continuing:
 – Oja: Shows Hebb’s rule relates to PCA
 – The “Generalized Hebbian” rule
 – Haohan Wang will present

– Addendum: Sanger’s rule
 • Multiple principal components
On Wednesday the 10th

• Back propagation
 – How to train multi-layer networks by “propagating” error
 – Tina Liu will present

– Addendum: RPROP
 • Faster version of back prop
Looking ahead

• Networks so far: feed forward
 – No backward or sideways flow of information
• Recurrence is required to model time series
 – Or temporal evolution
• Next class: SOMs and Hopfield networks
 – One for of feedback
 – Not strictly recurrence
Next Week: 15 September

• Other network types
 – Content addressible memories: Hopfield Nets
 • Anurag will present
 – Self-organizing maps
 • The self organizing map, Kohonen, Proc IEEE, 1990
 • Joseph Chang will present
Next week: 17th Sep

• Boltzmann machines
 – A generalization of Hopfield nets
 – A learning algorithm for Boltzmann machines
 • Ackley, Hinton, Sejnowski 1985
 – Improved simulated annealing, Boltzmann machine, and attributed graph matching
 • Lei Xu, Erkki Oja, 1990
 – Suyoung Kim will present

• Restricted Boltzmann machines
 – Or the “harmoninum” model
 • Paul Smolensky, 1986
 – Making the Boltzmann machine tractable
 – Dishan Gupta will present
Looking Further

• The restrictions of learning

• The power of neural networks

• The power of deep networks

• Alternate network types