Gradient-based Learning Applied to Document Recognition

Yann LeCun, Leon Bottou, Yoshua Bengio and Patrick Haffner

Presenter: Lu Jiang
Outline

• Introduction
• Convolutional Neural Network
• Multiple Characters Recognition
• Conclusions
Outline

• Introduction
• Convolutional Neural Network
• Multiple Characters Recognition
• Conclusions
Introduction

• Key message: better pattern recognition systems can be built by relying more on automatic learning and less on hand-designed heuristics.
 – Hand-crafted features vs. learned features

Why learned features:
• (a) lower dimension can be easily compared
• (b) invariant to transformations and distortions of the input patterns.
Background

• LeCun’s most cited paper.
• This paper published in 1998, at that time
 – SVM (and kernel learning) are quite popular.
 – Hand-crafted features (e.g. SIFT) are dominant.
 – MNIST (58k images) is a big and challenging data.
• This paper did not become popular until 2012, when the proposed convolutional neural networks were successfully applied on ImageNet challenge (AlexNet).
• Now almost every deep learning network for visual recognition uses convolutional layers.
MNIST
(NIST handwritten digit database)
Outline

• Introduction
• **Convolutional Neural Network**
• Multiple Characters Recognition
• Conclusions
Intuitions

• A network can be fed with the pixels in raw images (fully-connected layer) but:
 – Formidable number of parameters. $256 \times 256 \times 3 = 196K$ parameters. **Overfitting!**
 – Sensitive to size, shift slant, position variations caused by, or example, resized images.
 – Topology in images are ignored. The fact is local nearby pixels are highly correlated. Local points can form edges, end-points, and corners.

• **Proposed approaches**: learn pattern that can be positioned at various locations; force learned pattern are from local pixels.

• **Solution**: Convolutional Neural Network
 – Convolution layer and pooling layer are inspired by “simple” and “complex” cells [Fukushima et al 1982].
Convolutional Neural Network

- Input: inputs from a set of units located in a small neighborhood in the previous layer. First conv layer receives the resized and normalized images.
- Output: a number of feature maps (holding neurons arranged in a 3D volume)
Convolutional Neural Network

- Input: inputs from a set of units located in a small neighborhood in the previous layer. First conv layer receives the resized and normalized images.
- Output: a number of feature maps (holding neurons arranged in a 3D volume)
Convolutional Neural Network

• Input: inputs from a set of units located in a small neighborhood in the previous layer. First conv layer receives the resized and normalized images.

• Output: a number of feature maps (holding neurons arranged in a 3D volume)

The learnable parameter in the same feature map is shared. (weight sharing)
To learn meaningful pattern at different locations.
Convolutional Neural Network

• Input: inputs from a set of units located in a small neighborhood in the previous layer. First conv layer receives the resized and normalized images.

• Output: a number of feature maps (holding neurons arranged in a 3D volume)

pooling (sub-sampling) layer

Down-sampling the input and preserve meaningful statistics (average or max pooling). Make learned pattern more invariant.
Convolutional Neural Network

- Input: inputs from a set of units located in a small neighborhood in the previous layer. First conv layer receives the resized and normalized images.
- Output: a number of feature maps (holding neurons arranged in a 3D volume)
Convolutional Layer in 1D

\[z_1 = w_1 x_1 + w_2 x_2 + b \]
Convolutional Layer in 1D

\[z_2 = w_1 x_2 + w_2 x_3 + b \]
Convolutional Layer in 1D

\[z_3 = w_1 x_3 + w_2 x_4 + b \]

\(\approx \) measures the dot product similarity to the local inputs.

Our goal is to learn the parameters \(w \)

The hope is we can learn patterns frequently occurred in the inputs.
Convolutional Layer in 1D

\[z_3 = w_1 x_3 + w_2 x_4 + b \]
Convolutional Layer in 1D

Smaller strides work better in practice [Fei-fei Li et al. 2015].
Convolutional Layer in 2D

Input filter weights feature map

Forward path

Fei-fei Li et al. 2015
Convolutional Layer in 2D

Input

Filter weights

Feature map

Fei-fei Li et al. 2015
Convolutional Layer in 2D

The learnable parameter in the same feature map is shared. (weight sharing)
To learn meaningful pattern at different locations.

Fei-fei Li et al. 2015
Pooling (Sub-sampling) Layer

In this paper, Lecun used a linear transformation. Weighted sum of the inputs plus a bias term. Max pooling becomes quite popular nowadays.

Down-sampling the input and preserve meaningful statistics (average or max pooling). Make learned pattern more invariant.
• C1 layer has 6 feature maps (28x28), a 5x5 receptive field resulting in $(5*5+1)*6 = 156$ learnable parameters which are from $28*28*(5*5+1)*6 = 122,304$ connections.
Convolutional Neural Network

- S1 layer has 6 feature maps (14x14), a 2x2 receptive filed resulting in $(1+1)\times6 = 12$ learnable parameters which are from $14 \times 14 \times (2 \times 2 + 1) \times 6 = 5,880$ connections.

Fewer parameters but computationally intensive to compute (#connections result from convolution)
Convolutional Neural Network Training

• Compute partial derivatives of the loss function with respect to each connection, as if there were no weight sharing. [via backprop]

• Aggregate the partial derivatives of all connections that share a same parameter. Update the parameter with the aggregated derivatives.
LeNet-5 to AlexNet
Results on MNIST

- Linear: 12.0
- Pairwise: 7.6
- SVM: 3.3
- Convolutional Neural Net: 4.5
- Neural Net: 4.7
Results on MNIST

2-3 days to train 20 iterations.
Multi-Module Recognition System

• Object-Oriented Design:
 – Every module can be a layer. For example, loss function layers, convolutional layers, and even graph transformers.
 – Every layer is an object that has functions like fprop and bprop.
 – Complex systems can be built upon those simple layers, and trained by gradient-based learning algorithms.

• Inspire the design of deep learning tools like caffe, Torch
Outline

- Introduction
- Convolutional Neural Network
- Multiple Characters Recognition
- Conclusions
• Over-segmentation: generate a large number of different (probably incorrect) segments.
• Segmentation graph: an arc between two nodes indicate a segment result
• A complete path between start and end node contains each piece of ink once and only once
Recognizing multiple characters
Graph Transformation Networks

A path indicates a possible interpretation of the input word

Find the optimal path

Calculate loss

LeNet-5
Recognizing multiple characters: Graph Transformation Networks

• To train GTN:
 – Add a layer called a path selector to select the paths with **correct label sequence** in the interpretation graph.
 – Calculate the penalty.
 – Back propagate the penalty to the neural network.
 – How to calculate the partial gradient with respect to graphs?
 • Define a binary function. Assign gradient 0 for the arcs not in the correct/optimal path. 1 otherwise.
Recognizing multiple characters: Displacement Neural Network

Interestingly, LeCun mentioned RNN but did not use it because he said it is hard to train.
Outline

• Introduction
• Convolutional Neural Network
• Multiple Characters Recognition
• Conclusions
Conclusions

• The most representative work of LeCun. A seminal on neural networks for visual recognition.
• This paper proposed several interesting notations:
 – Hand-crafted features should be replaced by learned features.
 – Large-sized systems can be learned by gradient-based method with efficient back propagation.
 – Proposed the notation of graph transformer layer that can be plugged into a network.
Thank you.
Any Questions?